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CHAPTER 1
GETTING STARTED

1.1. HOW TO USE THIS MANUAL
Chapter 1 provides an overview of this manual and the related Pentium processor
documentation. Also included are some notational conventions regarding reserved bits,
instruction operands, number formats, addressing and exceptions found throughout the
manual.

Chapter 2 provides an introduction to Intel's Pentium processor family. The remainder of this
book presents the architecture of the Pentium processor in five parts:

• Part I—Application and Numeric Programming

• Part II—System Programming

• Part III—Compatibility

• Part IV—Optimization

• Part V—Instruction Set

• Appendices

The first three parts are explanatory, showing the purpose of architectural features,
developing terminology and concepts, and describing instructions as they relate to specific
purposes or to specific architectural features. The remaining parts are reference material for
programmers developing software for the Pentium processor.

The first two parts cover the operating modes and protection mechanism of the Pentium
processor. The distinction between application programming and system programming is
related to the protection mechanism of the Pentium processor. One purpose of protection is to
prevent applications from interfering with the operating system. For this reason, certain
registers and instructions are inaccessible to application programs. The features discussed in
Part I are those which are accessible to applications; the features in Part II are available only
to programs running with special privileges or programs running on systems where the
protection mechanism is not used.

The features available to application programs in protected mode and to programs in real-
address and virtual-8086 mode are the same. These features are described in Part I of this
book. The additional features available to system programs in protected mode are described
in Part II. Part III describes virtual-8086 mode, how to mix 16-bit and 32-bit code, and
compatibility considerations.
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Part IV provides general optimization techniques for programming on Intel architectures. For
additional information refer to AP-500, Optimizations for Intel's 32-Bit Processors, order
number 241799.

1.1.1. Part I—Application and Numeric Programming
This section presents the features used by most application programmers. It includes features
used in numeric applications which are object-code compatible with features provided by the
Intel486 DX processor, and the Intel487 SX, the Intel387 DX, and the Intel387 SX
math coprocessors used with the Intel486 SX, Intel386 DX and Intel386 SX processors,
respectively.

Chapter 3—Basic Programming Model: This chapter introduces the models of memory
organization, defines the data types, presents the register set used by applications, introduces
the stack, explains string operations, defines the parts of an instruction, explains address
calculations, and introduces interrupts and exceptions as they apply to application
programming.

Chapter 4—Application Programming: Chapter 4 surveys the integer instructions
commonly used for application programming. Instructions are considered in functionally
related groups; for example, string instructions are considered in one section, while control-
transfer instructions are considered in another. The concepts behind the instructions are
explained. Details of individual instructions are deferred until Part V, the instruction-set
reference.

Chapter 5—Feature Determination: This chapter discusses how to determine the CPU type
and the presence of a math coprocessor in order to determine what features are available to
an application.  A program example is provided.

Chapter 6—Numeric Applications: This chapter gives an overview of the floating-point
unit and reviews the concepts of numerical computation. The "Architecture of the Floating-
Point Unit" section presents the floating-point registers and data types available to both
applications and systems programmers. The "Floating-Point Instructions" section of this
chapter surveys the instructions commonly used for numeric processing. Details of individual
instructions are deferred until Part V, the instruction-set reference. The "Numerics
Applications" section describes the Pentium processor's floating-point arithmetic facilities
and gives short programming examples in both assembly language and high-level languages.

Chapter 7—Special Computational Situations: This chapter discusses the special values
that can be represented in the real formats of the Pentium processor—denormal numbers,
zeros, infinities, NaNs (Not a Number)—as well as the numerical exceptions.

Chapter 8—Numeric Programming Examples: Chapter  8 provides detailed examples of
assembly-language numeric programming with the Pentium processor, including conditional
branching, conversion between floating-point values and their ASCII representations, and use
of trigonometric functions.
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1.1.2. Part II—System Programming
This section presents the features used by operating systems, device drivers, debuggers, and
other software which support application programs.

Chapter 9—Real-Address Mode System Architecture: This chapter explains the real-
address mode of the Pentium processor as it relates to the system programmer. In this mode,
the Pentium processor appears as a fast real-mode Intel 286 or Intel386 processor or a fast
8086 processor enhanced with additional instructions.

Chapter 10—Protected-Mode System Architecture Overview: Chapter 10 describes the
features of the Pentium processor used by system programmers. System-oriented registers
and data structures of the Pentium processor which are mentioned briefly in Part I are
discussed in detail. The system-oriented instructions are introduced in the context of the
registers and data structures they support. References to the chapters in which each register,
data structure, and instruction is discussed in more detail.

Chapter 11—Protected-Mode Memory Management: This chapter presents details of the
data structures, registers, and instructions which support segmentation and paging and
explains how system designers can choose between an unsegmented ("flat") model of
memory organization and a model with segmentation.

Chapter 12—Protection: This chapter discusses protection as it applies to segments and
pages. It explains the implementation of privilege rules, stack switching, pointer validation,
user and supervisor modes. The protection aspects of multitasking are deferred until the
following chapter.

Chapter 13—Protected-Mode Multitasking: Chapter 13 explains how the hardware of the
Pentium processor supports multitasking with context-switching operations and intertask
protection.

Chapter 14—Protected-Mode Exceptions and Interrupts: This chapter explains the basic
interrupt mechanisms of the Pentium processor, shows how interrupts and exceptions relate
to protection, discusses all possible exceptions including floating-point exceptions, listing
causes and including information needed to handle and recover from each exception.

Chapter 15—Input/Output:  Chapter 15 describes the I/O features of the Pentium processor,
including I/O instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 16—Initialization and Mode Switching: Chapter 16 defines the condition of the
processor and floating-point unit after reset initialization. It explains how to set up registers,
flags, and data structures. The steps necessary for switching between real-address and
protected modes are also identified.

Chapter 17—Debugging: Chapter 17 discusses how to use the debugging registers and other
debug features of the Pentium processor.

Chapter 18—Caching, Pipelining and Buffering: Chapter 18 explains the general concept
of caching and the specific mechanisms used by the internal cache on the Pentium processor.
It explains how the superscalar pipeline architecture of the Pentium processor and the
Translation Lookaside Buffer (TLB) relate to the system programmer.
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Chapter 19—Multiprocessing: Chapter 19 explains the instructions and flags which support
multiple processors with shared memory.

Chapter 20—System Management Mode: This chapter explains the operation of SMM
used to implement power management functions. Some possible customer differentiation
features are mentioned.

1.1.3. Part III—Compatibility
This section explains the features of the architecture which support programs written for
earlier Intel processors. Three execution modes have support for 16-bit programming: 16-bit
operations can be performed in protected mode with or without using the operand-size prefix,
programs written for the 8086 processor or the real mode of the Intel 286 processor can run
in real mode on one of the 32-bit microprocessors, and a virtual machine monitor can be used
to emulate real mode using virtual-8086 mode, even while multitasking with 32-bit
programs.

Chapter 21—Mixing 16-Bit and 32-Bit Code: This chapter explains how to mix 16-bit and
32-bit modules within the same program or task. Any particular module can use both 16-bit
and 32-bit operands and addresses.

Chapter 22—Virtual-8086 Mode: Chapter 22 describes how to execute one or more 8086,
8088, 80186 or 80188 programs in a Pentium processor protected-mode environment.

Chapter 23—Compatibility:  This chapter explains the programming differences between
the Intel 286, Intel386, and Intel486 processors. This chapter compares the floating-point unit
of the Intel486 and Pentium processors with the arithmetic of the numerics coprocessors used
with earlier Intel processors.

1.1.4. Part IV—Optimization
Chapter 24 discusses general optimization techniques for programming in the Intel
architecture environment. For additional information refer to AP-500, Optimizations for
Intel's 32-Bit Processors, order number 241799.

 1.1.5. Part V—Instruction Set
Parts I, II and III present the general features of the instruction set as they relate to specific
aspects of the architecture. Part V, Chapter 25, presents the instructions in alphabetical order,
with detail needed by assembly language programmers and programmers of debuggers,
compilers, operating systems, etc. Instruction descriptions include an algorithmic description
of operations, effect on flag settings, effect of operand- and address-size attributes, and
exceptions which may be generated.
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1.1.6. Appendices
The appendices present tables of encodings and other details in a format designed for quick
reference by programmers.

1.2. RELATED LITERATURE
The following books contain additional material related to Intel processors:

• Pentium® Processor Data Book, Order Number 241428

• 82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium®

Processor, Order Number 241429

• Intel486™ Microprocessor Data Book, Order Number 240440

• Intel486™ Processor Hardware Reference Manual, Order Number 240552

• Intel486™ DX Processor Programmer’s Reference Manual, Order Number 240486

• Intel486™ SX CPU/Intel487™ SX Math CoProcessor Data Book, Order Number 240950

• Intel486™ DX2 Microprocessor Data Book, Order Number 241245

• Intel486™ Microprocessor Product Brief Book, Order Number 240459

• Intel386™ Processor Hardware Reference Manual, Order Number 231732

• Intel386™ DX Processor Programmer’s Reference Manual, Order Number 230985

• Intel386™ SX Processor Programmer's Reference Manual, Order Number 240331

• Intel386™ Processor System Software Writer's Guide, Order Number 231499

• Intel386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630

• 376™ Embedded Processor Programmer's Reference Manual, Order Number 240314

• 80387 DX User's Manual Programmer's Reference, Order Number 231917

• 376™ High-Performance 32-Bit Embedded Processor, Order Number 240182

• Intel386™ SX Microprocessor, Order Number 240187

• Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

1.3. NOTATIONAL CONVENTIONS
This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual
easier to read.
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1.3.1. Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of
the figure; addresses increase toward the top. Bit positions are numbered from right to left.
The numerical value of a set bit is equal to two raised to the power of the bit position. The
Pentium processor is a "little endian" machine; this means the bytes of a word are numbered
starting from the least significant byte. Figure 1-1 illustrates these conventions.

APM87

DATA STRUCTURE

31 23 15 7 0

GREATEST
ADDRESS

BIT OFFSET

28
24
20
16
12
8
4
0

SMALLEST
ADDRESS

BYTE OFFSET

BYTE 3       BYTE 2      BYTE 1      BYTE 0

Figure 1-1.  Bit and Byte Order

1.3.2. Undefined Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as undefined or reserved, it is essential for compatibility with future
processors that software treat these bits as having a future, though unknown, effect. The
behavior of reserved bits should be regarded as not only undefined, but unpredictable.
Software should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers
which contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same
register.
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NOTE

Depending upon the values of reserved register bits will make software
dependent upon the unspecified manner in which the processor handles
these bits. Depending upon reserved values risks incompatibility with future
processors. AVOID ANY SOFTWARE DEPENDENCE UPON THE
STATE OF RESERVED Pentium PROCESSOR REGISTER BITS.

1.3.3. Instruction Operands
When instructions are represented symbolically, a subset of the assembly language for the
Pentium processor is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names
of registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages
put the source and destination in reverse order.

1.3.4. Hexadecimal Numbers
Base 16 numbers are represented by a string of hexadecimal digits followed by the character
H. A hexadecimal digit is a character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F). A leading zero is added if the number would otherwise begin with one of the digits A-F.
For example, 0FH is equivalent to the decimal number 15.

Numbers are usually expressed in decimal notation (base 10). When hexadecimal (base 16)
numbers are used, they are indicated by an ‘H’ suffix. For example 16 = 10H.
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1.3.5. Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte number is used to
address memory. The memory which can be addressed with this number is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a
program can keep its code (instructions) and stack in separate segments. Code addresses
would always refer to the code space, and stack addresses would always refer to the stack
space. An example of the notation used to show segmented addresses is shown below.

CS:EIP

This example refers to a byte within the code segment. The byte number is held in the EIP
register. CS identifies the code segment.

1.3.6. Exceptions
An exception is an event which typically occurs when an instruction causes an error For
example, an attempt to divide by zero generates an exception. However, some exceptions,
such as breakpoints, occur under other conditions. Some types of exceptions may provide
error codes. An error code reports additional information about the error. Error codes are
produced only for some exceptions. An example of the notation used to show an exception
and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may
not be able to report an accurate code. In this case, the error code is zero, as shown below.

#GP(0)

See Chapter 14, Protected-Mode Exceptions and Interrupts, for a list of exception mnemonics
and their description.
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CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM®

PROCESSOR FAMILY

In 1985, Intel introduced the first in a line of 32-bit microprocessors compatible with the
already broad base of existing Intel architecture software. That was the Intel386
microprocessor. The Intel 32-bit architecture has since grown to become the standard for
cost-effective, high performance computing with an installed base of over 40 million units.
Intel has continued to evolve and improve the basic implementation by incorporating the
most advanced computer design and silicon technology. The Intel Pentium family is the most
recent product of that effort.

The Intel Pentium processor, like its predecessor the Intel486 microprocessor, is fully
software compatible with the installed base of over 100 million compatible Intel architecture
systems. In addition, the Intel Pentium processor provides new levels of performance to new
and existing software through a reimplementation of the Intel 32-bit instruction set
architecture using the latest, most advanced, design techniques. Optimized, dual execution
units provide one-clock execution for "core" instructions, while advanced technology, such
as superscalar architecture, branch prediction, and execution pipelining, enables multiple
instructions to execute in parallel with high efficiency. Separate code and data caches
combined with wide 128-bit and 256-bit internal data paths and a 64-bit, burstable, external
bus allow these performance levels to be sustained in cost-effective systems. The application
of this advanced technology in the Intel Pentium processor brings "state of the art"
performance and capability to existing Intel architecture software as well as new and
advanced applications.

The Pentium processor has two primary operating modes and a "system management mode."
The operating mode determines which instructions and architectural features are accessible.
These modes are:

• Protected Mode
This is the native state of the microprocessor. In this mode all instructions and
architectural features are available, providing the highest performance and capability.
This is the recommended mode that all new applications and operating systems should
target.

Among the capabilities of protected mode is the ability to directly execute "real-address
mode" 8086 software in a protected, multi-tasking environment. This feature is known as
Virtual-8086 "mode" (or "V86 mode"). Virtual-8086 "mode" however, is not actually a
processor "mode," it is in fact an attribute which can be enabled for any task (with
appropriate software) while in protected mode.

• Real-Address Mode (also called "real mode")
This mode provides the programming environment of the Intel 8086 processor, with a
few extensions (such as the ability to break out of this mode). Reset initialization places
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the processor in real mode where, with a single instruction, it can switch to protected
mode.

• System Management Mode
The Pentium microprocessor also provides support for System Management Mode
(SMM). SMM is a standard architectural feature unique to all new Intel microprocessors,
beginning with the Intel386 SL processor, which provides an operating-system and
application independent and transparent mechanism to implement system power
management and OEM differentiation features. SMM is entered through activation of an
external interrupt pin (SMI#), which switches the CPU to a separate address space while
saving the entire context of the CPU. SMM-specific code may then be executed
transparently. The operation is reversed upon returning.
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CHAPTER 3
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment (except for the floating-
point features) as seen by assembly-language programmers. The chapter introduces the
architectural features which directly affect the design and implementation of application
programs. Floating-point applications are described separately in Chapter 6.

The basic programming model consists of these parts:

• Memory organization

• Data types

• Registers

• Instruction format

• Operand selection

• Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers can choose to make I/O instructions available to applications or can choose to
reserve these functions for the operating system. For this reason, the I/O features are
discussed in Chapter 9 and Chapter 15.

This chapter contains a section for each feature of the architecture normally visible to
applications.

3.1. MEMORY ORGANIZATION
The memory on the bus of a Pentium processor is called physical memory. It is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address,
which ranges from zero to a maximum of 232–1 (4 gigabytes).

Memory management is a hardware mechanism for making reliable and efficient use of
memory. When memory management is used, programs do not directly address physical
memory. Programs address a memory model, called virtual memory.

Memory management consists of segmentation and paging. Segmentation is a mechanism for
providing multiple, independent address spaces. Paging is a mechanism to support a model of
a large address space in RAM using a small amount of RAM and some disk storage. Either or
both of these mechanisms can be used. An address issued by a program is a logical address.
Segmentation hardware translates a logical address into an address for a continuous,
unsegmented address space, called a linear address. Paging hardware translates a linear
address into a physical address.
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Memory can appear as a single, "flat" address space like physical memory. Or, it can appear
as one or more independent memory spaces, called segments. Segments can be assigned
specifically for holding a program's code (instructions), data, or stack. In fact, a single
program can have up to 16,383 segments of different sizes and kinds. Segments can be used
to increase the reliability of programs and systems. For example, a program's stack can be
put into a different segment than its code to prevent the stack from growing into the code
space and overwriting instructions with data. Each segment defines a module.

Both the flat and segmented models can provide memory protection. Models intermediate
between these extremes also can be chosen. The reasons for choosing a particular memory
model and the manner in which system programmers implement a model are discussed in
Chapter 11.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a segment
descriptor, which holds its base address and size limit. If the offset does not exceed the limit,
and no other condition exists which would prevent reading the segment, the offset and base
address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if bit 31
of the CR0 register is clear (the CR0 register is discussed in Chapter 10). This register bit
controls whether paging is used or not used. If the bit is set, the paging hardware is used to
translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks called pages.  The logical address space is mapped into the
linear address space, which is mapped into some number of pages. A page can be in memory
or on disk. When a logical address is issued, it is translated into an address for a page in
memory, or an exception is issued. An exception gives the operating system a chance to read
the page from disk and update the page mapping. The program which generated the
exception then can be restarted without generating an exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers.  Paging, however, is invisible to the application programmer and is
not discussed in this chapter.  See Chapter 11 for details on this subject.

3.1.1. Unsegmented or "Flat" Model
The simplest memory model is the flat model. Although there isn't a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory operations to
refer to the same memory space.

In a flat model, segments can cover the entire range of physical addresses, or they can cover
only those addresses which are mapped to physical memory. The advantage of the smaller
address space is it provides a minimum level of hardware protection against software bugs;
an exception will occur if any logical address refers to an address for which no memory
exists.
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3.1.2. Segmented Model
In a segmented model of memory organization, the logical address space consists of as many
as 16,383 segments of up to 4 gigabytes each, or a total as large as 246 bytes (64 terabytes).
The processor maps this 64 terabyte logical address space onto the physical address space by
the address translation mechanism described in Chapter 11. Application programmers can
ignore the details of this mapping. The advantage of the segmented model is that offsets
within each address space are separately checked and access to each segment can be
individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 3-1).

1. A segment selector, which is a 16-bit field which identifies a segment.

2. An offset, which is a 32-bit byte address within a segment.

APM48

OPERAND

SEGMENT SELECTOR

15 0

OFFSET WITHIN SEGMENT

031

Figure 3-1.  Segmented Addressing

The processor uses the segment selector to find the linear address of the beginning of the
segment, called the base address. Programs access memory using fixed offsets from this base
address, so an object-code module can be loaded into memory and run without changing the
addresses it uses (dynamic linking). The size of a segment is defined by the programmer, so a
segment can be exactly the size of the module it contains.
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3.2. DATA TYPES
Bytes, words, doublewords, and quadwords are the principal data types (see Figure 3-2). A
byte is eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit
(LSB).
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Figure 3-2.  Fundamental Data Types

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits. The
bits of a word are numbered from 0 through 15, bit 0 again being the least significant bit. The
byte containing bits 0-7 of the word is called the low byte; the byte containing bits 8-15 is
called the high byte. The low byte is stored in the byte with the lower address. The address of
the low byte also is the address of the word. The address of the high byte is used only when
the upper half of the word is being accessed separately from the lower half.

A doubleword is four bytes occupying any four consecutive addresses. A doubleword
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again being
the least significant bit. The word containing bits 0-15 of the doubleword is called the low
word; the word containing bits 16-31 is called the high word. The low word is stored in the
two bytes with the lower addresses. The address of the lowest byte is the address of the
doubleword. The higher addresses are used only when the upper word is being accessed
separately from the lower word, or when individual bytes are being accessed.

A quadword is eight bytes occupying any eight consecutive addresses. A quadword contains
64 bits. The bits of a quadword are numbered from 0 to 64 with bit 0 being the least
significant bit. The doubleword containing bits 0-31 is called the low doubleword and the
doubleword containing bits 32-63 is called the high doubleword. The low doubleword is
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stored in the four bytes with the lower addresses. The higher addresses are used only when
the upper doubleword is being accessed separately from the lower doubleword, or when
individual bytes are being accessed. Figure 3-3 illustrates the arrangement of bytes within
words, doublewords and quadwords.
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BYTE AT ADDRESS 9
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WORD AT ADDRESS 6
CONTAINS 230BH

WORD AT ADDRESS 2
CONTAINS 74CBH

Figure 3-3.  Bytes, Words, Doublewords and Quadwords in Memory

Note that words do not need to be aligned at even-numbered addresses,  doublewords do not
need to be aligned at addresses evenly divisible by four, and quadwords do not need to be
aligned at addresses evenly divisible by eight. This allows maximum flexibility in data
structures (e.g., records containing mixed byte, word, and doubleword items) and efficiency
in memory utilization. Because the Pentium processor has a 64-bit data bus, communication
between processor and memory takes place as byte, word, doubleword and quadword
transfers.  Data can be accessed at any byte boundary, but multiple cycles can be required for
unaligned transfers. The Pentium processor considers a 2-byte or 4-byte operand that crosses
a 4-byte boundary and an 8-byte operand that crosses an 8-byte boundary to be misaligned.
For maximum performance, data structures (especially stacks) should be designed so,
whenever possible, word operands are aligned to even addresses, doubleword operands are
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aligned to addresses evenly divisible by four, and quadwords are aligned to addresses evenly
divisible by eight.

Although bytes, words, and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specialized instructions
recognize the following data types (shown in Figure 3-4):

• Integer: A signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit byte.
All operations assume a two's complement representation. The sign bit is located in bit 7
in a byte, bit 15 in a word, and bit 31 in a doubleword. The sign bit is set for negative
integers, clear for positive integers and zero. The value of an 8-bit integer is from –128
to +127; a 16-bit integer from –32,768 to +32,767; a 32-bit integer from –231 to +231 –1.

• Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word, or
8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from 0 to
65,535; a 32-bit ordinal from 0 to 232 – 1.  This is sometimes referred to as an unsigned
integer.

• BCD Integer: A representation of a binary-coded decimal (BCD) digit in the range 0
through 9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit
is stored in each byte. The magnitude of the number is the binary value of the low-order
half-byte; values 0 to 9 are valid and are interpreted as the value of a digit. The high-
order half-byte must be zero during multiplication and division; it can contain any value
during addition and subtraction.

• Packed BCD Integer: A representation of binary-coded decimal digits, each in the range
0 to 9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to
7 is more significant than the digit in bits 0 to 3. Values 0 to 9 are valid for a digit.

• Near Pointer: A 32-bit effective address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for references within a
segment in a segmented model.

• Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a 32-bit
offset. Far pointers are used in a segmented memory model to access other segments.

• Bit Field: A contiguous sequence of bits. A bit field can begin at any bit position of any
byte and can contain up to 32 bits.

• Bit String: A contiguous sequence of bits. A bit string can begin at any bit position of
any byte and can contain up to 232– 1 bits.

• Byte String: A contiguous sequence of bytes, words, or doublewords. A string can
contain from zero to 232 – 1 bytes (4 gigabytes).

• Floating-Point Types: For a discussion of the data types used by floating-point
instructions, see Chapter 6.
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Figure 3-4.  Data Types
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3.3. REGISTERS
The processor contains sixteen registers which can be used by an application programmer. As
Figure 3-5 shows, these registers can be grouped as:

1. General registers. These eight 32-bit registers are free for use by the programmer.

2. Segment registers. These registers hold segment selectors associated with different forms
of memory access. For example, there are separate segment registers for access to code
and stack space. These six registers determine, at any given time, which segments of
memory are currently available.

3. Status and control registers. These registers report and allow modification of the state of
the processor.

3.3.1. General Registers
The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and
EDI. These registers hold operands for logical and arithmetic operations. They also can hold
operands for address calculations (except the ESP register cannot be used as an index
operand). The names of these registers are derived from the names of the general registers on
the 8086 processor, the AX, BX, CX, DX, BP, SP, SI, and DI registers. As Table 3-1 shows,
the low 16 bits of the general registers can be referenced using these names.

Each byte of the 16-bit registers AX, BX, CX, and DX also has another name. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

All of the general-purpose registers are available for address calculations and for the results
of most arithmetic and logical operations; however, a few instructions assign specific
registers to hold operands. For example, string instructions use the contents of the ECX, ESI,
and EDI registers as operands. By assigning specific registers for these functions, the
instruction set can be encoded more compactly. The instructions that use specific registers
include: double-precision multiply and divide, I/O, strings, translate, loop, variable shift and
rotate, and stack operations.
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Figure 3-5.  Application Register Set
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Table 3-1.  Register Names

8-Bit 16-Bit 32-Bit

AL AX EAX

AH

BL BX EBX

BH

CL CX ECX

CH

DL DX EDX

DH

SI ESI

DI EDI

BP EBP

SP ESP

3.3.2. Segment Registers
Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Chapter 11.

The segment registers contain 16-bit segment selectors, which index into tables in memory.
The tables hold the base address for each segment, as well as other information regarding
memory access. An unsegmented model is created by mapping each segment to the same
place in physical memory, as shown in Figure 3-6.

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments. Each
register is associated with a particular kind of memory access (code, data, or stack). Each
register specifies a segment, from among the segments used by the program (see Figure 3-7).
Other segments can be used by loading their segment selectors into the segment registers.

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The processor fetches instructions from the code
segment, using the contents of the EIP register as an offset into the segment. The CS register
is loaded as the result of interrupts, exceptions, and instructions which transfer control
between segments (e.g., the CALL, RET and JMP instructions).

Before a procedure is called, a region of memory needs to be allocated for a stack. The stack
holds the return address, parameters passed by the calling routine, and temporary variables
allocated by the procedure. All stack operations use the SS register to find the stack segment.
Unlike the CS register, the SS register can be loaded explicitly, which permits application
programs to set up stacks.
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Figure 3-6.  An Unsegmented Memory
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The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of data
structures. For example, separate data segments can be created for the data structures of the
current module, data exported from a higher-level module, a dynamically-created data
structure, and data shared with another program. If a bug causes a program to run wild, the
segmentation mechanism can limit the damage to only those segments allocated to the
program.

Depending on the structure of data (i.e., the way data is partitioned into segments), a program
can require access to more than four data segments. To access additional segments, the DS,
ES, FS, and GS registers can be loaded by an application program during execution. The only
requirement is to load the appropriate segment register before accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit offset is
added to the segment's base address. Once a segment is selected (by loading the segment
selector into a segment register), an instruction only needs to specify the offset. An operand
within a data segment is addressed by specifying its offset either in an instruction or a
general register. Simple rules define which segment register is used to form an address when
only an offset is specified.

3.3.3. Stack Implementation
Stack operations are supported by three registers:

1. Stack Segment (SS) Register. Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack can be up to 4
gigabytes long, the maximum size of a segment. One stack is available at a time—the
stack whose segment selector is held in the SS register. This is the current stack, often
referred to simply as "the" stack. The SS register is used automatically by the processor
for all stack operations.

2. Stack Pointer (ESP) Register. The ESP register holds an offset to the top-of-stack
(TOS) in the current stack segment. It is used by PUSH and POP operations, subroutine
calls and returns, exceptions, and interrupts. When an item is pushed onto the stack (see
Figure 3-8), the processor decrements the ESP register, then writes the item at the new
TOS. When an item is popped off the stack, the processor copies it from the TOS, then
increments the ESP register. In other words, the stack grows down in memory toward
lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register. The EBP register typically is used to access
data structures passed on the stack. For example, on entering a subroutine the stack
contains the return address and some number of data structures passed to the subroutine.
The subroutine adds to the stack whenever it needs to create space for temporary local
variables. As a result, the stack pointer gets incremented and decremented as temporary
variables are pushed and popped. If the stack pointer is copied into the base pointer
before anything is pushed on the stack, the base pointer can be used to reference data
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structures with fixed offsets. If this is not done, the offset to access a particular data
structure would change whenever a temporary variable is allocated or de-allocated.

When the EBP register is used to address memory, the current stack segment is
referenced (i.e., the SS segment). Because the stack segment does not have to be
specified, instruction encoding is more compact. The EBP register also can be used to
address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which
automatically set up the EBP register for convenient access to variables.
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3.3.4. Flags Register
Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register
named EFLAGS. Figure 3-9 defines the bits within this register.

The flags control certain operations and indicate the status of the Pentium processor. Besides
status and control flag bits, the flag register also contains system flags. See Chapter 10 for a
description  of the system and control flags.
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3.3.4.1. STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the
execution of arithmetic instructions, such as ADD, SUB, MUL, and DIV. The MOV
instruction does not affect these flags. Conditional jumps and subroutine calls allow a
program to sense the state of the status flags and respond to them. For example, when the
counter controlling a loop is decremented to zero, the state of the ZF flag changes, and this
change can be used to suppress the conditional jump to the start of the loop. The status flags
are shown in Table 3-2.
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Table 3-2.  Status Flags

Name Purpose Condition Reported

OF Overflow Result exceeds positive or negative limit of number range

SF Sign Result is negative (less than zero)

ZF Zero Result is zero

AF Auxiliary carry Carry out of bit position 3 (used for BCD)

PF Parity Low byte of result has even parity (even number of set bits)

CF Carry flag Carry out of most significant bit of result
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3.3.4.2. CONTROL FLAG

The control flag DF of the EFLAGS register controls string instructions.

DF (Direction Flag, bit 10)

Setting the DF flag causes string instructions to auto-decrement, that is, to process strings
from high addresses to low addresses. Clearing the DF flag causes string instructions to auto-
increment, or to process strings from low addresses to high addresses.

3.3.5. Instruction Pointer
The instruction pointer (EIP) register contains the offset in the current code segment for the
next instruction to execute. The instruction pointer is not directly available to the
programmer; it is controlled implicitly by control-transfer instructions (jumps, returns, etc.),
interrupts, and exceptions.

The EIP register is advanced from one instruction boundary to the next. Because of
instruction prefetching, it is only an approximate indication of the bus activity which loads
instructions into the processor. See Chapter 18 for detailed information on prefetching.

3.4. INSTRUCTION FORMAT
The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these operands. If
an operand is located in memory, the instruction also must select, explicitly or implicitly, the
segment which contains the operand.

An instruction can have various parts and formats. The exact format of instructions is shown
in Appendix A; the parts of an instruction are described below. Of these parts, only the
opcode is always present. The other parts may or may not be present, depending on the
operation involved and the location and type of the operands. The parts of an instruction, in
order of occurrence, are listed below:

•• Prefixes: one or more bytes preceding an instruction which modify the operation of the
instruction. The following prefixes can be used by application programs:

1. Segment override—explicitly specifies which segment register an instruction should
use, instead of the default segment register. The segment override prefixes include:

2EH CS segment override prefix

36H SS segment override prefix

26H ES segment override prefix

65H GS segment override prefix

2. Address size (67H)—switches between 16- and 32-bit addressing. Either size can be
the default; this prefix selects the non-default size.
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3. Operand size (66H)—switches between 16- and 32-bit data size. Either size can be
the default; this prefix selects the non-default size.

4. Repeat—used with a string instruction to cause the instruction to be repeated for
each element of the string. The repeat prefixes include:

F3H REP prefix (used only with string instructions)

F3H REPE/REPZ prefix (used only with string instructions)

F2h REPNE/REPNZ prefix (used only with string instructions)

5. Lock (0F0H)used to ensure exclusive use of shared memory in multiprocessor
environments. This prefix can only be used with the following instructions: BTS,
BTR, BTC, XCHG, ADD, OR, ADC, SBB, AND, SUB, XOR, NOT, NEG, INC,
DEC, CMPXCHG, CMPXCH8B, XADD

Zero or one bytes are reserved for each group of prefixes.  The prefixes are grouped as
follows:

 Instruction Prefixes:  REP, REPE/REPZ, REPNE/REPNZ, LOCK

 Segment Override Prefixes:  CS, SS, DS, ES, FS, GS

 Operand Size Override

 Address Size Override

For each instruction, one prefix may be used from each group. The effect of redundant
prefixes (more than one prefix from a group) is undefined and may vary from processor
to processor.

•• Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

•• Register specifier: an instruction can specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

•• Addressing-mode specifier: when present, specifies whether an operand is a register or
memory location; if in memory, specifies whether a displacement, a base register, an
index register, and scaling are to be used.

•• SIB (scale, index, base) byte: when the addressing-mode specifier indicates the use of
an index register to calculate the address of an operand, an SIB byte is included in the
instruction to encode the base register, the index register, and a scaling factor.

•• Displacement: when the addressing-mode specifier indicates a displacement will be
used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is used
in the common case when the displacement is sufficiently small. The processor extends
an 8-bit displacement to 16 or 32 bits, taking into account the sign.
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•• Immediate operand: when present, directly provides the value of an operand.
Immediate operands can be bytes, words, or doublewords. In cases where an 8-bit
immediate operand is used with a 16- or 32-bit operand, the processor extends the eight-
bit operand to an integer of the same sign and magnitude in the larger size. In the same
way, a 16-bit operand is extended to 32 bits.

3.5. OPERAND SELECTION
An instruction acts on zero or more operands. An example of a zero-operand instruction is
the NOP instruction (no operation). An operand can be held in any of these places:

• In the instruction itself (an immediate operand).

• In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, or
EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the case of
8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; or the
EFLAGS register for flag operations). Use of 16-bit register operands requires use of the
16-bit operand size prefix if the current default operand size is 32 bits. (See Chapter 11
for information on setting the D-bit in the code segment descriptor to control default
operand size.)

• In memory.

• At an I/O port.  See Chapter 15 for information on I/O.

Register and immediate operands are available on-chip—the latter because they are
prefetched as part of interpreting the instruction. Memory operands residing in the on-chip
cache can be accessed just as fast for most instructions.

Of the instructions which have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand:  AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of the AX
register.

Explicit operand:  XCHG EAX, EBX

The operands to be exchanged are encoded in the instruction with the opcode.

Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the stack (the
implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for example,
update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions, such
as MOV, ADD, and XOR, generally overwrite one of the two participating operands with the



BASIC PROGRAMMING MODEL EE

3-18

result. This is one difference between the source operand (the one unaffected by the
operation) and the destination operand (the one overwritten by the result).

For most instructions, one of the two explicitly specified operands—either the source or the
destination—can be either in a register or in memory. The other operand must be in a register
or it must be an immediate source operand. This puts the explicit two-operand instructions
into the following groups:

• Register to register

• Register to memory

• Memory to register

• Immediate to register

• Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data from
memory to memory. Both operands of some string instructions are in memory and are
specified implicitly. Push and pop stack operations allow transfer between memory operands
and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the CL register or supplied as an immediate. Other
three-operand instructions, such as the string instructions when used with a repeat prefix, take
all their operands from registers.

3.5.1. Immediate Operands
Certain instructions use data from the instruction itself as one (and sometimes two) of the
operands. Such an operand is called an immediate operand. It can be a byte, word, or
doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, 0FFFF00FFH

A doubleword of the instruction holds the mask which is used to test the variable PATTERN.

IMUL CX, MEMWORD, 3

A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one byte
shorter than with the other general registers.
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3.5.2. Register Operands
Operands can be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI,
EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, or
BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, or DL).  Sixty-
four bit operands are also used in 32-bit register pairs for operations such as DIV and MUL.
Register pairs are represented with a colon separating them. For example, in the register pair
EDX:EAX, EDX contains the high order bits and EAX contains the low order bits of the 64-
bit operand.

The Pentium processor has instructions for referencing the segment registers (CS, DS, ES,
SS, FS, and GS). These instructions are used by application programs only if system
designers have chosen a segmented memory model.

The Pentium processor also has instructions for changing the state of individual flags in the
EFLAGS register. Instructions have been provided for setting and clearing flags which often
need to be accessed. The other flags, which are not accessed so often, can be changed by
pushing the contents of the EFLAGS register on the stack, making changes to it while it's on
the stack, and popping it back into the register.

3.5.3. Memory Operands
Instructions with explicit operands in memory must reference the segment containing the
operand and the offset from the beginning of the segment to the operand. Segments are
specified using a segment-override prefix, which is a byte placed at the beginning of an
instruction. If no segment is specified, simple rules assign the segment by default. The offset
is specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode and
specifies whether the operand is in a register or in memory. If the operand is in memory,
the address is calculated from a segment register and any of the following values: a base
register, an index register, a scaling factor, and a displacement. When an index register is
used, the modR/M byte also is followed by another byte to specify the index register and
scaling factor. This form of addressing is the most flexible.

2. A few instructions use implied address modes:

A MOV instruction with the AL, AX, or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of the
MOV instruction allows no base register, index register, or scaling factor to be used. This
form is one byte shorter than the general-purpose form.

String operations address memory in the DS segment using the ESI register, (the MOVS,
CMPS, OUTS, and LODS instructions) or using the ES segment and EDI register (the
MOVS, CMPS, INS, SCAS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the PUSH,
POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL,
LEAVE, ENTER, INT, RET, IRET, and IRETD instructions, exceptions, and interrupts).
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3.5.3.1. SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a segment-
override prefix, the processor automatically chooses a segment according to the rules of
Table 3-3.

Table 3-3.  Default Segment Selection Rules

Type of Reference
Segment Used
Register Used Default Selection Rule

Instructions Code Segment
CS register

Automatic with instruction fetch.

Stack Stack Segment
SS register

All stack pushes and pops. Any memory reference which
uses ESP or EBP as a base register.

Local Data Data Segment
DS register

All data references except when relative to stack or string
destination.

Destination Strings E-Space Segment
ES register

Destination of string instructions.

Different kinds of memory access have different default segments. Data operands usually use
the main data segment (the DS segment). However, the ESP and EBP registers are used for
addressing the stack, so when either register is used, the stack segment (the SS segment) is
selected.

Segment-override prefixes are provided for each of the segment registers. Only the following
special cases have a default segment selection which is not affected by a segment-override
prefix:

• Destination strings in string instructions use the ES segment

• Destination of a push or source of a pop uses the SS segment

• Instruction fetches use the CS segment

3.5.3.2. EFFECTIVE-ADDRESS COMPUTATION

The modR/M byte provides the most flexible form of addressing. Instructions which have a
modR/M byte after the opcode are the most common in the instruction set. For memory
operands specified by a modR/M byte, the offset within the selected segment is the sum of
four components:

• A displacement

• A base register

• An index register

• A scaling factor  (the index register can be multiplied by a factor of 2, 4, or 8)

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative value, with the exception of the
scaling factor. Figure 3-10 illustrates the full set of possibilities for modR/M addressing.
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The displacement component, because it is encoded in the instruction, is useful for relative
addressing by fixed amounts, such as:

• Location of simple scalar operands.

• Beginning of a statically allocated array.

• Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general
registers. Both can be used for addressing which changes during program execution, such as:

• Location of procedure parameters and local variables on the stack.

• The beginning of one record among several occurrences of the same record type or in an
array of records.

• The beginning of one dimension of multiple dimension array.

• The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following respects:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default
selection. In all other cases, the DS segment is the default selection.
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Figure 3-10.  Effective Address Computation

The scaling factor permits efficient indexing into an array when the array elements are 2, 4,
or 8 bytes. The scaling of the index register is done in hardware at the time the address is
evaluated. This eliminates an extra shift or multiply instruction.

The base, index, and displacement components can be used in any combination; any of these
components can be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-
level languages and assembly language. Suggested uses for some combinations of address
components are described below.
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DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is used to
access a statically allocated scalar operand. A byte, word, or doubleword displacement can
be used.

BASE

The offset to the operand is specified indirectly in one of the general registers, as for "based"
variables.

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into an array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the offset of the beginning of the array. The register holds the results
of a calculation to determine the offset to a specific element within the array.

2. Access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an offset to the field.

An important special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a subroutine
is entered. In this case, the EBP register is the best choice for the base register, because it
automatically selects the stack segment. This is a compact encoding for this common
function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is 2, 4,
or 8 bytes. The displacement addresses the beginning of the array, the index register holds
the subscript of the desired array element, and the processor automatically converts the
subscript into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement holds
the address of the beginning of the array) or one of several instances of an array of records
(the displacement is an offset to a field within the record).

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the elements
of the array are 2, 4, or 8 bytes in size.
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3.6. INTERRUPTS AND EXCEPTIONS
The processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily suspend the
program being run in order to run a program of higher priority. The major distinction
between these two kinds of interrupts is their origin. An exception is always reproducible by
re-executing the program which caused the exception, while an interrupt can have a complex,
timing-dependent relationship with programs.

Application programmers normally are not concerned with handling exceptions or interrupts.
The operating system, monitor, or device driver handles them. More information on
interrupts for system programmers can be found in Chapter 14. Certain kinds of exceptions,
however, are relevant to application programming, and many operating systems give
application programs the opportunity to service these exceptions. However, the operating
system defines the interface between the application program and the exception mechanism
of the processor. Table 3-4 lists the interrupts and exceptions.

• A divide-error exception results when the DIV or IDIV instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (See
Chapter 3 for more information on the DIV and IDIV instructions.)

• A debug exception can be sent back to an application program if it results from the TF
(trap) flag.

• A breakpoint exception results when an INT3 instruction is executed. This instruction is
used by some debuggers to stop program execution at specific points.

• An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

• A bounds-check exception results when the BOUND instruction is executed with an
array index which falls outside the bounds of the array. See Chapter 3 for a discussion of
the BOUND instruction.

• The device-not-available exception occurs whenever the processor encounters an escape
instruction and either the TS (task switched) or the EM (emulate coprocessor) bit of the
CR0 control register is set.

• An alignment-check exception is generated for unaligned memory operations in user
mode (privilege level 3), provided both AM and AC are set. Memory operations at
supervisor mode (privilege levels 0, 1, and 2), or memory operations which default to
supervisor mode, do not generate this exception.

The INT instruction generates an interrupt whenever it is executed; the processor treats this
interrupt as an exception. Its effects (and the effects of all other exceptions) are determined
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by exception handler routines in the application program or the operating system. The INT
instruction itself is discussed in Chapter 25. See Chapter 14 for a more complete description
of exceptions.

Table 3-4.  Exceptions and Interrupts

Vector
Number Description

 0 Divide Error

 1 Debugger Call

 2 NMI Interrupt

 3 Breakpoint

 4 INTO-detected Overflow

 5 BOUND Range Exceeded

 6 Invalid Opcode

 7 Device Not Available

 8 Double Fault

 9 (Intel reserved. Do not use.
Not used by Pentium® processor.)

10 Invalid Task State Segment

11 Segment Not Present

12 Stack Exception

13 General Protection

14 Page Fault

15 (Intel reserved. Do not use.)

16 Floating-Point Error

17 Alignment Check

18 Machine Check Exception

19-31 (Intel reserved. Do not use.)

32-255 Maskable Interrupts
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CHAPTER 4
APPLICATION PROGRAMMING

This chapter is an overview of the integer instructions which programmers can use to write
application software for the Pentium processor. The instructions are grouped by categories of
related functions. Additional application instructions for operating on floating-point operands
are described in Chapter 6.

The instructions not discussed in this chapter or Chapter 6 normally are used only by
operating-system programmers. System-level instructions are discussed in Part II.

The instruction set descriptions in Chapter 25 contain more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

For information on the introduction of new instructions which may not be supported on
earlier versions of Intel architecture, see Chapter 23.

4.1. DATA MOVEMENT INSTRUCTIONS
These instructions provide convenient methods for moving bytes, words, doublewords, or
quadwords between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

4.1.1. General-Purpose Data Movement Instructions
MOV (Move) transfers a byte, word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of these
paths:

• To a register from memory.

• To memory from a register.

• Between general registers.

• Immediate data to a register.

• Immediate data to memory.

The MOV instruction cannot move from memory to memory or from a segment register to a
segment register. Memory-to-memory moves can be performed, however, by the string move
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instruction MOVS. A special form of the MOV instruction is provided for transferring data
between the AL, AX, or EAX registers and a location in memory specified by a 32-bit offset
encoded in the instruction. This form of the instruction does not allow a segment override,
index register, or scaling factor to be used. The encoding of this form is one byte shorter than
the encoding of the general-purpose MOV instruction. A similar encoding is provided for
moving an 8-, 16-, or 32-bit immediate into any of the general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of
three MOV instructions. It does not require a temporary location to save the contents of one
operand while the other is being loaded. The XCHG instruction is especially useful for
implementing semaphores or similar data structures for process synchronization.

The XCHG instruction can swap two byte operands, two word operands, or two doubleword
operands. The operands for the XCHG instruction may be two register operands, or a register
operand and a memory operand. When used with a memory operand, XCHG automatically
activates the LOCK signal. (See Chapter 16 for more information on bus locking.)

4.1.2. Stack Manipulation Instructions
PUSH (Push) decrements the stack pointer (ESP register), then copies the source operand to
the top of stack (see Figure 4-1). The PUSH instruction often is used to place parameters on
the stack before calling a procedure. Inside a procedure, it can be used to reserve space on
the stack for temporary variables. The PUSH instruction operates on memory operands,
immediate operands, and register operands (including segment registers). A special form of
the PUSH instruction is available for pushing a 32-bit general register on the stack. This form
has an encoding which is one byte shorter than the general-purpose form.
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Figure 4-1.  PUSH Instruction



EE APPLICATION PROGRAMMING

4-3

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack
(see Figure 4-2). This instruction simplifies procedure calls by reducing the number of
instructions required to save the contents of the general registers. The processor pushes the
general registers on the stack in the following order: EAX, ECX, EDX, EBX, the initial value
of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the PUSHA instruction is
reversed using the POPA instruction.

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by the
ESP register) to the destination operand, and then increments the ESP register to point to the
new top of stack. See Figure 4-3. POP moves information from the stack to a general
register, segment register, or to memory. A special form of the POP instruction is available
for popping a doubleword from the stack to a general register. This form has an encoding
which is one byte shorter than the general-purpose form.

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of reading
the stack (popping). See Figure 4-4.
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Figure 4-2.  PUSHA Instruction
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31 031 0
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ESP

ESP

BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD

Figure 4-3.  POP Instruction
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IGNORED
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EDI

BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION

Figure 4-4.  POPA Instruction
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4.1.3. Type Conversion Instructions
The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially
useful for converting signed integers, because they automatically fill the extra bits of the
larger item with the value of the sign bit of the smaller item. This results in an integer of the
same sign and magnitude, but a larger format. This kind of conversion, shown in Figure 4-5,
is called sign extension.

There are two kinds of type conversion instructions:

• The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the EAX
register.

• The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.
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Figure 4-5.  Sign Extension

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD instruction copies the sign (bit 15) of the
word in the AX register into every bit position in the DX register. The CDQ instruction
copies the sign (bit 31) of the doubleword in the EAX register into every bit position in the
EDX register. The CWD instruction can be used to produce a doubleword dividend from a
word before a word division, and the CDQ instruction can be used to produce a quadword
dividend from a doubleword before doubleword division.  The CWD and CDQ instructions
are different mnemonics for the same opcode.  Which one gets executed is determined by
whether it is in a 16- or 32-bit segment and the presence of any operand-size override
prefixes.  See Chapter 25 for a detailed description of these instructions.

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into
every bit position of the upper byte of the AX register.
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CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in
the AX register into every bit position of the high word of the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the value of the sign to fill empty positions.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by clearing the empty bit positions.

4.2. BINARY ARITHMETIC INSTRUCTIONS
The arithmetic instructions operate on numeric data encoded in binary. Operations include
the add, subtract, multiply, and divide as well as increment, decrement, compare, and change
sign (negate). Both signed and unsigned binary integers are supported. The binary arithmetic
instructions may also be used as steps in arithmetic on decimal integers. Source operands can
be immediate values, general registers, or memory. Destination operands can be general
registers or memory (except when the source operand is in memory). The basic arithmetic
instructions have special forms for using an immediate value as the source operand and the
AL, AX, or EAX registers as the destination operand. These forms are one byte shorter than
the general-purpose arithmetic instructions.

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of result
which was produced. The kind of instruction used to test the flags depends on whether the
data is being interpreted as signed or unsigned. The CF flag contains information relevant to
unsigned integers; the SF and OF flags contain information relevant to signed integers. The
ZF flag is relevant to both signed and unsigned integers; the ZF flag is set when all bits of the
result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to reflect the
size of the operation. For example, an 8-bit ADD instruction sets the CF flag if the sum of
the operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic operations
to determine whether the operation required a carry or borrow to be propagated to the next
stage of the operation. The CF flag is set if a carry occurs (addition instructions ADD, ADC,
AAA, and DAA) or borrow occurs (subtraction instructions SUB, SBB, AAS, DAS, CMP,
and NEG).

The INC and DEC instructions do not change the state of the CF flag. This allows the
instructions to be used to update counters used for loop control without changing the reported
state of arithmetic results. To test the arithmetic state of the counter, the ZF flag can be
tested to detect loop termination, or the ADD and SUB instructions can be used to update the
value held by the counter.

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the sign
bit of the result. The most significant bit (MSB) of the magnitude of a signed integer is the
bit next to the sign—bit 6 of a byte, bit 14 of a word, or bit 30 of a doubleword. The OF flag
is set in either of these cases:
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• A carry was generated from the MSB into the sign bit but no carry was generated out of
the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other words, the
result was greater than the greatest positive number which could be represented in two's
complement form.

• A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG). In
other words, the result was smaller than the smallest negative number which could be
represented in two's complement form.

These status flags are tested by either kind of conditional instruction: Jcc (jump on condition
cc) or SETcc (byte set on condition).

4.2.1. Addition and Subtraction Instructions
ADD (Add Integers) replaces the destination operand with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry)  replaces the destination operand with the sum of the source
and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the ADC
instruction performs the same operation as the ADD instruction. An ADC instruction is used
to propagate carry when adding numbers in stages, for example when using 32-bit ADD
instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the state
of the CF flag. This allows the use of INC instructions to update counters in loops without
disturbing the status flags resulting from an arithmetic operation used for loop control. The
ZF flag can be used to detect when carry would have occurred. Use an ADD instruction with
an immediate value of 1 to perform an increment which updates the CF flag. A one-byte
form of this instruction is available when the operand is a general register. The OF, SF, ZF,
AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is set.
The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, ZF, AF,
PF, and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is set. If
the CF flag is clear, the SBB instruction performs the same operation as the SUB instruction.
An SBB instruction is used to propagate borrow when subtracting numbers in stages, for
example when using 32-bit SUB instructions to subtract one quadword operand from another.
The OF, SF, ZF, AF, PF, and CF flags are affected.

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction preserves
the state of the CF flag. This allows the use of the DEC instruction to update counters in
loops without disturbing the status flags resulting from an arithmetic operation used for loop
control. Use a SUB instruction with an immediate value of 1 to perform a decrement which
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updates the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

4.2.2. Comparison and Sign Change Instruction
CMP (Compare) subtracts the source operand from the destination operand. It updates the
OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination operands. A
subsequent Jcc or SETcc instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG
instruction is to change the sign of a two's complement operand while keeping its magnitude.
The OF, SF, ZF, AF, PF, and CF flags are affected.

4.2.3. Multiplication Instructions
The processor has separate multiply instructions for unsigned and signed operands. The MUL
instruction operates on unsigned integers, while the IMUL instruction operates on signed
integers as well as unsigned.

MUL (Unsigned Integer Multiply)  performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the processor multiplies it
by the value held in the AL register and returns the double-length result in the AH and AL
registers. If the source operand is a word, the processor multiplies it by the value held in the
AX register and returns the double-length result in the DX and AX registers. If the source
operand is a doubleword, the processor multiplies it by the value held in the EAX register
and returns the quadword result in the EDX and EAX registers. The MUL instruction sets the
CF and OF flags when the upper half of the result is non-zero; otherwise, the flags are
cleared. The state of the SF, ZF, AF, and PF flags is undefined.

IMUL (Signed Integer Multiply)  performs a signed multiplication operation. The IMUL
instruction has three forms:

1. A one-operand form. The operand may be a byte, word, or doubleword located in
memory or in a general register. This instruction uses the EAX and EDX (or AX and
DX) registers as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the other
may be in a general register or memory. The result replaces the general-register operand.

3. A three-operand form; two are source operands and one is the destination. One of the
source operands is an immediate value supplied by the instruction; the second may be in
memory or in a general register. The result is stored in a general register. The immediate
operand is a two's complement signed integer. If the immediate operand is a byte, the
processor automatically sign-extends it to the size of the second operand before
performing the multiplication.

The three forms are similar in most respects:
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• The length of the product is calculated to twice the length of the operands.

• The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the upper half of the result is the sign-
extension of the lower half. The state of the SF, ZF, AF, and PF flags is undefined.

However, forms 2 and 3 differ from 1 because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the OF flag
should be tested to ensure that no significant bits are lost. (For ways to test the OF flag, see
the JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

4.2.4. Division Instructions
The Pentium processor has separate division instructions for unsigned and signed operands.
The DIV instruction operates on unsigned integers, while the IDIV instruction operates on
both signed and unsigned integers. In either case, a divide-error exception is generated if the
divisor is zero or if the quotient is too large for the AL, AX, or EAX register.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the divisor
(the source operand); the quotient and remainder have the same size as the divisor, as shown
in Table 4-1.

Non-integral results are truncated toward 0. The remainder is always smaller than the divisor.
For unsigned byte division, the largest quotient is 255. For unsigned word division, the
largest quotient is 65,535. For unsigned doubleword division the largest quotient is 232-1. The
state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source
operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is +127, and the minimum negative
quotient is –128. For signed word division, the maximum positive quotient is +32,767, and
the minimum negative quotient is –32,768. For signed doubleword division the maximum
positive quotient is 231-1, the minimum negative quotient is -231. Non-integral results are
truncated towards 0. The remainder always has the same sign as the dividend and is less than
the divisor in magnitude. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined.
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Table 4-1.  Operands for Division

Operand Size
(Divisor) Dividend Quotient Remainder

Byte AX register AL register AH register

Word DX and AX AX register DX register

Doubleword EDX and EAX EAX register EDX register

4.3. DECIMAL ARITHMETIC INSTRUCTIONS
Decimal arithmetic is performed by combining the binary arithmetic instructions (already
discussed in the prior section) with the decimal arithmetic instructions. The decimal
arithmetic instructions are used in one of the following ways:

• To adjust the results of a previous binary arithmetic operation to produce a valid packed
or unpacked decimal result.

• To adjust the inputs to a subsequent binary arithmetic operation so that the operation will
produce a valid packed or unpacked decimal result.

These instructions operate only on the AL or AH registers. Most use the AF flag.

4.3.1. Packed BCD Adjustment Instructions
DAA (Decimal Adjust after Addition)  adjusts the result of adding two valid packed decimal
operands in the AL register. A DAA instruction must follow the addition of two pairs of
packed decimal numbers (one digit in each half-byte) to obtain a pair of valid packed
decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, and CF
flags are affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid packed
decimal operands in the AL register. A DAS instruction must always follow the subtraction
of one pair of packed decimal numbers (one digit in each half-byte) from another to obtain a
pair of valid packed decimal digits as results. The CF flag is set if a borrow is needed. The
SF, ZF, AF, PF, and CF flags are affected. The state of the OF flag is undefined.

4.3.2. Unpacked BCD Adjustment Instructions
AAA (ASCII Adjust after Addition)  changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow the
addition of two unpacked decimal operands in the AL register. The CF flag is set and the
contents of the AH register are incremented if a carry occurs. The AF and CF flags are
affected. The state of the OF, SF, ZF, and PF flags is undefined.
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AAS (ASCII Adjust after Subtraction)  changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow the
subtraction of one unpacked decimal operand from another in the AL register. The CF flag is
set and the contents of the AH register are decremented if a borrow is needed. The AF and
CF flags are affected. The state of the OF, SF, ZF, and PF flags is undefined.

AAM (ASCII Adjust after Multiplication)  corrects the result of a multiplication of two
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of two
decimal numbers to produce a valid decimal result. The upper digit is left in the AH register,
the lower digit in the AL register. The SF, ZF, and PF flags are affected. The state of the AF,
OF, and CF flags is undefined.

AAD (ASCII Adjust before Division)  modifies the numerator in the AH and AL registers to
prepare for the division of two valid unpacked decimal operands, so that the quotient
produced by the division will be a valid unpacked decimal number. The AH register should
contain the upper digit and the AL register should contain the lower digit. This instruction
adjusts the value and places the result in the AL register. The AH register will be clear. The
SF, ZF, and PF flags are affected. The state of the AF, OF, and CF flags is undefined.

4.4. LOGICAL INSTRUCTIONS
The logical instructions have two operands. Source operands can be immediate values,
general registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The logical instructions modify the state of
the flags. Short forms of the instructions are available when an immediate source operand is
applied to a destination operand in the AL, AX, or EAX registers. The group of logical
instructions includes:

• Boolean operation instructions.

• Bit test and modify instructions.

• Bit scan instructions.

• Rotate and shift instructions.

• Byte set on condition.

4.4.1. Boolean Operation Instructions
The logical operations are performed by the AND, OR, XOR, and NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one's complement of the
operand. The NOT instruction is a unary operation which uses a single operand in a register
or memory. NOT has no effect on the flags.
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The AND, OR, and XOR instructions perform the standard logical operations "and," "or,"
and "exclusive or." These instructions can use the following combinations of operands:

• Two register operands.

• A general register operand with a memory operand.

• An immediate operand with either a general register operand or a memory operand.

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag undefined,
and update the SF, ZF, and PF flags.

4.4.2. Bit Test and Modify Instructions
This group of instructions operates on a single bit which can be in memory or in a general
register. The location of the bit is specified as an offset from the low end of the operand. The
value of the offset either may be given by an immediate byte in the instruction or may be
contained in a general register.

These instructions first assign the value of the selected bit to the CF flag. Then a new value is
assigned to the selected bit, as determined by the operation. The state of the OF, SF, ZF, AF,
and PF flags is undefined.  Table 4-Error! Bookmark not defined.  defines these
instructions.

Table 4-2.  Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and Complement) CF flag ← Selected Bit Selected Bit ← – (Selected Bit)

4.4.3. Bit Scan Instructions
These instructions scan a word or doubleword for a set bit and store the bit index (an integer
representing the bit position) of the first set bit into a register. The bit string being scanned
may be in a register or in memory. The ZF flag is set if the entire word is clear, otherwise the
ZF flag is cleared. In the former case, the value of the destination register is left undefined.
The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).

BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0).
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4.4.4. Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand.

These instructions fall into the following classes:

• Shift instructions.

• Double shift instructions.

• Rotate instructions.

4.4.4.1. SHIFT INSTRUCTIONS

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords. An
arithmetic shift right copies the sign bit into empty bit positions on the upper end of the
operand, while a logical shift right fills high order empty bit positions with zeros. An
arithmetic shift is a fast way to perform a simple calculation. For example, an arithmetic shift
right by one bit position divides an integer by two. A logical shift right divides an unsigned
integer or a positive integer, but a signed negative integer loses its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their
treatment of the bit positions emptied by shifting the contents of the operand. Note that there
is no difference between an arithmetic shift left and a logical shift left. Two names, SAL and
SHL, are supported for this instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up to 31
places. A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The second form gives the count as an
immediate operand. The third form gives the count as the value contained in the CL register.
This last form allows the count to be a result from a calculation. Only the low five bits of the
CL register are used.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the CF
flag is left with the value of the last bit shifted out of the operand. In a single-bit shift, the OF
flag is set if the value of the uppermost bit (sign bit) was changed by the operation.
Otherwise, the OF flag is cleared. After a shift of more than one bit position, the state of the
OF flag is undefined. On a shift of one or more bit positions, the SF, ZF, PF, and CF flags are
affected.  On a shift of one or more bit positions the state of the AF flag is undefined.  If the
count length is greater than or equal to the size of the operand, the value of the CF flag is
undefined.

SAL (Shift Arithmetic Left)  shifts the destination byte, word, or doubleword operand left by
one bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). Empty bit positions are cleared. See Figure 4-6.

SHL (Shift Logical Left)  is another name for the SAL instruction. It is supported in the
assembler.

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right by
one bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). Empty bit positions are cleared. See Figure 4-7.
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SAR (Shift Arithmetic Right)  shifts the destination byte, word, or doubleword operand to
the right by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register). The sign of the operand is
preserved by clearing empty bit positions if the operand is positive, or setting the empty bits
if the operand is negative. See Figure 4-8.

Even though this instruction can be used to divide integers by an integer power of two, the
type of division is not the same as that produced by the IDIV instruction. The quotient
from the IDIV instruction is rounded toward zero, whereas the "quotient" of the SAR
instruction is rounded toward negative infinity. This difference is apparent only for negative
numbers. For example, when the IDIV instruction is used to divide –9 by 4, the result is –2
with a remainder of –1. If the SAR instruction is used to shift –9 right by two bits, the result
is –3. The "remainder" of this kind of division is +3; however, the SAR instruction stores
only the high-order bit of the remainder (in the CF flag).

APM34

CF

INITIAL STATE:

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

OPERAND

AFTER 1-BIT SHL/SAL INSTRUCTION:

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0

AFTER 10-BIT SHL/SAL INSTRUCTION:

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Figure 4-6.  SHL/SAL Instruction
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CF

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

OPERAND

AFTER 1-BIT SHR INSTRUCTION:

1111000100010001000100010001000100

AFTER 10-BIT SHR INSTRUCTION:

0010001000100010001000100000000000

INITIAL STATE:

Figure 4-7.  SHR Instruction
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CF

INITIAL STATE (POSITIVE OPERAND):

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

OPERAND

AFTER 1-BIT SAR INSTRUCTION:

1110001000100010001000100010001

INITIAL STATE (NEGATIVE OPERAND):

X1 1100010001000100010001000100011

0

0 0

CF

AFTER 1-BIT SAR INSTRUCTION

11 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

Figure 4-8.  SAR Instruction
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4.4.4.2. DOUBLE-SHIFT INSTRUCTIONS

These instructions provide the basic operations needed to implement operations on long
unaligned bit strings. The double shifts operate either on word or doubleword operands, as
follows:

• Take two word operands and produce a one-word result (32-bit shift).

• Take two doubleword operands and produce a doubleword result (64-bit shift).

Of the two operands, the source operand must be in a register while the destination operand
may be in a register or in memory. The number of bits to be shifted is specified either in the
CL register or in an immediate byte in the instruction. Bits shifted out of the source operand
fill empty bit positions in the destination operand, which also is shifted. Only the destination
operand is stored.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the CF
flag is set to the value of the last bit shifted out of the destination operand, and the SF, ZF,
and PF flags are affected. On a shift of one bit position, the OF flag is set if the sign of the
operand changed, otherwise it is cleared. For shifts of more than one bit position, the state of
the OF flag is undefined. For shifts of one or more bit positions, the state of AF flag is
undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 4-9). The result is
stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while filling
empty bit positions with bits shifted out of the source operand (see Figure 4-10). The result is
stored back into the destination operand. The source operand is not modified.

APM35

CF DESTINATION (MEMORY OR REGISTER)

SOURCE (REGISTER)

31 0

31 0

Figure 4-9.  SHLD Instruction
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APM37

CFDESTINATION (MEMORY OR REGISTER)

SOURCE (REGISTER)

31 0

31 0

Figure 4-10.  SHRD Instruction

4.4.4.3. ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits are
emptied during a rotation.

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension of the
operand in two of the rotate instructions, allowing a bit to be isolated and then tested by a
conditional jump instruction (JC or JNC). The CF flag always contains the value of the last
bit rotated out of the operand, even if the instruction does not use the CF flag as an extension
of the operand. The state of the SF, ZF, AF, and PF flags is not affected.

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit (sign bit)
of the destination operand. If the sign bit retains its original value, the OF flag is cleared.
After a rotate of more than one bit position, the value of the OF flag is undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one bit
position or by the number of bits specified in the count operand (an immediate value or a
value contained in the CL register). For each bit position of the rotation, the bit which exits
from the left of the operand returns at the right. See Figure 4-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by one
bit position or by the number of bits specified in the count operand (an immediate value or a
value contained in the CL register). For each bit position of the rotation, the bit which exits
from the right of the operand returns at the left. See Figure 4-12.

RCL (Rotate Through Carry Left)  rotates bits in the byte, word, or doubleword destination
operand left by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on the
upper end of the destination operand. Each bit which exits from the left side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the right side. See
Figure 4-13.
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RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword
destination operand right by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower end
of the destination operand. Each bit which exits from the right side of the operand moves into
the CF flag. At the same time, the bit in the CF flag enters the left side. See Figure 4-14.

APM31

DESTINATION (MEMORY OR REGISTER)CF

31 0

Figure 4-11.  ROL Instruction

APM32

CFDESTINATION (MEMORY OR REGISTER)

31 0

Figure 4-12.  ROR Instruction

APM29

CF DESTINATION (MEMORY OR REGISTER)

31 0

Figure 4-13.  RCL Instruction
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APM30

CFDESTINATION (MEMORY OR REGISTER)

31 0

Figure 4-14.  RCR Instruction

4.4.4.4. FAST "bit blt" USING DOUBLE-SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with arbitrary
misalignment of the bit strings. This is called a "bit blt" (BIT BLock Transfer). A simple
example is to move a bit string from an arbitrary offset into a doubleword-aligned byte
string. A left-to-right string is moved 32 bits at a time if a double shift is used inside the
move loop.

  MOV   ESI,ScrAddr
  MOV   EDI,DestAddr
  MOV   EBX,DWordCnt
  MOV   CL,RelOffset  ; relative offset Dest-Src
  MOV   EDX,[ESI]     ; load first dword of source
  ADD   ESI,4         ; bump source address
BltLoop:
  LODSD               ; new low order part in EAX
  SHLD  EDX,EAX,CL    ; EDX overwritten with aligned stuff
  XCHG  EDX,EAX       ; Swap high and low dwords
  STOSD               ; Write out next aligned chunk
  DEC   EBX           ; Decrement loop count
  JNZ   BltLoop

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest possible
performance. Without a double shift, the best which can be achieved is 16 bits per loop
iteration by using a 32-bit shift, and replacing the XCHG instruction with a ROR instruction
by 16 to swap the high and low words of registers. A more general loop than shown above
would require some extra masking on the first doubleword moved (before the main loop),
and on the last doubleword moved (after the main loop), but would have the same 32 bits per
loop iteration as the code above.

4.4.4.5. FAST BIT STRING INSERT AND EXTRACT

The double shift instructions also make possible:

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger bit
string in memory, without disturbing the bits on either side of the inserted bits
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• Fast extraction of a bit string into a register from an arbitrary bit location in a larger bit
string in memory, without disturbing the bits on either side of the extracted bits

The following coded examples illustrate bit insertion and extraction under
various conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans four
bytes or less):

; Insert a right-justified bit string from a register into
; a bit string in memory.
;
; Assumptions:
; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is an immediate value
;     and the bit offset is held in a register.
;
; The ESI register holds the right-justified bit string
; to be inserted.
; The EDI register holds the bit offset of the start of the
; substring.
; The EAX register and ECX are also used.
;
MOV   ECX,EDI                 ; save original offset
SHR   EDI,3                   ; divide offset by 8 (byte addr)
AND   CL,7H                   ; get low three bits of offset
MOV   EAX, [EDI]strg_base     ; move string dword into EAX
ROR   EAX,CL                  ; right justify old bit field
SHRD  EAX,ESI,length          ; bring in new bits
ROL   EAX,length              ; right justify new bit field
ROL   EAX,CL                  ; bring to final position
MOV   [EDI]strg_base,EAX      ; replace doubleword in memory

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five
bytes or less):

; Insert a right-justified bit string from a register into
; a bit string in memory.
;
; Assumptions:
; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is an immediate value
;     and the bit offset is held in a register.
;
; The ESI register holds the right-justified bit string
; to be inserted.
; The EDI register holds the bit offset of the start of the
; substring.
; The EAX, EBX, ECX, and EDI registers also are used.
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;
MOV   ECX,EDI                 ; temp storage for offset
SHR   EDI,5                   ; divide offset by 32 (dwords)
SHL   EDI,2                   ; multiply by 4 (byte address)
AND   CL,1FH                  ; get low five bits of offset
MOV   EAX,[EDI]strg_base      ; move low string dword into EAX
MOV   EDX,[EDI]strg_base+4    ; other string dword into EDX
MOV   EBX,EAX                 ; temp storage for part of string
SHRD  EAX,EDX,CL              ; shift by offset within dword
SHRD  EAX,EBX,CL              ; shift by offset within dword
SHRD  EAX,ESI,length          ; bring in new bits
ROL   EAX,length              ; right justify new bit field
MOV   EBX,EAX                 ; temp storage for string
SHLD  EAX,EDX,CL              ; shift by offset within dword
SHLD  EDX,EBX,CL              ; shift by offset within dword
MOV   [EDI]strg_base,EAX      ; replace dword in memory
MOV   [EDI]strg_base+4,EDX    ; replace dword in memory

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e., spans
four or five bytes):

; Insert right-justified bit string from a register into
; a bit string in memory.
;
; Assumptions:
; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is 32 bits
;     and the bit offset is held in a register.
;
; The ESI register holds the 32-bit string to be inserted.
; The EDI register holds the bit offset to the start of the
; substring.
; The EAX, EBX, ECX, and EDI registers also are used.
;
MOV   EDX,EDI                 ; save original offset
SHR   EDI,5                   ; divide offset by 32 (dwords)
SHL   EDI,2                   ; multiply by 4 (byte address)
AND   CL,1FH                  ; isolate low five bits of offset
MOV   EAX,[EDI]strg_base      ; move low string dword into EAX
MOV   EDX,[EDI]strg_base+4    ; other string dword into EDX
MOV   EBX,EAX                 ; temp storage for part of string
SHRD  EAX,EDX                 ; shift by offset within dword
SHRD  EDX,EBX                 ; shift by offset within dword
MOV   EAX,ESI                 ; move 32-bit field into position
MOV   EBX,EAX                 ; temp storage for part of string
SHLD  EAX,EDX                 ; shift by offset within dword
SHLD  EDX,EBX                 ; shift by offset within dword
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MOV   [EDI]strg_base,EAX      ; replace dword in memory
MOV   [EDI]strg_base,+4,EDX   ; replace dword in memory

4. Bit string Extraction from Memory (when the bit string is 1-25 bits long, i.e., spans four
bytes or less):

; Extract a right-justified bit string into a register from
; a bit string in memory.
;
; Assumptions:
; 1) The base of the string array is doubleword aligned.
; 2) The length of the bit string is an immediate value
;    and the bit offset is held in a register.
;
; The EAX register hold the right-justified, zero-padded
; bit string that was extracted.
; The EDI register holds the bit offset of the start of the
; substring.
; The EDI, and ECX registers also are used.
;
MOV   ECX,EDI                 ; temp storage for offset
SHR   EDI,3                   ; divide offset by 8 (byte addr)
AND   CL,7H                   ; get low three bits of offset
MOV   EAX,[EDI]strg_base      ; move string dword into EAX
SHR   EAX,CL                  ; shift by offset within dword
AND   EAX,mask                ; extracted bit field in EAX

5. Bit string Extraction from Memory (when bit string is 1-32 bits long, i.e., spans five
bytes or less):

; Extract a right-justified bit string into a register from
; bit string in memory.
;
; Assumptions:
; 1) The base of the string array is doubleword aligned.
; 2) The length of the bit string is an immediate
;    value and the bit offset is held in a register.
;
; The EAX register holds the right-justified, zero-padded
; bit string that was extracted.
; The EDI register holds the bit offset of the start of the
; substring.
; The EAX, EBX, and ECX registers also are used.
;
MOV   ECX,EDI                 ; temp storage for offset
SHR   EDI,5                   ; divide offset by 32 (dwords)
SHL   EDI,2                   ; multiply by 4 (byte address)
AND   CL,1FH                  ; get low five bits of offset in
MOV   EAX,[EDI]strg_base      ; move low string dword into EAX
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MOV   EDX,[EDI]strg_base +4   ; other string dword into EDX
SHRD  EAX,EDX,CL              ; shift right by offset in dword
AND   EAX,mask                ; extracted bit field in EAX

4.4.5. Byte-Set-On-Condition Instructions
This group of instructions sets a byte to the value of zero or one, depending on any of the 16
conditions defined by the status flags. The byte may be in a register or in memory. These
instructions are especially useful for implementing Boolean expressions in high-level
languages such as Pascal.

Some languages represent a logical one as an integer with all bits set. This can be done by
using the SETcc instruction with the mutually exclusive condition, then decrementing the
result.

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true; clears
the byte otherwise. See Appendix D for a definition of the possible conditions.

4.4.6. Test Instruction
TEST (Test) performs the logical "and" of the two operands, clears the OF and CF flags,
leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can be tested
by conditional control transfer instructions or the byte-set-on-condition instructions. The
operands may be bytes, words, or doublewords.

The difference between the TEST and AND instructions is that the TEST instruction does not
alter the destination operand. The difference between the TEST and BT instructions is that
the TEST instruction can test the value of multiple bits in one operation, while the BT
instruction tests a single bit.

4.5. CONTROL TRANSFER INSTRUCTIONS
The processor provides both conditional and unconditional control transfer instructions to
direct the flow of execution. Conditional transfers are taken only for certain combinations of
the state of the flags. Unconditional control transfers are always executed.

4.5.1. Unconditional Transfer Instructions
The JMP, CALL, RET, INT, and IRET instructions transfer execution to a destination in a
code segment. The destination can be within the same code segment (near transfer) or in a
different code segment (far transfer). The forms of these instructions which transfer
execution to other segments are discussed in a later section of this chapter. If the model of
memory organization used in a particular application does not make segments visible to
application programmers, far transfers are not used.
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4.5.1.1. JUMP INSTRUCTION

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction is a
one-way transfer of execution; it does not save a return address on the stack.

The JMP instruction transfers execution from the current routine to a different routine. The
address of the routine is specified in the instruction, in a register, or in memory. The location
of the address determines whether it is interpreted as a relative address or an absolute
address.

Relative Address. A relative jump uses a displacement (immediate mode constant used for
address calculation) held in the instruction. The displacement is signed and variable-length
(byte or doubleword). The destination address is formed by adding the displacement to the
address held in the EIP register. The EIP register then contains the address of the next
instruction to be executed.

Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register and execution continues.

4.5.1.2. CALL INSTRUCTIONS

CALL (Call Procedure)  transfers execution and saves the address of the instruction
following the CALL instruction for later use by a RET (Return) instruction. CALL pushes
the current contents of the EIP register on the stack. The RET instruction in the called
procedure uses this address to transfer execution back to the calling program.

CALL instructions, like JMP instructions, have relative and absolute forms.

Indirect CALL instructions specify an absolute address in one of the following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register, the return address is pushed on the stack, and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register, the return address is
pushed on the stack, and execution continues.

4.5.1.3. RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS

RET (Return From Procedure) terminates a procedure and transfers execution to the
instruction following the CALL instruction which originally invoked the procedure. The RET
instruction restores the contents of the EIP register which were pushed on the stack when the
procedure was called.
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The RET instructions have an optional immediate operand. When present, this constant is
added to the contents of the ESP register, which has the effect of removing any parameters
pushed on the stack before the procedure call.

IRET (Return From Interrupt)  returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it restores the EFLAGS register from the
stack. The contents of the EFLAGS register are stored on the stack when an interrupt occurs.

4.5.2. Conditional Transfer Instructions
The conditional transfer instructions are jumps which transfer execution if the states in the
EFLAGS register match conditions specified in the instruction.

4.5.2.1. CONDITIONAL JUMP INSTRUCTIONS

Table 4-3 shows the mnemonics for the jump instructions. The instructions listed as pairs are
alternate names for the same instruction. The assembler provides these names for greater
clarity in program listings.

A form of conditional jump instruction is available which uses a displacement added to the
contents of the EIP register if the specified condition is true. The displacement may be a byte
or doubleword. The displacement is signed; it can be used to jump forward or backward.
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Table 4-3.  Conditional Jump Instructions

Mnemonic Flag States Description

Unsigned Conditional Jumps

JA/JNBE (CF or ZF)=0 Above/not below nor equal

JAE/JNB CF=0 Above or equal/not below

JB/JNAE CF=1 Below/not above nor equal

JBE/JNA (CF o•r ZF)=1 Below or equal/not above

JC• CF=1 Carry

JE/JZ ZF=1 Equal/zero

JNC CF=0 Not carry

JNE/JNZ ZF=0 Not equal/not zero

JNP/JPO PF=0 Not parity/parity odd

JP/JPE PF=1 Parity/parity even

Signed Conditional Jumps

JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less nor equal

JGE/JNL (SF xor OF)=0 Greater or equal/not less

JL/JNGE (SF xor OF)=1 Less/not greater nor equal

JLE/JNG ((SF xor OF) or ZF)=1 Less or equal/not greater

JNO OF=0 Not overflow

JNS SF=0 Not sign (non-negative)

JO OF=1 Overflow

JS SF=1 Sign (negative)

4.5.2.2. LOOP INSTRUCTIONS

The loop instructions are conditional jumps which use the value of the ECX register as a
count for the number of times to run a loop. All loop instructions decrement the contents of
the ECX register on each reposition and terminate when zero is reached. Four of the five loop
instructions accept the ZF flag as a condition for terminating the loop before the count
reaches zero.

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements the
contents of the ECX register before testing for the loop-terminating condition. If the contents
of the ECX register are non-zero, the program jumps to the destination specified in the
instruction. The LOOP instruction causes the execution of a block of code to be repeated
until the count reaches zero. When zero is reached, execution is transferred to the instruction
immediately following the LOOP instruction. If the value in the ECX register is zero when
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the instruction is first called, the count is pre-decremented to 0FFFFFFFFH and the LOOP
runs 232 times.

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero)  are synonyms for the same
instruction. These instructions are conditional jumps which decrement the contents of the
ECX register before testing for the loop-terminating condition. If the contents of the ECX
register are non-zero and the ZF flag is set, the program jumps to the destination specified in
the instruction. When zero is reached or the ZF flag is clear, execution is transferred to the
instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms
for the same instruction. These instructions are conditional jumps which decrement the
contents of the ECX register before testing for the loop-terminating condition. If the contents
of the ECX register are non-zero and the ZF flag is clear, the program jumps to the
destination specified in the instruction. When zero is reached or the ZF flag is set, execution
is transferred to the instruction immediately following the LOOPE/LOOPZ instruction.

4.5.2.3. EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero)  jumps to the destination specified in the instruction if the ECX
register holds a value of zero. The JECXZ instruction is used in combination with the LOOP
instruction and with the string scan and compare instructions. Because these instructions
decrement the contents of the ECX register before testing for zero, a loop will run 232 times
if the loop is entered with a zero value in the ECX register. The JECXZ instruction is used to
create loops which fall through without executing when the initial value is zero. A JECXZ
instruction at the beginning of a loop can be used to jump out of the loop if the count is zero.
When used with repeated string scan and compare instructions, the JECXZ instruction can
determine whether the loop terminated due to the count or due to satisfaction of the scan or
compare conditions.

4.5.3. Software Interrupts
The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt handler.

INT n (Software Interrupt)  calls the handler specified by an interrupt vector encoded in the
instruction. The INT instruction may specify any interrupt type. This instruction is used to
support multiple types of software interrupts or to test the operation of interrupt service
routines. The interrupt service routine terminates with an IRET instruction, which returns
execution to the instruction following the INT instruction.

INTO (Interrupt on Overflow)  calls the handler for the overflow exception, if the OF flag
is set. If the flag is clear, execution continues without calling the handler. The OF flag is set
by arithmetic, logical, and string instructions. This instruction causes a software interrupt for
handling error conditions, such as arithmetic overflow.

BOUND (Detect Value Out of Range) compares the signed value held in a general register
against an upper and lower limit. The handler for the bounds-check exception is called if the
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value held in the register is less than the lower bound or greater than the upper bound. This
instruction causes a software interrupt for bounds checking, such as checking an array index
to make sure it falls within the range defined for the array.

The BOUND instruction has two operands. The first operand specifies the general register
being tested. The second operand is the base address of two words or doublewords at
adjacent locations in memory. The lower limit is the word or doubleword with the lower
address; the upper limit has the higher address. The BOUND instruction assumes that the
upper limit and lower limit are in adjacent memory locations. These limit values cannot be
register operands; if they are, an invalid-opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts the
array bounds at a constant offset from the beginning of the array. Because the address of the
array already will be present in a register, this practice avoids extra bus cycles to obtain the
effective address of the array bounds.

4.6. STRING OPERATIONS
String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on I/O for information about the string I/O instructions
(also known as block I/O instructions).

The string operations are made by putting string instructions (which execute only one
iteration of an operation) together with other features of the instruction set, such as repeat
prefixes. The string instructions include:

• MOVS—Move String

• CMPS—Compare string

• SCAS—Scan string

• LODS—Load string

• STOS—Store string

After a string instruction executes, the string source and destination registers point to the next
elements in their strings. The string instructions automatically increment or decrement the
contents of these registers by the number of bytes occupied by each string element. A string
element can be a byte, word, or doubleword. The string registers include:

• ESI—Source index register

• EDI—Destination index register

String operations can begin at higher addresses and work toward lower ones, or they can
begin at lower addresses and work toward higher ones. The direction is controlled by:

• DF—Direction flag

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are
decremented. These instructions set and clear the flag:
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• STD—Set direction flag

• CLD—Clear direction flag

To operate on more than one element of a string, a repeat prefix must be used, such as:

• REP—Repeat while the ECX register not zero

• REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set

• REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts that occur during a string instruction leave the registers in a state
which allows the string instruction to be restarted. The source and destination registers point
to the next string elements, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration. All that is necessary to
restart the operation is to service the interrupt or fix the source of the exception, then execute
an IRET instruction.

4.6.1. Repeat Prefixes
The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated
operation of a string instruction.

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by an exception
or interrupt. After the exception or interrupt has been serviced, the string operation can
restart where it left off. This mechanism allows long string operations to proceed without
affecting the interrupt response time of the system.

All three prefixes shown in Table 4-Error! Bookmark not defined.  cause the instruction to
repeat until the ECX register is decremented to zero, if no other termination condition is
satisfied. The repeat prefixes differ in their other termination condition. The REP prefix has
no other termination condition. The REPE/REPZ and REPNE/REPNZ prefixes are used
exclusively with the SCAS (Scan String) and CMPS (Compare String) instructions. The
REPE/REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates
if the ZF flag is set. The ZF flag does not require initialization before execution of a repeated
string instruction, because both the SCAS and CMPS instructions affect the ZF flag
according to the results of the comparisons they make.

Table 4-4.  Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1
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4.6.2. Indexing and Direction Flag Control
Although the general registers are completely interchangeable under most conditions, the
string instructions require the use of two specific registers. The source and destination strings
are in memory addressed by the ESI and EDI registers. The ESI register points to source
operands. By default, the ESI register is used with the DS segment register. A segment-
override prefix allows the ESI register to be used with the CS, SS, ES, FS, or GS segment
registers. The EDI register points to destination operands. It uses the segment indicated by
the ES segment register; no segment override is allowed. The use of two different segment
registers in one instruction permits operations between strings in different segments.

When ESI and EDI are used in string instructions, they automatically are incremented or
decremented after each iteration. String operations can begin at higher addresses and work
toward lower ones, or they can begin at lower addresses and work toward higher ones. The
direction is controlled by the DF flag. If the flag is clear, the registers are incremented. If the
flag is set, the registers are decremented. The STD and CLD instructions set and clear this
flag. Programmers should always put a known value in the DF flag before using a string
instruction.

4.6.3. String Instructions
MOVS (Move String) moves the string element addressed by the ESI register to the location
addressed by the EDI register. The MOVSB instruction moves bytes, the MOVSW
instruction moves words, and the MOVSD instruction moves doublewords. The MOVS
instruction, when accompanied by the REP prefix, operates as a memory-to-memory block
transfer. To set up this operation, the program must initialize the ECX, ESI, and EDI
registers. The ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written back
to memory. If the string elements are equal, the ZF flag is set; otherwise, it is cleared.
CMPSB compares bytes, CMPSW compares words, and CMPSD compares doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF flags.
The string and the register are not modified. If the values are equal, the ZF flag is set;
otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction scans
words; the SCASD instruction scans doublewords.

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS
instructions, the loop which is formed is terminated by the loop counter or the effect the
SCAS or CMPS instruction has on the ZF flag.

LODS (Load String) places the source string element addressed by the ESI register into the
EAX register for doubleword strings, into the AX register for word strings, or into the AL
register for byte strings. This instruction usually is used in a loop, where other instructions
process each element of the string as they appear in the register.
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STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop, where
it writes to memory the result of processing a string element read from memory with the
LODS instruction. A REP STOS instruction is the fastest way to initialize a large block of
memory.

4.7. INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES
These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify
procedure entry and exit in compiler-generated code. They support a structure of pointers and
local variables on the stack called a stack frame.

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of block-
structured languages. In these languages, a procedure has access to its own variables and
some number of other variables defined elsewhere in the program. The scope of a procedure
is the set of variables to which it has access. The rules for scope vary among languages; they
may be based on the nesting of procedures, the division of the program into separately-
compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic storage is
the memory allocated for variables created when the procedure is called, also known as
automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the
procedure. The nesting level is the depth of a procedure in the hierarchy of a block-structured
program. The lexical level has no particular relationship to either the protection privilege
level or to the I/O privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access
the variables of a procedure. The set of stack frame pointers used by a procedure to access
the variables of other procedures is called the display. The first doubleword in the display is a
pointer to the previous stack frame. This pointer is used by a LEAVE instruction to undo the
effect of an ENTER instruction by discarding the current stack frame.

Example:  ENTER 2048,3

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two previous stack
frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic
(automatic) local variables for the procedure by decrementing the contents of the ESP
register by the number of bytes specified in the first parameter. This new value in the ESP
register serves as the initial top-of-stack for all PUSH and POP operations within the
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions which
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specify the EBP register as a base register automatically address locations within the stack
segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level
is 0, the non-nested form is used. The non-nested form pushes the contents of the EBP
register on the stack, copies the contents of the ESP register into the EBP register, and
subtracts the first operand from the contents of the ESP register to allocate dynamic storage.
The non-nested form differs from the nested form in that no stack frame pointers are copied.
The nested form of the ENTER instruction occurs when the second parameter (lexical level)
is not zero.

The psuedo code in Example 4-1 shows the formal definition of the ENTER instruction.
STORAGE is the number of bytes of dynamic storage to allocate for local variables, and
LEVEL is the lexical nesting level.

Example 4-1.  ENTER Definition

Push EBP
Set a temporary value FRAME_PTR := ESP
If LEVEL > 0 then

Repeat LEVEL-1 times
EBP := EBP-4
Push the doubleword pointed to by EBP

End Repeat
Push FRAME_PTR

End if
EBP := FRAME_PTR
ESP := ESP-STORAGE

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A
level 2 procedure can access the variables of the main program, which are at fixed locations
specified by the compiler. In the case of level 1, the ENTER instruction allocates only the
requested dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to
its variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical
levels. The new stack frame does not include the pointer for addressing the calling
procedure's stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same
lexical level. In this case, each succeeding iteration of the re-entrant procedure can address
only its own variables and the variables of the procedures within which it is nested. A re-
entrant procedure always can address its own variables; it does not require pointers to the
stack frames of previous iterations.
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By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels,
not those at parallel lexical levels (see Figure 4-15).
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MAIN (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

PROCEDURE B (LEXICAL LEVEL 3)

PROCEDURE C (LEXICAL LEVEL 3)

PROCEDURE D (LEXICAL LEVEL 4)

Figure 4-15.  Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to
the variables of nested procedures. In the figure, for example, if PROCEDURE A calls
PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C will have
access to the variables of MAIN and PROCEDURE A, but not those of PROCEDURE B
because they are at the same lexical level. The following definition describes the access to
variables for the nested procedures in Figure 4-15.

1. MAIN has variables at fixed locations.

2. PROCEDURE A can access only the variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCEDURE D.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCEDURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, and
MAIN. PROCEDURE D cannot access the variables of PROCEDURE B.

In Figure 4-16, an ENTER instruction at the beginning of the MAIN program creates three
doublewords of dynamic storage for MAIN, but copies no pointers from other stack frames.
The first doubleword in the display holds a copy of the last value in the EBP register before
the ENTER instruction was executed. The second doubleword (which, because stacks grow
down, is stored at a lower address) holds a copy of the contents of the EBP register following
the ENTER instruction. After the instruction is executed, the EBP register points to the first
doubleword pushed on the stack, and the ESP register points to the last doubleword in the
stack frame.
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Figure 4-16.  Stack Frame after Entering MAIN

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (see
Figure 4-17). The first doubleword is the last value held in MAIN's EBP register. The second
doubleword is a pointer to MAIN's stack frame which is copied from the second doubleword
in MAIN's display. This happens to be another copy of the last value held in MAIN's EBP
register. PROCEDURE A can access variables in MAIN because MAIN is at level 1.
Therefore the base address for the dynamic storage used in MAIN is the current address in
the EBP register, plus four bytes to account for the saved contents of MAIN's EBP register.
All dynamic variables for MAIN are at fixed, positive offsets from this value.

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new display.
(See Figure 4-18). The first doubleword holds a copy of the last value in PROCEDURE A's
EBP register. The second and third doublewords are copies of the two stack frame pointers in
PROCEDURE A's display. PROCEDURE B can access variables in PROCEDURE A and
MAIN by using the stack frame pointers in its display.

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new display
for PROCEDURE C. (See Figure 4-19). The first doubleword holds a copy of the last value
in PROCEDURE B's EBP register. This is used by the LEAVE instruction to restore
PROCEDURE B's stack frame. The second and third doublewords are copies of the two stack
frame pointers in PROCEDURE A's display. If PROCEDURE C were at the next deeper
lexical level from PROCEDURE B, a fourth doubleword would be copied, which would be
the stack frame pointer to PROCEDURE B's local variables.

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCEDURE C is
not intended to access PROCEDURE B's variables. This does not mean that PROCEDURE C
is completely isolated from PROCEDURE B; PROCEDURE C is called by PROCEDURE B,
so the pointer to the returning stack frame is a pointer to PROCEDURE B's stack frame. In
addition, PROCEDURE B can pass parameters to PROCEDURE C either on the stack or
through variables global to both procedures (i.e., variables in the scope of both procedures).
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Figure 4-17.  Stack Frame after Entering PROCEDURE A
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Figure 4-18.  Stack Frame after Entering PROCEDURE B
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Figure 4-19.  Stack Frame after Entering PROCEDURE C
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LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEAVE instruction does not have any operands. The LEAVE instruction copies the contents
of the EBP register into the ESP register to release all stack space allocated to the procedure.
Then the LEAVE instruction restores the old value of the EBP register from the stack. This
simultaneously restores the ESP register to its original value. A subsequent RET instruction
then can remove any arguments and the return address pushed on the stack by the calling
program for use by the procedure.

4.8. FLAG CONTROL INSTRUCTIONS
The flag control instructions change the state of bits in the EFLAGS register, as shown in
Table 4-Error! Bookmark not defined. .

Table 4-5.  Flag Control Instructions

Instruction Effect

STC (Set Carry Flag) CF ← 1

CLC (Clear Carry Flag) CF ← 0

CMC (Complement Carry Flag) CF ← – CF

CLD (Clear Direction Flag) DF ← 0

STD (Set Direction Flag) DF ← 1

4.8.1. Carry and Direction Flag Control Instructions
The carry flag instructions are useful with instructions like the rotate-with-carry instructions
RCL and RCR. They can initialize the carry flag, CF, to a known state before execution of an
instruction which copies the flag into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls the
direction of string processing. If the DF flag is clear, the processor increments the string
index registers, ESI and EDI, after each iteration of a string instruction. If the DF flag is set,
the processor decrements these index registers.

4.8.2. Flag Transfer Instructions
Though specific instructions exist to alter the CF and DF flags, there is no direct method of
altering the other application-oriented flags. The flag transfer instructions allow a program to
change the state of the other flag bits using the bit manipulation instructions once these flags
have been moved to the stack or the AH register.

The LAHF and SAHF instructions deal with five of the status flags, which are used primarily
by the arithmetic and logical instructions.
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LAHF (Load AH from Flags)  copies the SF, ZF, AF, PF, and CF flags to the AH register
bits 7, 6, 4, 2, and 0, respectively (see Figure 4-20). The contents of the remaining bits 5, 3,
and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 4-20).
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Figure 4-20.  Low Byte of EFLAGS Register

The PUSHF and POPF instructions are not only useful for storing the flags in memory where
they can be examined and modified, but also are useful for preserving the state of the
EFLAGS register while executing a subroutine.

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see
Figure 4-21). The PUSHFD instruction pushes the entire EFLAGS register onto the stack (the
RF and VM flags read as clear, however).
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POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 11, 10,
8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege level of the
current code segment is 0 (most privileged), the IOPL bits (bits 13 and 12) also are affected.
If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected. The POPFD
instruction pops a doubleword into the EFLAGS register, and it can change the state of the
AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a POPF instruction.

4.9. NUMERIC INSTRUCTIONS
The Pentium processor includes hardware and instructions for high-precision numeric
operations on a variety of numeric data types, including 80-bit extended real and 64-bit long
integer. Arithmetic, comparison, transcendental, and data transfer instructions are available.
Frequently-used constants are also provided, to enhance the speed of numeric calculations.

The numeric instructions are embedded in the instruction stream of the Pentium processor, as
though they were being executed by a single device having both integer and floating-point
capabilities. But the floating-point unit of the Pentium processor actually works in parallel
with the integer unit, resulting in higher performance.

Refer to Chapter 5 to confirm the presence of a Pentium processor floating-point unit.

Chapter 6 describes the numeric instructions in more detail.

4.10. SEGMENT REGISTER INSTRUCTIONS
There are several distinct types of instructions which use segment registers. They are grouped
together here because, if system designers choose an unsegmented model of memory
organization, none of these instructions are used. The instructions which deal with segment
registers include the following:

1. Segment-register transfer instructions.

MOV SegReg, ...
MOV ..., SegReg
PUSH SegReg
POP SegReg

2.  Control transfers to another executable segment.

JMP far
CALL far
RET far

3. Data pointer instructions.

LDS   reg, 48-bit memory operand
LES   reg, 48-bit memory operand
LFS   reg, 48-bit memory operand
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LGS   reg, 48-bit memory operand
LSS   reg, 48-bit memory operand

4. Note that the following interrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation is
used, this is transparent to the application programmer.

INT n
INTO
BOUND
IRET

4.10.1. Segment-Register Transfer Instructions
Forms of the MOV, POP, and PUSH instructions also are used to load and store segment
registers. These forms operate like the general-register forms, except that one operand is a
segment register. The MOV instruction cannot copy the contents of a segment register into
another segment register.

The POP and MOV instructions cannot place a value in the CS register (code segment); only
the far control-transfer instructions affect the CS register. When the destination is the SS
register (stack segment), interrupts are disabled until after the next instruction.

No 16-bit operand size prefix is needed when transferring data between a segment register
and a 32-bit general register.

4.10.2. Far Control Transfer Instructions
The far control-transfer instructions transfer execution to a destination in another segment by
replacing the contents of the CS register. The destination is specified by a far pointer, which
is a 16-bit segment selector and a 32-bit offset into the segment. The far pointer can be an
immediate operand or an operand in memory.

Far CALL . An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP registers
from the stack.

4.10.3. Data Pointer Instructions
The data pointer instructions load a far pointer into the processor registers. A far pointer
consists of a 16-bit segment selector, which is loaded into a segment register, and a 32-bit
offset into the segment, which is loaded into a general register.
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LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example:  LDS ESI, STRING_X

Loads the DS register with the segment selector for the segment addressed by STRING_X,
and loads the offset within the segment to STRING_X into the ESI register. Specifying the
ESI register as the destination operand is a convenient way to prepare for a string operation,
when the source string is not in the current data segment.

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the
segment selector is loaded into the ES register rather than the DS register.

Example:  LES EDI, DESTINATION_X

Loads the ES register with the segment selector for the segment addressed by
DESTINATION_X, and loads the offset within the segment to DESTINATION_X into the
EDI register. This instruction is a convenient way to select a destination for string operation
if the desired location is not in the current E-data segment.

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register.

LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is
especially important, because it allows the two registers which identify the stack (the SS and
ESP registers) to be changed in one uninterruptible operation. Unlike the other instructions
which can load the SS register, interrupts are not inhibited at the end of the LSS instruction.
The other instructions, such as POP SS, turn off interrupts to permit the following instruction
to load the ESP register without an intervening interrupt. Since both the SS and ESP registers
can be loaded by the LSS instruction, there is no need to disable or re-enable interrupts.

4.11. MISCELLANEOUS INSTRUCTIONS
The following instructions do not fit in any of the previous categories, but are no less
important.

The CMPXCHG8B and CPUID instructions are new instructions on the Pentium processor
and bring improved functionality by providing a single instruction to accomplish what
previously took multiple instructions on earlier microprocessors.

The BSWAP, XADD, and CMPXCHG instructions are not available on Intel386 DX or SX
microprocessors. An Intel386 CPU can perform the same operations in multiple instructions.
To use these instructions, always include functionally-equivalent code for Intel386 CPUs.
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To determine whether these new instructions can be used, the type of processor in a system
needs to be determined. See Chapter 5 for code examples and information on determining the
type of the different processors.

4.11.1. Address Calculation Instruction
LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory (rather
than its contents) into the destination operand. The source operand must be in memory, and
the destination operand must be a general register. This instruction is especially useful for
initializing the ESI or EDI registers before the execution of string instructions or initializing
the EBX register before an XLAT instruction. The LEA instruction can perform any indexing
or scaling which may be needed.

Example:  LEA EBX, EBCDIC_TABLE

Causes the processor to place the address of the starting location of the table labeled
EBCDIC_TABLE into EBX.

4.11.2. No-Operation Instruction
NOP (No Operation) occupies a byte of code space. When executed, it increments the EIP
register to point at the next instruction, but affects nothing else.

4.11.3. Translate Instruction
XLATB (Translate)  replaces the contents of the AL register with a byte read from a
translation table in memory. The contents of the AL register are interpreted as an unsigned
index into this table, with the contents of the EBX register used as the base address. The
XLAT instruction does the same operation and loads its result into the same register, but it
gets the byte operand from memory. This function is used to convert character codes from
one alphabet into another. For example, an ASCII code could be used to look up its EBCDIC
equivalent.

4.11.4. Byte Swap Instruction
BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions 7..0
are exchanged with 31..24, and bit positions 15..8 are exchanged with 23..16. This instruction
is useful for converting between "big-endian" and "little-endian" data formats. Executing this
instruction twice in a row leaves the register in the same value as before. This instruction
also speeds execution of decimal arithmetic by operating on four digits at a time as shown in
Example 4-2.
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Example 4-2.  ASCII Arithmetic Using BSWAP

$title('ASCII Add/Subtract with BSWAP')

name ASCII_arith

code segment er public use32
;
; Add a string of 4 ASCII decimal digits together.
; The upper nibble MUST be 3.
; DS:[ESI] points at operand 1
; DS:[EBX] points at operand 2
; DS:[EDI] points at the destination
;

add10proc near
;
; Perform ASCII add using BSWAP instruction
;

mov eax, [esi] ; Get low four digits of first operand
bswapeax ; Put into big-endian form
add eax, 96969696H ; Adjust for addition so carries work
mov ecx, [ebx] ; Get low four digits of second operand
bswapecx ; Put into big-endian form
add eax, ecx ; Do the add with inter-digit carry
rcr ch,1 ; Save the carr flag
mov edx,eax ; Save the value
and eax, 0F0F0F0F0H ; Extract the uppernibble
sub eax, eax ; Zero out uppernibble of each byte
shr eax, 4 ; Prepare for fixup
and eax, 0A0A0A0AH ; If non-zero upper nibble then form

; as adjustment value to lower nibble
add eax, edx ; Form adjusted lower nibble value

; Upper nibbles may be 1 from adjustment
or eax, 30303030H ; Convert back to ASCII
bswapeax ; Back to little-endien
mov [edi], eax ; Set destination
rcl ch, 1 ; Restore carry
ret

add10 endp

; Subtract a string of 4 ASCII decimal digits together.
; The upper nibble must be 3.
; DS:[ESI] points at operand 1
; DS:[EBX] points at operand 2
; DS:[EDI] points at the destination
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;
sub10proc near
;
; Perform ASCII subtract using BSWAP instruction.

mov eax, [esi] ; Get low four digits of first operand
bswap eax ; Put into big-endian form
mov ecx, [ebx] ; get low four digits of second operand
bswap ecx ; Put into big-endian form
sub eax,ecx ; Do the subtraction with inter-digit

borrow
rcr ch, 1 ; Save the carry flag
mov edx, eax ; Save the value
and eax, 0F0F0F0F0H ; Extract upper nibble, F if borrow

happened
sub edx, eax ; Zero out upper nibble of each byte
shr eax, 4 ; Prepare for fixup
and eax,0A0A0A0AH ; If non-zero upper nibble then form

; 10 as adjustment value to lower nibble
add eax, edx ; Form adjusted lower nibble value

; upper nibbles may be 1 from adjustment
or eax, 30303030H ; Convert back to ASCII
bswapeax ; Convert to little-endian
mov [edi], eax ; Set to destination
rcl ch, 1 ; Restore borrow
ret

sub10endp

code ends
end

4.11.5. Exchange-and-Add Instruction
XADD (Exchange and Add) takes two operands: a source operand in a register and a
destination operand in a register or memory. The source operand is replaced with the
destination operand, and the destination operand is replaced with the sum of the source and
destination operands. The flags reflect the result of the addition. This instruction can be
combined with LOCK in a multiprocessing system to allow multiple processors to execute
one do loop.

4.11.6. Compare-and-Exchange Instructions
CMPXCHG (Compare and Exchange) takes three operands: a source operand in a register,
a destination operand in a register or memory, and the accumulator (i.e., the AL, AX, or
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EAX register, depending on operand size). If the values in the destination operand and the
accumulator are equal, the destination operand is replaced with the source operand.
Otherwise, the original value of the destination operand is loaded into the accumulator. The
flags reflect the result which would have been obtained by subtracting the destination
operand from the accumulator. The ZF flag is set if the values in the destination operand and
the accumulator were equal, otherwise it is cleared.

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs a
check to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise
it gets the ID of the current owner. This is all done in one uninterruptible operation. In a
single processor system, it eliminates the need to switch to level 0 to disable interrupts to
execute multiple instructions. For multiple processor systems, CMPXCHG can be combined
with LOCK to perform all bus cycles atomically.

CMPXCHG8B (Compare and Exchange 8 Bytes) takes three operands: a destination
operand in memory, a 64-bit value in EDX:EAX and a 64-bit value in ECX:EBX.
CMPXCHG8B compares the 64-bit value in EDX:EAX with the destination.  If they are
equal, the 64-bit value in ECX:EBX is stored in the destination.  If EDX:EAX and the
destination are not equal, the destination is loaded into EDX:EAX.  The ZF flag is set if the
values in the destination and EDX:EAX are equal, otherwise it is cleared.  The CF, PF, AF,
SF, and OF flags are unaffected.  CMPXCHG8B can be combined with LOCK to perform all
bus cycles in one uninterruptible operation.

4.11.7. CPUID Instruction
CPUID provides information to software about the the vendor and model of microprocessor
on which it is executing. By loading a zero into EAX and then executing the CPUD
instruction, the ECX, EDX, and EBX registers will contain a vendor identification string.
The EAX register will contain the highest input value understood by the CPUID instruction.
Software can then obtain additional information regarding which features are present by
moving a one (or up to the highest value returned in EAX previously) into EAX and
executing the CPUID instruction again.

When a one is loaded into the EAX register before executing the CPUID instruction, the
EAX register contains information regarding the family, model and stepping of the processor
as shown in Figure 4-22. Bits 8-11 of the EAX register indicate what family the processor
belongs to and will be 5 for the Pentium microprocessor.  Bits 4-7 of the EAX register
indicate the model and will be 0 to indicate the first model in the Pentium processor family.
Bits 0-3 of the EAX register indicate the Stepping ID which is a unique identifier for each
revision level.

The EBX and ECX registers are reserved following execution of this instruction with an
input value of one, and the EDX register will contain information on which features are
present on a particular processor. For more information on the feature bits of EDX, see
Appendix H.

The ability to set and clear the ID flag in the EFLAGS register indicates whether the
processor supports the CPUID instruction. The CPUID instruction can be executed at any
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privilege level to serialize instruction execution. Serializing instruction execution guarantees
that any modifications to flags, registers, and memory for previous instructions are completed
before the next instruction is fetched and executed. For more information on serializing
operations, see Chapter 18.
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Figure 4-22.  EAX Following the CPUID Instruction
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CHAPTER 5
FEATURE DETERMINATION

Identifying the type of processor present in a system may be necessary in order to determine
which features are available to an application.  Chapter 23 contains a complete list of which
features are available for the different Intel architectures. The absence of an integrated
floating-point unit (FPU) or numeric processor extension (NPX) may also need to be
determined if software needs to emulate the floating-point instructions.

This chapter discusses processor identification, as well as on-chip FPU and NPX presence
detection and identification. Sample code is provided in Example 5-1.

5.1. CPU IDENTIFICATION
The setting of the flags stored by the PUSHF instruction, by interrupts, and by exceptions is
different on the 32 bit processors than that stored by the 8086 and Intel 286 processors in bits
12 and 13 (IOPL), 14 (NT), and 15 (reserved).  These differences can be used to distinguish
what type of processor is present in a system while an application is running.

• 8086 processor  bits 12 through 15 are always set.

• Intel 286 processor  bits 12 through 15 are always clear in real-address mode.

• 32-bit processors — in real-address mode, bit 15 is always clear and bits 14 through 12
have the last value loaded into them.  In  , bit 14 has the last value loaded into it, bit 15
is always clear, and IOPL depends on the CPL (if CPL ≠ 0, the IOPL is unchanged,
otherwise it is updated).

Other EFLAG register bits that can be used to differentiate between the 32-bit processors
include:

• Bit 18 (AC), implemented on the Intel486 and Pentium processors, can be used to
distinguish an Intel386 processor from the Intel486 and Pentium processors as it will
always be clear on an Intel386 processor.

• Bit 21 (ID) can be used to determine if an application can execute the CPUID
instruction. This instruction supplies information to applications at runtime that
identifies Intel as the vendor, including family, model, stepping, and what features are
implemented on the processor in the system an application is running on. The ability to
set and clear this bit indicates that the CPUID instruction is supported by the processor.
See Chapter 25 for details on this instruction.
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5.2. FPU DETECTION
To determine whether an FPU or NPX is present in a system, applications can write to the
status and control word registers using the FNINIT instruction and then verify the correct
values are read back. Once an FPU or NPX is determined to be present, its type can then be
determined.  In most cases, the processor type will determine the type of FPU or NPX,
however, an Intel386 microprocessor may work with either an Intel287™ or Intel387 math
coprocessor. To determine which of these is present, the infinity of the coprocessor must be
checked. On the Intel287 math coprocessor, positive infinity is equal to negative infinity.  On
the Intel387 math coprocessor, however, positive infinity is not equal to negative infinity.

5.3. SAMPLE CPUID IDENTIFICATION/FPU DETECTION CODE
Example 5-1 is the Intel recommended method of determing the processor type as well as the
presence and type of NPX or integrated FPU. This code has been modified from previous
versions of Intel's recommended CPU identification code by modularizing the printing
functions so that applications not running in a DOS environment can remove or change the
print function to conform to the appropriate environment. Note that this code (and previous
versions) is supported on the Intel 286 in real-address mode only. This example was created
using Microsoft's assembler directives.

Example 5-1.  CPU Identification and FPU Detection

;       Filename:       cpuid32.msm
;
;       This program has been developed by Intel Corporation.
;       Software developers have Intel's permission to incorporate
;       this source code into your software royalty free.
;
;       Intel specifically disclaims all warranties, express or
;       implied, and all liability, including consequential and other
;       indirect damages, for the use of this code, including
;       liability for infringement of any proprietary rights.  Intel
;       does not assume any responsibility for any errors which may
;       appear in this code nor any responsibility to update it.
;
;       This program contains three parts:
;       Part 1: Identifies CPU type in the variable cpu_type:
;               0=8086 processor
;               2=Intel 286 processor
;               3=Intel386(TM) processor
;               4=Intel486(TM) processor
;               5=Pentium(R) processor
;
;       Part 2: Identifies FPU type in the variable fpu_type:
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;               0=FPU not present
;               1=FPU present
;               2=287 present (only if cpu_type=3)
;               3=387 present (only if cpu_type=3)
;
;       Part 3: Prints out the appropriate message.  This part can
;               be removed if this program is not used in a DOS-based
;               system.  Portions affected are at the end of the
;               data segment and the print procedure in the code
;               segment.
;
;       This program was assembled with Microsoft's Assembler MASM
;       6.0.  While this program mostly uses 16-bit operands, some
;       32-bit operands are required to check the 32-bit EFLAGS
;       register once it has been determined that the processor is at
;       least an Intel386 processor. 32-bit operations are invoked by
;       using the macro OPND32.

        TITLE   CPUID
        DOSSEG
        .model  small
        .stack  100h
        .186

; The OPND32 macro takes either zero or two parameters.
; With zero parameters, it generates the 32-bit operand-size prefix.
; With two parameters, it generates the 32-bit operand-size prefix,
; followed by an opcode and a 32-bit immediate value. These
parameters
; are used to generate XOR AX,imm32 instructions.

OPND32 MACRO op_code, op_erand
        db      66h      ; Force 32-bit operand size
  IFNB <op_code>
        db      op_code  ; Optional opcode
    IFNB <op_erand>
        dd      op_erand ; Optional 32-bit immediate value
    ENDIF
  ENDIF
ENDM

CPUID MACRO
        db      0fh     ; Opcode for CPUID instruction
        db      0a2h
ENDM

TRUE            equ     1
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FAMILY_MASK     equ     0f00h
FAMILY_SHIFT    equ     8
MODEL_MASK      equ     0f0h
MODEL_SHIFT     equ     4
STEPPING_MASK   equ     0fh
FPU_FLAG        equ     1h
MCE_FLAG        equ     80h
CMPXCHG8B_FLAG  equ     100h

        .data
fp_status       dw      ?
vendor_id       db      12 dup (?)
cpu_type        db      ?
model           db      ?
stepping        db      ?
id_flag         db      0
fpu_type        db      0
intel_proc      db      0
feature_flags   dw      2 dup (0)
;
; Remove the remaining data declarations if not using the DOS-based
; print procedure
;
id_msg       db "This system has a$"
fp_8087      db " and an 8087 math coprocessor$"
fp_80287     db " and an 80287 math coprocessor$"
fp_80387     db " and an 80387 math coprocessor$"
c8086        db "n 8086/8088 processor$"
c286         db "n 80286 processor$"
c386         db "n 80386 processor$"
c486         db "n 80486 DX processor or 80487 SX math coprocessor$"
c486nfp      db "n 80486 SX processor$"
Intel486_msg db 13,10,"This system contains a Genuine "
             db "Intel486(TM) processor",13,10,"$"
Pentium_msg  db 13,10,"This system contains a Genuine "
             db "Intel Pentium(R) processor",13,10,"$"
modelmsg     db "Model:            $"
steppingmsg  db "Stepping:         $"
familymsg    db 13,10,"Processor Family: $"
period       db ".",13,10,"$"
dataCR       db ?,13,10,"$"
intel_id     db "GenuineIntel"
fpu_msg      db 13,10,"This processor contains a FPU",13,10,"$"
mce_msg      db "This processor supports the "
             db "Machine Check Exception",13,10,"$"
cmp_msg      db "This processor supports the "
             db "CMPXCHG8B instruction",13,10,"$"
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not_intel    db "t least an 80486 processor.",13,10
             db "It does not contain a Genuine Intel part and as a "
             db "result,",13,10,"the CPUID detection information "
             db "cannot be determined at this time.",13,10,"$"
;
;       This code identifies the processor and coprocessor
;       that are currently in the system.  The program first
;       determines the processor id.  When that is accomplished,
;       the program then determines whether a coprocessor
;       exists in the system.  If a coprocessor or integrated
;       coprocessor exists, the program identifies
;       the coprocessor id.  The program then prints out
;       the CPU and floating point presence and type.
;
        .code
start:  mov     ax, @data
        mov     ds, ax          ; set segment register
        mov     es, ax          ; set segment register
        pushf                   ; save for restoration at end
        call    get_cpuid
        call    get_fpuid
        call    print
        popf
        mov     ax, 4c00h       ; terminate program
        int     21h

get_cpuid proc
;
;       This procedure determines the type of CPU in a system
;       and sets the cpu_type variable with the appropriate value.
;       All registers are used by this procedure, none are preserved.

;       Intel 8086 CPU check
;       Bits 12-15 of the FLAGS register are always set on the
;       8086 processor.
;
check_8086:
        pushf                   ; push original FLAGS
        pop     ax              ; get original FLAGS
        mov     cx, ax          ; save original FLAGS
        and     ax, 0fffh       ; clear bits 12-15 in FLAGS
        push    ax              ; save new FLAGS value on stack
        popf                    ; replace current FLAGS value
        pushf                   ; get new FLAGS
        pop     ax              ; store new FLAGS in AX
        and     ax, 0f000h      ; if bits 12-15 are set, then CPU
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        cmp     ax, 0f000h      ;   is an 8086/8088
        mov     cpu_type, 0     ; turn on 8086/8088 flag
        je      end_get_cpuid   ; jump if CPU is 8086/8088

;       Intel 286 CPU check
;       Bits 12-15 of the FLAGS register are always clear on the
;       Intel 286 processor in real-address mode.
;
check_80286:
        or      cx, 0f000h      ; try to set bits 12-15
        push    cx              ; save new FLAGS value on stack
        popf                    ; replace current FLAGS value
        pushf                   ; get new FLAGS
        pop     ax              ; store new FLAGS in AX
        and     ax, 0f000h      ; if bits 12-15 clear, CPU=80286
        mov     cpu_type, 2     ; turn on 80286 flag
        jz      end_get_cpuid   ; if no bits set, CPU is 80286

;       Intel386 CPU check
;       The AC bit, bit #18, is a new bit introduced in the EFLAGS
;       register on the Intel486 DX CPU to generate alignment faults.
;       This bit cannot be set on the Intel386 CPU.
;
check_80386:
;       It is now safe to use 32-bit opcode/operands
        mov     bx, sp          ; save current stack pointer to align
        and     sp, not 3       ; align stack to avoid AC fault
        OPND32
        pushf                   ; push original EFLAGS
        OPND32
        pop     ax              ; get original EFLAGS
        OPND32
        mov     cx, ax          ; save original EFLAGS
        OPND32  35h, 40000h     ; flip (XOR) AC bit in EFLAGS
        OPND32
        push    ax              ; save new EFLAGS value on stack
        OPND32
        popf                    ; replace current EFLAGS value
        OPND32
        pushf                   ; get new EFLAGS
        OPND32
        pop     ax              ; store new EFLAGS in EAX
        OPND32
        xor     ax, cx          ; can't toggle AC bit, CPU=80386
        mov     cpu_type, 3     ; turn on 80386 CPU flag
        mov     sp, bx          ; restore original stack pointer
        jz      end_get_cpuid   ; jump if 80386 CPU
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        and     sp, not 3       ; align stack to avoid AC fault
        OPND32
        push    cx
        OPND32
        popf                    ; restore AC bit in EFLAGS first
        mov     sp, bx          ; restore original stack pointer

;       Intel486 DX CPU, Intel487 SX NDP, and Intel486 SX CPU check
;       Checking for ability to set/clear ID flag (Bit 21) in EFLAGS
;       which indicates the presence of a processor
;       with the ability to use the CPUID instruction.
;
check_80486:
        mov     cpu_type, 4     ; turn on 80486 CPU flag
        OPND32
        mov     ax, cx          ; get original EFLAGS
        OPND32  35h, 200000h    ; flip (XOR) ID bit in EFLAGS
        OPND32
        push    ax              ; save new EFLAGS value on stack
        OPND32
        popf                    ; replace current EFLAGS value
        OPND32
        pushf                   ; get new EFLAGS
        OPND32
        pop     ax              ; store new EFLAGS in EAX
        OPND32
        xor     ax, cx          ; can't toggle ID bit,
        je      end_get_cpuid   ;   CPU=80486

;       Execute CPUID instruction to identify Intel as the vendor,
;       including family, model and stepping.
;
check_vendor:
        mov     id_flag, 1      ; set flag indicating use of CPUID
;                               ; inst.
        OPND32
        xor     ax, ax          ; set up input for CPUID instruction
        CPUID                   ; macro for CPUID instruction
        OPND32
        mov     word ptr vendor_id, bx  ; setup to test for vendor id
        OPND32
        mov     word ptr vendor_id[+4], dx
        OPND32
        mov     word ptr vendor_id[+8], cx
        mov     si, offset vendor_id
        mov     di, offset intel_id
        mov     cx, length intel_id
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compare:
        repe    cmpsb           ; compare vendor id to "GenuineIntel"
        or      cx, cx
        jnz     end_get_cpuid   ; if not zero, not an Intel CPU,

intel_processor:
        mov     intel_proc, 1

cpuid_data:
        OPND32
        cmp     ax, 1           ; make sure 1 is a valid input
                                ; value for CPUID
        jl      end_get_cpuid   ; if not, jump to end
        OPND32
        xor     ax, ax          ; otherwise, use as input to CPUID
        OPND32
        inc     ax              ; and get stepping, model and family
        CPUID
        mov     stepping, al
        and     stepping, STEPPING_MASK ; isolate stepping info

        and     al, MODEL_MASK          ; isolate model info
        shr     al, MODEL_SHIFT
        mov     model, al

        and     ax, FAMILY_MASK         ; mask everything but family
        shr     ax, FAMILY_SHIFT
        mov     cpu_type, al            ; set cpu_type with family

        OPND32
        mov     feature_flags, dx       ; save feature flag data

end_get_cpuid:
        ret
get_cpuid endp

;******************************************************************

get_fpuid proc
;
;       This procedure determines the type of FPU in a system
;       and sets the fpu_type variable with the appropriate value.
;       All registers are used by this procedure, none are preserved.

;       Coprocessor check
;       The algorithm is to determine whether the floating-point
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;       status and control words can be written to.  If not, no
;       coprocessor exists.  If the status and control words can be
;       written to, the correct coprocessor is then determined
;       depending on the processor id.  The Intel386 CPU can
;       work with either an Intel287 NDP or an Intel387 NDP.
;       The infinity of the coprocessor must be
;       checked to determine the correct coprocessor id.

        fninit                  ; reset FP status word
        mov     fp_status, 5a5ah; initialize temp word to
                                ; non-zero value
        fnstsw  fp_status       ; save FP status word
        mov     ax, fp_status   ; check FP status word
        cmp     al, 0           ; see if correct status with
                                ; written
        mov     fpu_type, 0     ; no fpu present
        jne     end_get_fpuid

check_control_word:
        fnstcw  fp_status       ; save FP control word
        mov     ax, fp_status   ; check FP control word
        and     ax, 103fh       ; see if selected parts
                                ; looks OK
        cmp     ax, 3fh         ; check that 1's & 0's
                                ; correctly read
        mov     fpu_type, 0
        jne     end_get_fpuid
        mov     fpu_type, 1

;
;   80287/80387 check for the Intel386 CPU
;
check_infinity:
        cmp     cpu_type, 3
        jne     end_get_fpuid
        fld1                    ; must use default control from
FNINIT
        fldz                    ; form infinity
        fdiv                    ; 8087 and Intel287 NDP say +inf = -
inf
        fld     st              ; form negative infinity
        fchs                    ; Intel387 NDP says +inf <> -inf
        fcompp                  ; see if they are the same and remove
them
        fstsw   fp_status       ; look at status from FCOMPP
        mov     ax, fp_status
        mov     fpu_type, 2     ; store Intel287 NDP for fpu type
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        sahf                    ; see if infinities matched
        jz      end_get_fpuid   ; jump if 8087 or Intel287 is present
        mov     fpu_type, 3     ; store Intel387 NDP for fpu type
end_get_fpuid:
        ret
get_fpuid endp

;********************************************************************
*

print proc
;
;       This procedure prints the appropriate cpuid string and
;       numeric processor presence status.  If the CPUID instruction
;       was supported, this procedure prints out cpuid info.
;       All registers are used by this procedure, none are preserved.

        cmp     id_flag, 1          ; if set to 1, cpu supports
                                    ;   CPUID instruction
                                    ; print detailed CPUID
information
        je      print_cpuid_data

        mov     dx, offset id_msg   ; print initial message
        mov     ah, 9h
        int     21h

print_86:
        cmp     cpu_type, 0
        jne     print_286
        mov     dx, offset c8086
        mov     ah, 9h
        int     21h
        cmp     fpu_type, 0
        je      end_print
        mov     dx, offset fp_8087
        mov     ah, 9h
        int     21h
        jmp     end_print

print_286:
        cmp     cpu_type, 2
        jne     print_386
        mov     dx, offset c286
        mov     ah, 9h
        int     21h
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        cmp     fpu_type, 0
        je      end_print
        mov     dx, offset fp_80287
        mov     ah, 9h
        int     21h
        jmp     end_print

print_386:
        cmp     cpu_type, 3
        jne     print_486
        mov     dx, offset c386
        mov     ah, 9h
        int     21h
        cmp     fpu_type, 0
        je      end_print
        cmp     fpu_type, 2
        jne     print_387
        mov     dx, offset fp_80287
        mov     ah, 9h
        int     21h
        jmp     end_print

print_387:
        mov     dx, offset fp_80387
        mov     ah, 9h
        int     21h
        jmp     end_print

print_486:
        cmp     fpu_type, 0
        je      print_Intel486sx
        mov     dx, offset c486
        mov     ah, 9h
        int     21h
        jmp     end_print

print_Intel486sx:
        mov     dx, offset c486nfp
        mov     ah, 9h
        int     21h
        jmp     end_print

print_cpuid_data:

cmp_vendor:
        cmp     intel_proc, 1
        jne     not_GenuineIntel
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        cmp     cpu_type, 4                 ; if cpu_type=4, print
                                            ; Intel486 CPU message
        jne     check_Pentium
        mov     dx, offset Intel486_msg
        mov     ah, 9h
        int     21h
        jmp     print_family

check_Pentium:
        cmp     cpu_type, 5                 ; if cpu_type=5, print
        jne     print_features              ; Pentium processor
message
        mov     dx, offset Pentium_msg
        mov     ah, 9h
        int     21h

print_family:
        mov     dx, offset familymsg        ; print family msg
        mov     ah, 9h
        int     21h
        mov     al, cpu_type
        mov     byte ptr dataCR, al
        add     byte ptr dataCR, 30h        ; convert to ASCII
        mov     dx, offset dataCR           ; print family info
        mov     ah, 9h
        int     21h

print_model:
        mov     dx, offset modelmsg         ; print model msg
        mov     ah, 9h
        int     21h
        mov     al, model
        mov     byte ptr dataCR, al
        add     byte ptr dataCR, 30h        ; convert to ASCII
        mov     dx, offset dataCR           ; print model info
        mov     ah, 9h
        int     21h

print_stepping:
        mov     dx, offset steppingmsg      ; print stepping msg
        mov     ah, 9h
        int     21h
        mov     al, stepping
        mov     byte ptr dataCR, al
        add     byte ptr dataCR, 30h        ; convert to ASCII
        mov     dx, offset dataCR           ; print stepping info
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        mov     ah, 9h
        int     21h

print_features:
        mov     ax, feature_flags
        and     ax, FPU_FLAG                ; check for FPU
        jz      check_MCE
        mov     dx, offset fpu_msg
        mov     ah, 9h
        int     21h

check_MCE:
        mov     ax, feature_flags
        and     ax, MCE_FLAG                ; check for MCE
        jz      check_CMPXCHG8B
        mov     dx, offset mce_msg
        mov     ah, 9h
        int     21h

check_CMPXCHG8B:
        mov     ax, feature_flags
        and     ax, CMPXCHG8B_FLAG          ; check for CMPXCHG8B
        jz      end_print
        mov     dx, offset cmp_msg
        mov     ah, 9h
        int     21h
        jmp     end_print

not_GenuineIntel:
        mov     dx, offset not_Intel
        mov     ah, 9h
        int     21h

end_print:
        ret
print endp

        end     start
•
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CHAPTER 6
NUMERIC APPLICATIONS

The Pentium processor contains a high-performance numerics processing element that
provides significant numeric capabilities and direct support for floating-point, extended-
integer, and BCD data types. The Pentium processor Floating-Point Unit (FPU) easily
supports powerful and accurate numeric applications through its implementation, with radix
2, of the IEEE Standard 754 for Floating-Point Arithmetic. The Pentium processor FPU
provides floating-point performance comparable to that of large minicomputers while
offering compatibility with object code for 8087, Intel287, Intel387 DX, Intel387 SX, and
Intel487 DX math coprocessors and the Intel486 DX processor.

6.1. INTRODUCTION TO NUMERIC APPLICATIONS

6.1.1. History
The 8087 numeric processor extension (NPX) was designed for use in 8086-family systems.
The 8086 was the first microprocessor family to partition the processing unit to permit high-
performance numeric capabilities. The 8087 NPX for this processor family implemented a
complete numeric processing environment in compliance with an early proposal for IEEE
Standard 754 for Binary Floating-Point Arithmetic.

With the Intel287 coprocessor NPX, high-speed numeric computations were extended to
80286 high-performance multitasking and multiuser systems. Multiple tasks using the
numeric processor extension were afforded the full protection of the 80286 memory
management and protection features.

The Intel387 DX and SX math coprocessors are Intel's third generation numerics processors.
They implement the final IEEE Std 754, adding new trigonometric instructions, and using a
new design and CHMOS-III process to allow higher clock rates and require fewer clocks per
instruction. Together, the Intel387 math coprocessor with additional instructions and the
improved standard brought even more convenience and reliability to numerics programming
and made this convenience and reliability available to applications that need the high-speed
and large memory capacity of the 32-bit environment of the Intel386 microprocessor.

The Intel486 processor FPU is an on-chip equivalent of the Intel387 DX math coprocessor
conforming to both IEEE Std 754 and the more recent, generalized IEEE Std 854. Having the
FPU on chip results in a considerable performance improvement in numerics-intensive
computation.

The Pentium processor FPU has been completely redesigned over the Intel486 processor FPU
while maintaining conformance to both the IEEE Std 754 and 854. Faster algorithms provide
at least three times the performance over the Intel486 processor FPU for common operations
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including ADD, MUL, and LOAD. Many applications can achieve five times the
performance of the Intel486 processor FPU or more with instruction scheduling and pipelined
execution.

6.1.2. Performance
Today, floating-point performance is more important than ever.  Applications of personal
computer workstations, no longer limited to simple spreadsheets and business applications,
now include sophisticated algorithms such as lab data analysis and three-dimensional
graphics.

Table 6-1 compares the execution times of several Pentium processor numeric instructions
with the equivalent operations executed on a 66-MHz Intel486 DX2 processor. As indicated
in the table, the 66-MHz Pentium processor provides about three times the floating-point
performance of a 66-MHz Intel486 DX2 CPU. A 66-MHz Pentium processor multiplies 32-
bit and 64-bit floating-point numbers in about 45 nanoseconds. Of course, the actual
performance of the processor in a given system depends on the characteristics of the
individual application.

Table 6-1.  Numeric Processing Speed Comparisons

Floating-Point Instruction

Approximate Performance Ratio:
66-MHz Pentium ® Processor ÷

66-MHz Intel486   DX2 CPU

FADD ST, ST(i) Addition 3.8

FDIV dword_var Division 2.2

FYL2X ST(0),ST(1) assumed Logarithm 3.1

FPATAN ST(0) assumed Arctangent 2.6

F2XM1 ST(0) assumed Exponentiation 4.8

FLD ST(0), ST(i) Data Transfer 4.0

The processor coordinates its integer and floating-point activities in a manner transparent to
software. Moreover, built-in coordination facilities allow the integer pipe(s) to proceed with
other instructions while the FPU is simultaneously executing numeric instructions. See
AP-500, Optimizations for Intel's 32-Bit Processors, order number 241799, on how to obtain
more information on floating-point instruction pairing as programs can exploit this
concurrency of execution to further increase system performance and throughput.

6.1.3. Ease of Use
The 32-bit Intel architectures, with their on-chip FPU (such as the Pentium and Intel486
processors) or NPX's (such as the Intel386 CPU with an Intel387 math coprocessor) are
explicitly designed to deliver stable, accurate results when programmed using straightforward
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"pencil and paper" algorithms, bringing the functionality and power of accurate numeric
computation into the hands of the general user. IEEE Std 754 specifically addresses this
issue, recognizing the fundamental importance of making numeric computations both easy
and safe to use.

These NPX's and FPU's provide more than raw execution speed for computation-intensive
tasks; bringing the functionality and power of accurate numeric computation into the hands
of the general user.  These features are available in most high-level languages available for
these processors.

For example, most computers can overflow when two single-precision floating-point
numbers are multiplied together and then divided by a third, even if the final result is a
perfectly valid 32-bit number. The FPU delivers the correctly rounded result. Other typical
examples of undesirable machine behavior in straightforward calculations occur when
computing financial rate of return, which involves the expression (1 + i)n or when solving for
roots of a quadratic equation:

– b ± b2 – 4ac
2a

If a does not equal 0, the formula is numerically unstable when the roots are nearly
coincident or when their magnitudes are wildly different. The formula is also vulnerable to
spurious over/underflows when the coefficients a, b, and c are all very big or all very tiny.
When single-precision (4-byte) floating-point coefficients are given as data and the formula
is evaluated in the FPU's normal way, keeping all intermediate results in its stack, the FPU
produces impeccable single-precision roots. This happens because, by default and with no
effort on the programmer's part, the FPU evaluates all those subexpressions with so much
extra precision and range as to overwhelm almost any threat to numerical integrity.

If double-precision data and results were at issue, a better formula would have to be used,
and once again the FPU's default evaluation of that formula would provide substantially
enhanced numerical integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results
(and will not indicate when they are incorrect). To obtain correct results on traditional
machines under all conditions usually requires sophisticated numerical techniques that go
beyond typical programming practice.  General application programmers using
straightforward algorithms will produce much more reliable programs using the Intel
architectures. This simple fact greatly reduces the software investment required to develop
safe, accurate computation-based products.

Beyond traditional numerics support for scientific applications, the Intel architectures have
built-in facilities for commercial computing. They can process decimal numbers of up to 18
digits without round-off errors, performing exact arithmetic on integers as large as 264 or
1018. Exact arithmetic is vital in accounting applications where rounding errors may
introduce monetary losses that cannot be reconciled.

The Intel FPU's contain a number of optional numerical facilities that can be invoked by
sophisticated users. These advanced features include directed rounding, gradual underflow,
and programmed exception-handling facilities.
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These automatic exception-handling facilities permit a high degree of flexibility in numeric
processing software, without burdening the programmer. While performing numeric
calculations, the processor automatically detects exception conditions that can potentially
damage a calculation (for example, X ÷ 0 or √X when X < 0). By default, on-chip exception
logic handles these exceptions so that a reasonable result is produced and execution may
proceed without program interruption. Alternatively, the processor can invoke a software
exception handler to provide special results whenever various types of exceptions are
detected.

6.1.4. Applications
The Pentium processor FPU's versatility and performance make it appropriate for a broad
array of numeric applications. In general, applications that exhibit any of the following
characteristics can benefit by implementing numeric processing:

• Numeric data vary over a wide range of values, or include nonintegral values.

• Algorithms produce very large or very small intermediate results.

• Computations must be very precise; i.e., a large number of significant digits must be
maintained.

• Performance requirements exceed the capacity of traditional microprocessors.

• Consistently safe, reliable results must be delivered using a programming staff that is not
expert in numerical techniques.

Note also that the software development costs can be reduced and performance of systems
improved that use not only real numbers, but operate on multiprecision binary or decimal
integer values as well.

A few examples, which show how the Pentium processor might be used in specific numerics
applications, are described below.

• Business data processing—The FPU's ability to accept decimal operands and produce
exact decimal results of up to 18 digits greatly simplifies accounting programming.
Financial calculations that use power functions can take advantage of the Intel
architecture's exponentiation and logarithmic instructions. Many business software
packages can benefit from the speed and accuracy of the FPU.

• Simulation—The large (32-bit) memory space and raw speed of the processor make it
suitable for attacking large simulation problems, which heretofore could only be
executed on expensive mini and mainframe computers. For example, complex electronic
circuit simulations using SPICE can be performed. Simulation of mechanical systems
using finite element analysis can employ more elements, resulting in more detailed
analysis or simulation of larger systems.

• Graphics transformations—The FPU can be used in graphics applications such as
computer-aided design (CAD), with the FPU performing many functions concurrently
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with the execution of integer instructions; these functions include rotation, scaling, and
interpolation.

• Process control—The FPU solves dynamic range problems automatically, and its
extended precision allows control functions to be fine-tuned for more accurate and
efficient performance. Using the Pentium processor to implement control algorithms also
contributes to improved reliability and safety, while the processor's speed can be
exploited in real-time operations.

• Computer numerical control (CNC)—The FPU can move and position machine tool
heads with accuracy in real time. Axis positioning also benefits from the hardware
trigonometric support provided by the FPU.

• Robotics—The powerful computational abilities of the Pentium processor FPU are ideal
for on-board six-axis positioning.

• Navigation—Very small, lightweight, and accurate inertial guidance systems can be
implemented with the FPU. Its built-in trigonometric functions can speed and simplify
the calculation of position from bearing data.

• Data acquisition—The FPU can be used to scan, scale, and reduce large quantities of
data as it is collected, thereby lowering storage requirements and time required to
process the data for analysis.

• Digital Signal Processing (DSP)—All DSP-related applications, such as matrix
multiplication and convolution, can benefit from the pipelined instruction
implementation of the Pentium processor.

The preceding examples are oriented toward traditional numerics applications. There are, in
addition, many other types of systems that do not appear to the end user as computational,
but can employ the 32-bit Intel architecture's numerical capabilities to advantage. The
imaginative system designer has an opportunity similar to that created by the introduction of
the microprocessor itself. Many applications can be viewed as numerically-based if sufficient
computational power is available to support this view (e.g., character generation for a laser
printer). This is analogous to the thousands of successful products that have been built around
"buried" microprocessors, even though the products themselves bear little resemblance to
computers.

6.1.5. Programming Interface
The Intel architectures have a class of instructions known as ESCAPE instructions, all having
a common format. These ESC instructions are numeric instructions for the FPU. These
numeric instructions are part of a single integrated instruction set.

Numeric processing centers around the floating-point register stack. Programmers can treat
these eight 80-bit registers either as a fixed register set, with instructions operating on
explicitly-designated registers, or as a classical stack, with instructions operating on the top
one or two stack elements.
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Internally, the FPU holds all numbers in a uniform 80-bit extended format. Operands that
may be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or 80-bit floating-
point numbers, or 18-digit packed BCD numbers, are automatically converted into extended
format as they are loaded into the FPU registers. Computation results are subsequently
converted back into one of these destination data formats when they are stored into memory
from the FPU registers.

Table 6-2 lists each of the seven numeric data types supported by the FPU, showing the data
format for each type. The table also shows the approximate range of normalized values that
can be represented with each type. Denormal values are also supported in each of the real
types, as required by IEEE Std 854. Denormals are discussed later in this chapter.

Table 6-2.  Numeric Data Types

Data Type Bits

Significant
Digits

(Decimal)
Approximate Normalized

Range (Decimal)

Word integer 16 4 –32,768 ≤ × ≤ + 32,767

Short integer 32 9 –2 × 109 ≤ × ≤ + 2 × 109

Long integer 64 18 – 9 × 1018 ≤ × ≤ + 9 × 1018

Packed decimal 80 18 – 99...99 ≤ × ≤ + 99...99 (18 digits)

Single real 32 7 1.18 × 10–38 < | × | < 3.40 × 1038

Double real 64 15-16 2.23 × 10–308 < | × | < 1.79 × 10308

Extended real* 80 19 3.37 × 10–4932 < | × | < 1.18 × 104932

* Equivalent to double extended format of IEEE Std 854.

All operands are stored in memory with the least significant digits starting at the initial
(lowest) memory address. Numeric instructions access and store memory operands using only
this initial address. See Chapter 24 for alignment strategies for the different processors.

Table 6-Error! Bookmark not defined.  lists the numeric instructions by class. No special
programming tools are necessary to use the numerical capabilities, because all of the numeric
instructions and data types are directly supported by the Intel ASM386/ASM486 Assembler,
by high-level languages from Intel, and by assemblers and compilers produced by many
independent software vendors. Numeric routines can be written in assembly language or any
of the following higher-level languages from Intel:

• PL/M-386/486

• C-386/486

• FORTRAN-386/486

• ADA-386/486



EE NUMERIC APPLICATIONS

6-7

Table 6-3.  Principal Numeric Instructions

Class Instruction Types

Data Transfer Load (all data types), Store (all data types), Exchange

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide Reversed, Square
Root, Scale, Extract, Remainder, Integer Part, Change Sign, Absolute Value

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2x –1, Y ·Log2(X),
Y ·Log2 (X+1)

Constants 0, 1, π, Log102, Loge2, Log210, Log2e

Processor Control Load Control Word, Store Control Word, Store Status Word, Load Environment,
Store Environment, Save, Restore, Clear Exceptions, Initialize

All of these high-level languages provide programmers with access to the computational
power and speed of the 32-bit Intel architectures without requiring an understanding of its
architecture. Such architectural considerations as concurrency and synchronization are
handled automatically by these high-level languages. For the assembly language
programmer, specific rules for handling these issues are discussed in a later section of
this manual.

6.2. ARCHITECTURE OF THE FLOATING-POINT UNIT
To the programmer, the FPU appears as a set of additional registers, data types, and
instructions. Refer to Chapter 25 for detailed explanations of the numerical instruction set.
This section explains the numerical registers and data types of the FPU architecture.

6.2.1. Numerical Registers
The numerical registers consist of:

• Eight individually-addressable 80-bit numeric registers, organized as a register stack.

• Three 16-bit registers containing:

 The FPU status word.

 The FPU control word.

 The tag word.

• Error pointers, consisting of:

 Two 16-bit registers containing selectors for the last instruction and operand.

 Two 32-bit registers containing offsets for the last instruction and operand.

 One 11-bit register containing the opcode of the last non-control FPU instruction.

All of the numeric instructions focus on the contents of these FPU registers.
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6.2.1.1. THE FPU REGISTER STACK

The FPU register stack is shown in Figure 6-1. Each of the eight numeric registers in the
stack is 80 bits wide and is divided into fields corresponding to the processor’s extended real
data type.

APM7

FPU DATA REGISTERS

SIGN EXPONENT SIGNIFICAND

79 78 64 63 0 1 0

TAG
FIELD

R0

R1

R2

R3

R4

R5

R6

R7

15 0 47 0

CONTROL REGISTER

STATUS REGISTER

TAG WORD

INSTRUCTION POINTER

DATA POINTER

Figure 6-1.  Floating-Point Unit Register Set

Numeric instructions address the data registers relative to the register on the top of the stack.
At any point in time, this top-of-stack register is indicated by the TOP (stack TOP) field in
the FPU status word. Load or push operations decrement TOP by one and load a value into
the new top register. A store-and-pop operation stores the value from the current TOP
register and then increments TOP by one. Like stacks in memory, the FPU register stack
grows down toward lower-addressed registers.

Many numeric instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative
to the TOP. The ASM386/486 Assembler supports these register addressing modes, using the
expression ST(0), or simply ST, to represent the current Stack Top and ST(i) to specify the
ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if TOP contains 011B (register 3
is the top of the stack), the following statement would add the contents of two registers in the
stack (registers 3 and 5):

FADD   ST, ST(2)
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The stack organization and top-relative addressing of the numeric registers can simplify
subroutine programming by allowing routines to pass parameters on the register stack. By
using the stack to pass parameters rather than using "dedicated" registers, calling routines
gain flexibility in how they use the stack. As long as the stack is not full, each routine simply
loads the parameters onto the stack before calling a particular subroutine to perform a
numeric calculation. The subroutine then addresses its parameters as ST, ST(1), etc., even
though TOP may, for example, refer to physical register 3 in one invocation and physical
register 5 in another. Programmers can use the numeric registers like a conventional stack as
described herein, or by using the pipelined architecture of the Pentium processor in
conjunction with the FXCH instruction, reduce stack bottleneck and move towards a random
register machine.

6.2.1.2. THE FPU STATUS WORD

The 16-bit status word shown in Figure 6-2 reflects the overall state of the FPU. This status
word may be stored into memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, and
FSAVE/FNSAVE instructions, and can be transferred into the AX register with the FSTSW
AX/FNSTSW AX instructions, allowing the FPU status to be inspected by the Integer Unit.
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FPU BUSY
TOP OF STACK POINTER

CONDITION CODE

ERROR SUMMARY STATUS
STACK FAULT
EXCEPTION FLAGS

PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE.
SEE TABLE 4-1 FOR INTERPRETATION OF CONDITION CODE.

TOP VALUES:
000 = REGISTER 0 IS TOP OF STACK
001 = REGISTER 1 IS TOP OF STACK

.

.

.
111 = REGISTER 7 IS TOP OF STACK

Figure 6-2.  FPU Status Word

The four FPU condition code bits (C3-C0) are similar to the flags in a CPU: the processor
updates these bits to reflect the outcome of arithmetic operations. The effect of these
instructions on the condition code bits is summarized in Table 6-4. These condition code bits
are used principally for conditional branching. The FSTSW AX instruction stores the FPU
status word directly into the AX register, allowing these condition codes to be inspected
efficiently. The SAHF instruction can copy C3−C0 directly to the CPU's flag bits to simplify
conditional branching. Table 6-5 shows the mapping of these bits to the CPU flag bits.

Bits 11-13 of the status word point to the FPU register that is the current Top of Stack (TOP).
The significance of the stack top has been described in the prior section on the register stack.

Figure 6-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the exception
summary status (ES) bit. ES is set if any unmasked exception bits are set, and is cleared
otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible exception
conditions since these status bits were last cleared or reset. (For definitions of exceptions,
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refer to Chapter 7.) They are "sticky" bits, and can only be cleared by the instructions FINIT,
FCLEX, FLDENV, FSAVE, and FRSTOR.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES
bit (bit 7 of the status word).

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack overflow
or underflow from other kinds of invalid operations. When SF is set, bit 9 (C1) distinguishes
between stack overflow (C1 = 1) and underflow (C1 = 0).

6.2.1.3. CONTROL WORD

The FPU provides the programmer with several processing options, which are selected by
loading a word from memory into the control word. Figure 6-3 shows the format and
encoding of the fields in the control word.

The low-order byte of this control word configures the numerical exception masking. Bits 0–
5 of the control word contain individual masks for each of the six floating-point exception
conditions recognized by the processor. The high-order byte of the control word configures
the FPU processing options, including

• Precision control

• Rounding control

The precision-control bits (bits 8–9) can be used to set the FPU internal operating precision
at less than the default precision (64-bit significand). These control bits can be used to
provide compatibility with the earlier-generation arithmetic processors having less precision
than the Intel 32-bit FPU's. The precision-control bits affect the results of only the following
five arithmetic instructions: ADD, SUB(R), MUL, DIV(R), and SQRT. No other operations
are affected by PC.

The rounding-control bits (bits 10–11) provide for the common round-to-nearest mode, as
well as directed rounding and true chop. Rounding control affects the arithmetic instructions
(refer to Section 6.3. in this chapter for lists of arithmetic and nonarithmetic instructions) and
certain nonarithmetic instructions, namely (FLD constant) and (FST(P)mem) instructions.
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Table 6-4.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP,
FTST, FUCOMPP, FICOM,
FICOMP

Result of Comparison Operands is not
Comparable

Zero or O/U#

FXAM  Operand class Sign or O/U#

FPREM, FPREM1 Q2 Q1 0=reduction
complete

1=reduction
incomplete

Q0 or O/U#

FIST, FBSTP, FRINDINT,
FST, FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB, FSUBR,
FSCALE, FSQRT, FPATAN,
F2XM1, FYL2X, FYL2XP1

UNDEFINED Roundup or O/U#

FPTAN, FSIN, FCOS,
FSINCOS

UNDEFINED 0=reduction
complete

1=reduction
incomplete

Roundup or O/U#
(UNDEFINED) if
C2=1)

FCHS, FABS, FXCH,
FINCSTP, FDECSTP,
Constant Loads, FXTRACT,
FLD, FILD, FBLD, FSTP (ext.
real)

UNDEFINED Zero or O/U#

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW,
FCLEX UNDEFINED

FINIT, FSAVE Zero Zero Zero Zero

NOTES:

O/U#   When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes
between stack overflow (C1=1) and underflow (C1=0).

Reduction  If FPREM and FPREM1 produces a remainder that is les than the modulus, reduction is
complete.  When reduction is incomplete the value at the top of the stack is a partial remainder, which can be
used as input to further reduction.  For FPTAN, FSIN, FCOS and FSINCOS, the reduction bit is set if the
operand at the top of the stack is too large.  In this case, the original operand remains at the top of the stack.

Roundup  When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED   Do not rely on any specific value in these bits.
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Table 6-5.  Correspondence Between FPU and IU Flag Bits

FPU Flag IU Flag

C0 CF

C1 (none)

C2 PF

C3 ZF

  

X X X X X
P
M

U
M

O
M

Z
M

D
M

I
M

X RC PC

RESERVED
(INFINITY CONTROL)*

ROUNDING CONTROL
PRECISION CONTROL

RESERVED
EXCEPTION MASKS

PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

APM2

ROUNDING CONTROL PRECISION CONTROL

00 ROUND TO NEAREST OR EVEN 0024 BITS (SINGLE PRECISION)

01 ROUND DOWN (TOWARD -∞) 01(RESERVED)

10ROUND UP (TOWARD +∞) 1053 BITS (DOUBLE PRECISION)

11CHOP (TRUNCATE TOWARD ZERO) 1164 BITS (EXTENDED PRECISION)

*THIS "INFINITY CONTROL" BIT IS NOT MEANINGFUL TO THE Intel387™  COPROCESSOR NPX, THE
Intel486™ PROCESSOR, OR THE PENTIUM® PROCESSOR FPU. TO MAINTAIN COMPATIBILITY WITH
Intel287™ MATH COPROCESSOR, THIS BIT CAN BE PROGRAMMED;  HOWEVER, REGARDLESS OF
ITS VALUE, THE Intel387 COPROCESSOR NPX, THE Intel486 PROCESSOR FPU AND THE PENTIUM
PROCESSOR FPU TREATS INFINITY IN THE AFFINE SENSE (-∞ < +∞).

Figure 6-3.  FPU Control Word Format
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6.2.1.4. THE FPU TAG WORD

The tag word (TW) indicates the contents of each register in the register stack, as shown in
Figure 6-4. The TW is used by the FPU itself to distinguish between empty and nonempty
register locations. Programmers of exception handlers may use this tag information to check
the contents of a numeric register without performing complex decoding of the actual data in
the register. The tag values from the TW correspond to physical registers 0–7. Programmers
must use the current top-of-stack (TOP) pointer stored in the FPU status word to associate
these tag values with the relative stack registers ST(0) through ST(7).

APM17

15 0

TAG(7) TAG(6) TAG(5) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

TAG VALUES:
00 = VALID
01 = ZERO
10 = SPECIAL:INVALID(NaN, UNSUPPORTED), INFINITY, OR DENORMAL
11 = EMPTY

Figure 6-4.  Tag Word Format

The exact values of the tags are generated during execution of the FSTENV and FSAVE
instructions according to the actual contents of the nonempty stack locations. During
execution of other instructions, the processor updates the TW only to indicate whether a
stack location is empty or nonempty. As a result, the FPU tag word may not be the same as
previously written when saving the FPU state, modifying the tag word, and reloading the
FPU state.  This can be demonstrated using the following steps to modify the FPU tag word.
This example assumes FPU register 0 has the value 0 and tag(0)=11 (empty).  Example 6-1
contains the actual assembly code to perform these steps.

1. FSAVE/FSTENV stores FPU state to memory M.  M[tag(0)]=11 (empty).

2. Modify memory such that M[tag(0)]=10 (i.e., special, infinity, or denormal).

3. FLDENV loads fp state from memory M to FPU.

4. FSAVE/FSTENV stores FPU state to memory M again.  The value of M[tag(0)] will be
01 (i.e., indicates zero because FPU register 0 has the value of 0).

Example 6-1.  Modifying the Tag Word

name tagword

stack stackseg 100

data segment rw use16
fpstate dw 7  dup (?)
fpstate2 dw 7  dup (?)
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data ends

code segment er public use16
assume ds:data, ss:stack

start:
mov ax,data
mov ds,ax ; set segment register

finit ; initialize FPU
fldz ; load zero
mov bx, offset fpstate
fsave [bx] ; save FPU state

mov ax,[bx+4] ; tag word, AX should be 7FFFh,
; top of the fp stack has
; zero value and the rest are empty

mov word ptr [bx+4], 3FFFh ; now change the zero tag (01) to
; the valid tag (00)

fldenv [bx]
mov bx, offset fpstate2 ; now the tag word is 3FFFh
fsave [bx] ; but we are saving 7FFFh to tag

; word
code ends

end start, ds:data, ss:stack

6.2.1.5. OPCODE FIELD OF LAST INSTRUCTION

The opcode field in Figure 6-5 describes the 11-bit format of the last non-control FPU
instruction executed. The first and second instruction bytes (after all prefixes) are combined
to form the opcode field. Since all floating-point instructions share the same five upper bits
in the first instruction byte (following prefixes), they are not stored in the opcode field. Note
that the second instruction byte is actually located in the low-order byte of the stored opcode
field.
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7 0 07

I15  I14  I13  I12  I11  I10  I9  I8 I7   I6   I5   I4   I3   I2   I1   I0

7 0

I15   I14   I13   I11   I10   I9   I8

810

I2   I1  I0

2ND INSTRUCTION BYTE 1ST INSTRUCTION 
BYTE

OPCODE FIELD

Figure 6-5.  Opcode Field

6.2.1.6. THE NUMERIC INSTRUCTION AND DATA POINTERS

The instruction and data pointers provide support for programmed exception-handlers.
Whenever the processor decodes an ESC instruction other than FINIT, FCLEX, FLDCW,
FSTCW, FSTSW, FSTSWAX, FSTENV, FLDENV, FSAVE, FRSTOR, and FWAIT, it saves
the instruction address opcode and the oeprand address (if present) in registers than can be
accessed by the user. Contents of these registers remain unchanged when any of the control
instructions listed above is executed.  Contents of the operand address register are undefined
if the prior ESC instruction (which is not one of the above) did not have a memory operand.

These registers can be accessed by the ESC instructions FSTENV, FLDENV, FSAVE and
FRSTOR. The FINIT and FSAVE instructions clear these registers after writing them to
memory.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the processor (protected mode or real-address mode) and
depending on the operand-size attribute in effect (32-bit operand or 16-bit operand). In
virtual-8086 mode, the real-address mode formats are used. Figures 6-6 through Figure 6-9
show these pointers as they are stored following an FSTENV instruction. The FSTENV and
FSAVE instructions store this data into memory, allowing exception handlers to determine
the precise nature of any numeric exceptions that may be encountered.

For all the Intel FPU and NPX architectures, the instruction address saved points to any
prefixes that preceded the instruction, except the 8087, for which the instruction address
points only to the ESC instruction opcode.
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RESERVED

31 23 15 7 0

CONTROL WORD 0H

RESERVED STATUS WORD 4H

RESERVED TAG WORD 8H

IP OFFSET

0  0  0  0 OPCODE 10...00 CS SELECTOR

CH

10H

14HDATA OPERAND OFFSET

RESERVED OPERAND SELECTOR 18H

32-BIT PROTECTED MODE FORMAT

Figure 6-6.  Protected-Mode Numeric Instruction and Data Pointer Image in Memory,
32-Bit Format
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RESERVED

31 23 15 7 0

CONTROL WORD 0H

RESERVED STATUS WORD 4H

RESERVED TAG WORD 8H

0  0  0  0 OPCODE 10...00

CH

10H

14H

OPERAND POINTER 31...16 18H

32-BIT REAL-ADDRESS MODE FORMAT

RESERVED INSTRUCTION POINTER 15...00

INSTRUCTION POINTER 31...16 0

RESERVED OPERAND PONTER 15...00

0  0  0  0 0  0  0  0  0  0  0  0  0  0  0  0

Figure 6-7.  Real Mode Numeric Instruction and Data Pointer Image in Memory,
32-Bit Format
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16-BIT PROTECTED MODE FORMAT

15 7 0

0H

2H

4H

6H

8H

AH

CH

CONTROL WORD

STATUS WORD

TAG WORD

IP OFFSET

CS SELECTOR

OPERAND OFFSET

OPERAND SELECTOR

Figure 6-8.  Protected-Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit Format
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16-BIT REAL-ADDRESS MODE AND
VIRTUAL 8086 MODE FORMAT
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CONTROL WORD
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TAG WORD

INSTRUCTION POINTER 15...0

OPCODE 10...0

OPERAND POINTER 15...0

IP 19..16

DP 19..16

0

0 0  0  0  0  0  0  0  0  0  0  0

Figure 6-9.  Real Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit Format
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6.2.2. Computation Fundamentals
This section covers numeric programming concepts that are common to all applications. It
describes the FPU's internal number system and the various types of numbers that can be
employed in numeric programs. The most commonly used options for rounding and precision
(selected by fields in the control word) are described, with exhaustive coverage of less
frequently used facilities deferred to later sections. Exception conditions that may arise
during execution of floating-point instructions are also described along with the options that
are available for responding to these exceptions.

6.2.2.1. NUMBER SYSTEM

The system of real numbers that people use for pencil and paper calculations is conceptually
infinite and continuous. There is no upper or lower limit to the magnitude of the numbers one
can employ in a calculation, or to the precision (number of significant digits) that may be
required to represent them. For any given real number, there are always arbitrarily many
numbers both larger and smaller. There are also arbitrarily many numbers between any two
real numbers. For example, between 2.5 and 2.6 are 2.51, 2.5897, 2.500001, etc.

While ideally it would be desirable for a computer to be able to operate on the entire real
number system, in practice this is not possible. Computers, no matter how large, ultimately
have fixed-size registers and memories that limit the system of numbers that can be
accommodated. These limitations determine both the range and the precision of numbers.
The result is a set of numbers that is finite and discrete, rather than infinite and continuous.
This sequence is a subset of the real numbers that is designed to form a useful approximation
of the real number system.

Figure 6-10 superimposes the basic floating-point number system on a real number line
(decimal numbers are shown for clarity, although the processor actually represents numbers
in binary). The dots indicate the subset of real numbers the processor can represent as data
and final results of calculations. The range of double-precision, normalized numbers is
approximately ±2.23 × 10–308 to ±1.79 × 10308. Applications that are required to deal with
data and final results outside this range are rare.
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54321

P O S I T I V E  R A N G E
( N O R M A L I Z E D )

2.23 x 10 -306

2.000000000000000
(NOT REPRESENTABLE)

1.999999999999999
PRECISION

16 DIGITS

+ 2

0

1.79 x 10 306

- 5 - 4 - 3 - 2 - 1

N E G A T I V E  R A N G E
( N O R M A L I Z E D )

1.79 x10 -3061.79 x10 306

APM4

Figure 6-10.  Double-Precision Number System

The finite spacing in Figure 6-10 illustrates that the FPU can represent a great many, but not
all, of the real numbers in its range. There is always a gap between two adjacent floating-
point numbers, and it is possible for the result of a calculation to fall in this space. When this
occurs, the FPU rounds the true result to a number that it can represent. Thus, a real number
that requires more digits than the FPU can accommodate (e.g., a 20-digit number) is
represented with some loss of accuracy. Notice also that the representable numbers are not
distributed evenly along the real number line. In fact, the same number of representable
numbers exists between any two successive powers of 2 (i.e., as many representable numbers
exist between 2 and 4 as between 65,536 and 131,072). Therefore, the gaps between
representable numbers are larger as the numbers increase in magnitude. All integers in the
range ±264 (approximately ±1019), however, are exactly representable.

In its internal operations, the FPU actually employs a number system that is a substantial
superset of that shown in Figure 6-10. The internal format (called extended real) extends the
representable (normalized) range to about ±3.37 × 10–4932 to ±1.18 × 104932, and its precision
to about 19 (equivalent decimal) digits. This format is designed to provide extra range and
precision for constants and intermediate results, and is not normally intended for data or final
results.

From a practical standpoint, the processor's set of real numbers is sufficiently large and dense
so as not to limit the vast majority of applications. Compared to most computers, including
mainframes, the processor provides a very good approximation of the real number system. It
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is important to remember, however, that it is not an exact representation, and that computer
arithmetic on real numbers is inherently approximate.

6.2.2.2. DATA TYPES AND FORMATS

The processor recognizes seven numeric data types for memory-based values, divided into
three classes: binary integers, packed decimal integers, and binary reals. How these formats
are stored in memory are discussed later in this section (the sign is always located in the
highest-addressed byte).

Figure 6-11 summarizes the format of each data type. In the figure, the most significant
digits of all numbers (and fields within numbers) are the leftmost digits.

6.2.2.2.1. Binary Integers

The three binary integer formats are identical except for length, which governs the range that
can be accommodated in each format. The leftmost bit is interpreted as the number's sign:
0=positive and 1=negative. Negative numbers are represented in standard two's complement
notation (the binary integers are the only format to use two's complement). The quantity zero
is represented with a positive sign (all bits are 0). The word integer format is identical to the
16-bit signed integer data type; the short integer format is identical to the 32-bit signed
integer data type.

The binary integer formats exist in memory only. When used by the FPU, they are
automatically converted to the 80-bit extended real format. All binary integers are exactly
representable in the extended real format.

6.2.2.2.2. Decimal Integers

Decimal integers are stored in packed decimal notation, with two decimal digits "packed"
into each byte, except the leftmost byte, which carries the sign bit (0=positive, 1=negative).
Negative numbers are not stored in two's complement form and are distinguished from
positive numbers only by the sign bit. The most significant digit of the number is the leftmost
digit. All digits must be in the range 0–9.
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( 1 )   S  =  S I G N  B I T  ( 0  =  p o s i t i v e ,  1  =  n e g a t i v e )
( 2 )   d n  =  D E C I M A L  D I G I T  ( T W O  P E R  B Y T E )
( 3 )   X  =  B I T S  H A V E  N O  S I G N I F I C A N C E ;  I G N O R E S  W H E N  L O A D I N G ,
          Z E R O S  W H E N  S T O R I N G
( 4 )   D  =  P O S I T I O N  O F  I M P L I C I T  B I N A R Y  P O I N T
( 5 )   I  =  I N T E G E R  B I T  O F  S I G N I F I C A N D ;   S T O R E D  I N  T E M P O R A R Y  R E A L ,  I M P L I C I T  I N
           S I N G L E  A N D  D O U B L E  P R E C I S I O N
( 6 )   E X P O N E N T  B I A S  ( N O R M A L I Z E D  V A L U E S ) :
             S I N G L E :   1 2 7  ( 7 F H )
             D O U B L E :   1 0 2 3  ( 3 F F H )
             E X T E N D E D  R E A L :   1 6 3 8 3  ( 3 F F F H )
( 7 )   P A C K E D  B C D :   ( - 1 )    ( D   . . . D  )
( 8 )   R E A L :   ( - 1 )    ( 2 E - B I A S )  ( F   F   . . . )
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Figure 6-11.  Numerical Data Formats

The decimal integer format exists in memory only. When used by the FPU, it is
automatically converted to the 80-bit extended real format. All decimal integers are exactly
representable in the extended real format.
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6.2.2.2.3. Real Numbers

The processor represents real numbers of the form:

(-1)s2E(b0∆b1b2b3..bp-1)

where:

s = 0 or 1

E = any integer between Emin and Emax, inclusive

bi = 0 or 1

p = number of bits of precision

Table 6-6 summarizes the parameters for each of the three real-number formats.

The Pentium processor stores real numbers in a three-field binary format that resembles
scientific, or exponential, notation. The format consists of the following fields:

• The significand field, b0∆b1b2b3..bp-1,, is the number's significant digits. (The term
"significand" is analogous to the term "mantissa" used to describe floating-point numbers
on some computers.)

• The exponent field, e = E+bias, locates the binary point within the significant digits (and
therefore determines the number's magnitude). (The term "exponent" is analogous to the
term "characteristic" used to describe floating-point numbers on some computers.)

• The 1-bit sign field, which indicates whether the number is positive or negative.
Negative numbers differ from positive numbers only in the sign bits of their significands.

Table 6-6.  Summary of Format Parameters

Format

Parameter Single Double Extended

Format width in bits 32 64 80

p (bits of precision) 24 53 64

Exponent width in bits 8 11 15

Emax +127 +1023 +16383

Emin -126 -1022 -16382

Exponent bias +127 +1023 +16383

Table 6-7 shows how the real number 178.125 (decimal) is stored in the single real format.
The table lists a progression of equivalent notations that express the same value to show how
a number can be converted from one form to another. (The ASM386/486 and PL/M386/486
language translators perform a similar process when they encounter programmer-defined real
number constants.) Note that not every decimal fraction has an exact binary equivalent. The
decimal number 1/10, for example, cannot be expressed exactly in binary (just as the number
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1/3 cannot be expressed exactly in decimal). When a translator encounters such a value, it
produces a rounded binary approximation of the decimal value.

Table 6-7.  Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1 ∆ 78125E2

Scientific Binary 1 ∆ 0110010001E111

Scientific Binary
Biased Exponent)

 1∆0110010001E10000110

Single Format (Normalized) Sign Biased Exponent Signifcand

0 10000110 01100100010000000000000

1∆(implict)

The FPU usually carries the digits of the significand in normalized form. This means that,
except for the value zero, the significand contains an integer bit and fraction bits as follows:

1∆fff...ff

where ∆ indicates an assumed binary point. The number of fraction bits varies according to
the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing real
numbers so that their integer bit is always a 1, the processor eliminates leading zeros in small
values (| X | < 1). This technique maximizes the number of significant digits that can be
accommodated in a significand of a given width. Note that, in the single and double formats,
the integer bit is implicit and is not actually stored; the integer bit is physically present in the
extended format only.

If one were to examine only the significand with its assumed binary point, all normalized real
numbers would have values greater than or equal to one and less than two. The exponent
field locates the actual binary point in the significant digits. Just as in decimal scientific
notation, a positive exponent has the effect of moving the binary point to the right, and a
negative exponent effectively moves the binary point to the left, inserting leading zeros as
necessary. An unbiased exponent of zero indicates that the position of the assumed binary
point is also the position of the actual binary point. The exponent field, then, determines a
real number's magnitude.

In order to simplify comparing real numbers (e.g., for sorting), the processor stores exponents
in a biased form. This means that a constant, called a bias, is added to the true exponent
described above. As Table 6-6 shows, the value of this bias is different for each real format.
It has been chosen so as to force the biased exponent to be a positive value. This allows two
real numbers (of the same format and sign) to be compared as if they are unsigned binary
integers. That is, when comparing them bitwise from left to right (beginning with the
leftmost exponent bit), the first bit position that differs orders the numbers; there is no need
to proceed further with the comparison. A number's true exponent can be determined simply
by subtracting the bias value of its format.
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The single and double real formats exist in memory only. If a number in one of these formats
is loaded into an FPU register, it is automatically converted to extended format, the format
used for all internal operations. Likewise, data in registers can be converted to single or
double real for storage in memory. The extended real format may be used in memory also,
typically to store intermediate results that cannot be held in registers.

Most applications should use the double format to store real-number data and results; it
provides sufficient range and precision to return correct results with a minimum of
programmer attention. The single real format is appropriate for applications that are
constrained by memory, but it should be recognized that this format provides a smaller
margin of safety. It is also useful for the debugging of algorithms, because roundoff problems
will manifest themselves more quickly in this format. The extended real format should
normally be reserved for holding intermediate results, loop accumulations, and constants. Its
extra length is designed to shield final results from the effects of rounding and
overflow/underflow in intermediate calculations. However, the range and precision of the
double format are adequate for most microcomputer applications.

6.2.2.3. ROUNDING CONTROL

Internally, the FPU employs three extra bits (guard, round, and sticky bits) that enable it to
round numbers in accord with the infinitely precise true result of a computation; these bits
are not accessible to programmers. Whenever the destination can represent the infinitely
precise true result, the FPU delivers it. Rounding occurs in arithmetic and store operations
when the format of the destination cannot exactly represent the infinitely precise true result.
For example, a real number may be rounded if it is stored in a shorter real format, or in an
integer format. Or, the infinitely precise true result may be rounded when it is returned to a
register.

The FPU has four rounding modes, selectable by the RC field in the control word (see
Figure 6-3). Given a true result b that cannot be represented by the target data type, the FPU
determines the two representable numbers a and c that most closely bracket b in value (a < b
< c). The processor then rounds (changes) b to a or to c according to the mode selected by
the RC field as shown in Table 6-8. Rounding introduces an error in a result that is less than
one unit in the last place to which the result is rounded.

• "Round to nearest" is the default mode and is suitable for most applications; it provides
the most accurate and statistically unbiased estimate of the true result.

• The "chop" or "round toward zero" mode is provided for integer arithmetic applications.

• "Round up" and "round down" are termed directed rounding and can be used to
implement interval arithmetic. Interval arithmetic is used to determine upper and lower
bounds for the true result of a multistep computation, when the intermediate results of
the computation are subject to rounding.

Rounding control affects only the arithmetic instructions (refer to Section 6.3. in this chapter
for lists of arithmetic and nonarithmetic instructions).
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Table 6-8.  Rounding Modes

RC Field Rounding Mode Rounding Action

00 Round to Nearest Closer to b of a or c; if equally close, select
even number (the one whose least significant
bit is zero).

01 Round Down (toward -∞) a

10 Round up (toward +∞) c

11 Chop (toward 0) Smaller in magnitude of a or c.

NOTE:  a < b < c; a and c are successive representable numbers; b is not representable

6.2.2.4. PRECISION CONTROL

The FPU allows results to be calculated with either 64, 53, or 24 bits of precision in the
significand as selected by the precision control (PC) field of the control word. The default
setting (following FINIT), and the one that is best suited for most applications, is the full 64
bits of significance provided by the extended real format. The other settings are required by
the IEEE standard and are provided to obtain compatibility with the specifications of certain
existing programming languages. Specifying less precision nullifies the advantages of the
extended format's extended fraction length. When reduced precision is specified, the
rounding of the fractional value clears the unused bits on the right to zeros. Precision Control
affects only the instructions FADD, FSUB, FMUL, FDIV, and FSQRT.

6.3. FLOATING-POINT INSTRUCTION SET
The floating-point instructions available on the Pentium processor can be grouped into six
functional classes:

• Data Transfer Instructions

• Nontranscendental Instructions

• Comparison Instructions

• Transcendental Instructions

• Constant Instructions

• Control Instructions

In this chapter, the instruction classes are described as a collection of resources available to
programmers. For details of format, encoding, and execution times, see the instruction
reference pages in Chapter 25.

The Intel387 math coprocessors and the Intel486 and Pentium processors FPU's have more
instructions than the 8087/Intel287 math coprocessors. Some Intel386 DX microprocessor
systems use an Intel287 math coprocessor. See Chapter 5 for examples of how to identify the
processor type and determine what instructions are available.
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6.3.1. Source and Destination Operands
The typical floating-point instruction takes one or two operands, which can come from the
FPU register stack or from memory. Many instructions, such as FSIN, automatically operate
on the top FPU stack element. Others allow, or require, the programmer to code the
operand(s) explicitly along with the instruction mnemonic. Still others accept one explicit
operand and one implicit operand (usually the top FPU stack element).

Whether specified by the programmer or supplied by default, floating-point operands are of
two basic types, sources and destinations. A source operand provides an input to an
instruction, but is not altered by its execution. Even when an instruction converts the source
operand from one format to another (e.g., real to integer), the conversion is performed in an
internal work area to avoid altering the source operand. A destination operand may also
provide an input to an instruction; on execution, however, the instruction returns a result to
the destination, overwriting its previous contents.

Many instructions allow their operands to be coded in more than one way. For example,
FADD (add real) may be written without operands, with only a source, or with a destination
and a source. When both destination and source operands are specified, the destination must
precede the source on the command line, and both must come from the FPU stack.

Memory operands can be coded with any of the memory-addressing methods provided by the
ModR/M byte. To review these methods (BASE = (INDEX X SCALE) +
DISPLACEMENT), refer to Chapter 3. Floating-point instructions with memory operands
either read from memory or write to it; no floating-point instruction does both. For a detailed
description of each instruction, including its range of possible encodings, see the reference
pages in Chapter 25.

6.3.2. Data Transfer Instructions
These instructions (summarized in Table 6-Error! Bookmark not defined. ) move operands
among elements of the register stack, and between the stack top and memory. Any of the
seven data types can be converted to extended-real and loaded (pushed) onto the stack in a
single operation; they can be stored to memory in the same manner. The data transfer
instructions automatically update the FPU tag word to reflect whether the register is empty or
full following the instruction.

Table 6-9.  Data Transfer Instructions

Real Integer Packed Decimal

FLD Load Real FILD Load Integer FBLD Load Packed Decimal

FST Store Real FIST Store Integer

FSTP Store Real and Pop FISTP Store Integer and Pop FBSTP Store Packed Decimal
and Pop

FXCH Exchange register
Contents
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6.3.3. Nontranscendental Instructions
The nontranscendental instruction set provides a wealth of variations on the basic add,
subtract, multiply, and divide operations, and a number of other useful functions. These
range from a simple absolute value instruction to instructions which perform exact modulo
division, round real numbers to integers, and scale values by powers of two.  Table 6-Error!
Bookmark not defined. shows the nontranscendental operations provided, apart from
basic arithmetic.

Table 6-10.  Nontranscendental Instructions (Besides Arithmetic)

Mnemonic Operation

FSQRT Square Root

FSCALE Scale

FXTRACT Extract Exponent and Significand

FPREM Partial Remainder

FPREM1* IEEE Standard Partial Remainder

FRNDINT Round to Integer

FABS Absolute Value

FCHS Change Sign

* Not available on 8087 or Intel287 math coprocessor.

The basic arithmetic instructions (addition, subtraction, multiplication and division) are
designed to encourage the development of very efficient algorithms. In particular, they allow
the programmer to reference memory as easily as the FPU register stack. Table 6-11
summarizes the available operation/operand forms that are provided for basic arithmetic. In
addition to the four normal operations, there are "reversed" subtraction and division
instructions which eliminate the need for many exchanges between ST(0) and ST(1). The
variety of instruction and operand forms give the programmer unusual flexibility:

• Operands can be located in registers or memory.

• Results can be deposited in a choice of registers.

• Operands can be a variety of numerical data types: extended real, double real, single
real, short integer or word integer, with automatic conversion to extended real performed
by the FPU.
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Table 6-11.  Basic Arithmetic Instructions and Operands

Instruction Form
Mnemonic

 Form
Operand Forms:

Destination, Source

Classical Stack Fop {ST(1), ST}

Classical Stack, extra pop FopP {ST(1), ST}

Register Fop ST(i), ST or ST, ST(i)

Register, pop FopP ST(i), ST

Real Memory Fop {ST} single-real/double-real

Integer Memory Flop {ST} word-integer/short-integer

NOTES:

Braces ({ }) surround implicit operands; these are not coded, but are supplied by the assembler.

op  =  ADD DEST ← DEST + SRC
SUB DEST ← ST – Other Operand
SUBR DEST ← Other Operand – ST
MUL DEST ← DEST × SRC
DIV DEST ← DEST ÷ SRC
DIVR DEST ← SRC ÷ DEST

Five basic instruction forms can be used across all six operations, as shown in Table 6-11.
The classical stack form can be used to make the FPU operate like a classical stack machine.
No operands are coded in this form, only the instruction mnemonic. The FPU picks the
source operand from the stack top (ST) and the destination from the next stack element
(ST(1)). After performing its calculation, it returns the result to ST(1) and then pops ST,
effectively replacing the operands by the result.

The register form is a generalization of the classical stack form; the programmer specifies the
stack top as one operand and any register on the stack as the other operand. Coding the stack
top as the destination provides a convenient way to access a constant, held elsewhere in the
stack, from the top stack. The destination need not always be ST, however. The basic two-
operand instructions allow the use of another register as the destination. Using ST as the
source allows, for example, adding the stack top into a register used as an accumulator.

Often the operand in the stack top is needed for one operation but then is of no further use in
the computation. The register pop form can be used to pick up the stack top as the source
operand, and then discard it by popping the stack. Coding operands of ST(1), ST with a
register pop mnemonic is equivalent to a classical stack operation: the top is popped and the
result is left at the new top.

The two memory forms increase the flexibility of the nontranscendental instructions. They
permit a real number or a binary integer in memory to be used directly as a source operand.
This is useful in situations where operands are not used frequently enough to justify holding
them in registers. Note that any memory-addressing method can be used to define these
operands, so they can be elements in arrays, structures, or other data organizations, as well as
simple scalars.
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6.3.4. Comparison Instructions
The instructions of this class allow numbers of all supported real and integer data types to be
compared. Each of these instructions (Table 6-Error! Bookmark not defined. ) analyzes the
top stack element, often in relationship to another operand, and reports the result as a
condition code (flags C0, C2, and C3) in the status word.

Table 6-12.  Comparison Instructions

Mnemonic Operation

FCOM Compare Real

FCOMP Compare Real and Pop

FCOMPP Compare Real and Pop Twice

FICOM Compare Integer

FICOMP Compare Integer and Pop

FTST Test

FUCOM* Unordered Compare Real

FUCOMP* Unordered Compare Real and Pop

FUCOMPP* Unordered Compare Real and Pop Twice

FXAM Examine

 *Not available on 8087 and Intel287™ math coprocessors.

The basic operations are compare, test (compare with zero), and examine (report type, sign,
and normalization). Special forms of the compare operation are provided to optimize
algorithms by allowing direct comparisons with binary integers and real numbers in memory,
as well as popping the stack after a comparison.

The FSTSW AX (store status word) instruction can be used after a comparison to transfer the
condition code to the AX register for inspection. The TEST instruction is recommended for
using the FPU flags (once they are in the AX register) to control conditional branching. First
check to see if the comparison resulted in unordered. This can happen, for instance, if one of
the operands is a NaN. TEST the contents of the AX register against the constant 0400H; this
will clear ZF (the Zero Flag of the EFLAGS register) if the original comparison was
unordered, and set ZF otherwise. The JNZ instruction can then be used to transfer control (if
necessary) to code that handles the case of unordered operands. With the unordered case now
filtered out, TEST the contents of the AX register against the appropriate constant from
Table 6-Error! Bookmark not defined. , and then use the corresponding conditional branch.
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Table 6-13.  TEST Constants for Conditional Branching

Order Constant Branch

ST > Operand 4500H JZ

ST < Operand 0100H JNZ

ST = Operand 4000H JNZ

Unordered 0400H JNZ

It is not always necessary to filter out the unordered case when using this algorithm for
conditional jumps. If the software has been thoroughly tested, and incorporates periodic
checks for QNaN results (as recommended previously), then it is not necessary to check for
unordered every time a comparison is made.

Instructions other than those in the comparison group can update the condition code. To
ensure that the status word is not altered inadvertently, store it immediately following a
comparison operation.

6.3.5. Transcendental Instructions
The instructions in this group (Table 6-14) perform the time-consuming core calculations for
all common trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic,
logarithmic, and exponential functions. The transcendentals operate on the top one or two
stack elements, and they return their results to the stack. The trigonometric operations
assume their arguments are expressed in radians. The logarithmic and exponential operations
work in base 2.

Table 6-14.  Transcendental Instructions

Mnemonic Operation

FSIN* Sine

FCOS* Cosine

FSINCOS* Sine and Cosine

FPTAN** Tangent

FPATAN Arctangent of ST(1) ÷ ST

F2XM1** 2X – 1; X is in ST

FYL2X Y x log2X; Y is in ST(1), X is in ST

FYL2XP1 Y x log2(X + 1); Y is in ST(1), X is in ST

 *Not available on 8087 and Intel287™ math coprocessors.
**Operand range extended over 8087 and Intel287 math coprocessors.

The Pentium processor uses new algorithms for transcendental instructions, achieving a
higher level of accuracy for the same instructions than the Intel486 processor.  Accuracy is
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measured in terms of units in the last place (ulp). For a given argument x, let f(x) and F(x) be
the correct and computed (approximate) function values respectively. The error in ulps is
defined to be





f(x) – F(x)

2k – 63

where k is an integer such that 1 ≤ 2–kf(x) < 2.

On the Pentium processor, the worst case error on functions is less than 1 ulp when rounding
to the nearest-even and less than 1.5 ulps when rounding in other modes. The functions are
guaranteed to be monotonic, with respect to the input operands, throughout the domain
supported by the instruction. See Appendix G for detailed information on transcendental
accuracy.

The trigonometric functions accept a practically unrestricted range of operands, whereas the
other transcendental instructions require that arguments be more restricted in range. FPREM
or FPREM1 can be used to bring the otherwise valid operand of a periodic function into
range. Prologue and epilogue software can be used to reduce arguments for other instructions
to the expected range and to adjust the result to correspond to the original arguments if
necessary. The instruction descriptions in the reference pages of Chapter 25 document the
allowed operand range for each instruction.

When the argument of a trigonometric function is in range, it is automatically reduced by the
appropriate multiple of 2π (in 66-bit precision), by means of the same mechanism used in the
FPREM and FPREM1 instructions. The value of π used in the automatic reduction has been
chosen so as to guarantee no loss of significance in the operand, provided it is within the
specified range. The internal value of π in hexadecimal is:

4 * 0.C90FDAA22168C234C

A program may use an explicit value for π in computations whose results later appear as
arguments to trigonometric functions. In such a case (in explicit reduction of a trigonometric
operand outside the specified range, for example), the value used for π should be the same as
the full 66-bit internal π. This will insure that the results are consistent with the automatic
argument reduction performed by the trigonometric functions. The 66-bit π cannot be
represented as an extended-real value, so it must be encoded as two or more numbers. A
common solution is to represent π as the sum of a highπ which contains the 33 most-
significant bits and a lowπ which contains the 33 least-significant bits. When using this two-
part π, all computations should be performed separately on each part, with the results added
only at the end.

The complications of maintaining a consistent value of π for argument reduction can be
avoided, either by applying the trigonometric functions only to arguments within the range of
the automatic reduction mechanism, or by performing all argument reductions (down to a
magnitude less than π/4) explicitly in software.
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6.3.6. Constant Instructions
Each of these instructions, shown in Table 6-Error! Bookmark not defined. , pushes a
commonly used constant onto the stack. (ST(7) must be empty to avoid an invalid
exception.) The values have full extended real precision (64 bits) and are accurate to
approximately 19 decimal digits. Because an external real constant occupies 10 memory
bytes, the constant instructions, which are only two bytes long, save storage and improve
execution speed, in addition to simplifying programming.

Table 6-15.  Constant Instructions

Mnemonic Operation

FLDZ Load +0.0

FLD1 Load +1.0

FLDPI Load π

FLDL2T Load log2 10

FLDL2E Load log2e

FLDLG2 Load log102

FLDLN2 Load loge2

The constants used by these instructions are stored internally in a format more precise than
extended real. When loading the constant, the FPU rounds the more precise internal constant
according the RC (rounding control) bit of the control word. However, in spite of this
rounding, the precision exception is not raised (to maintain compatibility). When the
rounding control is set to round to nearest, the FPU produces the same constant that is
produced by the 8087 and Intel287 numeric coprocessors.

6.3.7. Control Instructions
The FPU control instructions are shown in Table 6-Error! Bookmark not defined. . The
FSTSW instruction is commonly used for conditional branching. The remaining instructions
are not typically used in calculations; they provide control over the FPU for system-level
activities. These activities include initialization of the FPU, numeric exception handling, and
task switching.
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As shown in Table 6-Error! Bookmark not defined. , certain instructions have alternative
mnemonics. The instructions which initialize the FPU, clear exceptions, or store (all or part
of) the FPU environment come in two forms:

• Wait—the mnemonic is prefixed only with an F, such as FSTSW. This form checks for
unmasked numeric exceptions.

• No-wait—the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores
unmasked numeric exceptions.

When a control instruction is coded using the no-wait form of the mnemonic, the
ASM386/Intel486 processor assembler does not precede the ESC instruction with a WAIT
instruction. The processor does not test for a floating-point error condition before executing a
control instruction.

The only no-wait instructions are those shown in Table 6-Error! Bookmark not defined. .
All other floating-point instructions are automatically synchronized by the processor; all
operands are transferred before the next instruction is initiated. Because of this automatic
synchronization, non-control floating-point instructions need not be preceded by a WAIT
instruction in order to execute correctly.

Exception synchronization relies on the WAIT instruction. Since the Integer Unit and the
FPU operate in parallel, it is possible in the case of a floating-point exception for the
processor to disturb information vital to exception recovery before the exception-handler can
be invoked. Coding a WAIT or FWAIT instruction in the proper place can prevent this. See
the next section  for details.
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Table 6-16.  Control Instructions

Mnemonic Operation

FINIT / FNINIT Initialize FPU

FLDCW Load Control Word

FSTCW/FNSTCW Store Control Word

FSTSW/FNSTSW Store Status Word

FSTSW AX/FNSTSW AX* Store Status Word to AX Register

FCLEX/FNCLEX Clear Exceptions

FSTENV/FNSTENV Store Environment

FLDENV Load Environment

FSAVE/FNSAVE Save State

FRSTOR Restore State

FINCSTP Increment Stack Top Pointer

FDECSTP Decrement Stack Top Pointer

FFREE Free Regiser

FNOP No Operation

FWAIT Report FPU Error

*Not available on 8087 math coprocessor.

It should also be noted that the 8087 instructions FENI and FDISI and the Intel287 math
coprocessor instruction FSETPM perform no function in the Pentium, Intel486 and Intel386
processors and Intel387 coprocessors. If these opcodes are detected in the instruction stream,
the 32-bit processors perform no specific operation and no internal states are affected.
Chapter 23 contains a more complete description of the differences between floating-point
operations on the Pentium and Intel486 processors and on the 8087, Intel287, and Intel387
DX numeric coprocessors.

6.4. NUMERIC APPLICATIONS
This section describes how programmers in assembly language and in a variety of higher-
level languages can make use of the Intel486 processor’s numerics capabilities.

The level of detail in this section is intended to give programmers a basic understanding of
the software tools that can be used for numeric programming, but this information does not
document the full capabilities of these facilities. Complete documentation is available with
each program development product.



NUMERIC APPLICATIONS EE

6-36

6.4.1. High-Level Languages
A variety of Intel high-level languages are available that automatically make use of the
numeric instruction set when appropriate. These languages include C-386/486 and PL/M-
386/486. In addition, many high-level language compilers optimized for the Pentium
processor are available from independent software vendors.

Each of these high-level languages has special numeric libraries allowing programs to take
advantage of the capabilities of the FPU. No special programming conventions are necessary
to make use of the FPU when programming numeric applications in any of these languages.

Programmers in PL/M-386/486 and ASM386/486 can also make use of many of these library
routines by using routines contained in the Support Library. These libraries implement many
of the functions provided by higher-level languages, including exception handlers, ASCII-to-
floating-point conversions, and a more complete set of transcendental functions than that
provided by the processor's  numeric instruction set.

6.4.1.1. C PROGRAMS

C programmers automatically cause the C compiler to generate Intel486 processor numeric
instructions when they use the double and float data types. The float type corresponds to the
single real format; the double type corresponds to the double real format. The statement
#include 〈〈math.h〉〉 causes mathematical functions such as sin and sqrt to return values of
type double. Example 6-2 illustrates the ease with which C programs can make use of the
processor’s numerics capabilities.

6.4.1.2. PL/M-386/486

Programmers in PL/M-386/486 can access a very useful subset of the FPU's numeric
capabilities. The PL/M-386/486 REAL data type corresponds to the single real (32-bit)
format. This data type provides a range of about 8.43 × 10–37 ≤ | X | ≤ 3.38 × 1038, with about
seven significant decimal digits. This representation is adequate for the data manipulated by
many microcomputer applications.
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Example 6-2.  Sample C Program

/*************************************************************
* *
* SAMPLE C PROGRAM *
**************************************************************/

/** Include stdio.h if necessary **/
/** Include math declarations for transcendentals and others **/

#include <math.h>
#define PI 3.1415926535897943

main()
double sin_result, cos_result;
double angle_deg = 0.0, angle_rad;
int i, no_of_trial=4;

for (i = 1; i <= no_of_trial; i++) {
angle_rad = angle_deg * PI / 180.0;
sin_result = sin (angle_rad);
cos_result = cos (angle_rad);
printf("sine of %f degrees equals %f\n", angle_deg, sin_result);
printf("cosine of %f degrees equals %f\n\n", angle_deg,

cos_result);
angle_deg = angle_deg + 30.0;
}

/** etc. **/
}

The utility of the REAL data type is extended by the PL/M-386/486 compiler's practice of
holding intermediate results in the extended real format. This means that the full range and
precision of the processor are utilized for intermediate results. Underflow, overflow, and
rounding exceptions are most likely to occur during intermediate computations rather than
during calculation of an expression's final result. Holding intermediate results in extended-
precision real format greatly reduces the likelihood of overflow and underflow and eliminates
roundoff as a serious source of error until the final assignment of the result is performed.

The compiler generates floating-point instructions to evaluate expressions that contain REAL
data types, whether variables or constants or both. This means that addition, subtraction,
multiplication, division, comparison, and assignment of REALs will be performed by the
FPU. INTEGER expressions, on the other hand, are evaluated by the Integer Unit.

Five built-in procedures (Table 6-17) give the PL/M-386/486 programmer access to FPU
control instructions. Prior to any arithmetic operations, a typical PL/M-386/486 program will
set up the FPU using the INIT$REAL$MATH$UNIT procedure and then issue
SET$REAL$MODE to configure the FPU. SET$REAL$MODE loads the FPU control word,
and its 16-bit parameter has the format shown previously for the control word. The
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recommended value of this parameter is 033EH (round to nearest, 64-bit precision, all
exceptions masked except invalid operation). Other settings may be used at the programmer's
discretion.

Table 6-17.  PL/M-386/486 Built-In Procedures

Procedure FPU Control Instruction Description

INIT$REAL$MATH$UNIT FINIT Initialize FPU

SET$REAL$MODE FLDCW Set exception masks, rounding
precision, and infinity controls.

GET$REAL$ERROR FNSTSW& FNCLEX Store, then clear, exception flags.

SAVE$REAL$STATUS FNSAVE Save FPU state.

RESTORE$REAL$STATUS FRSTOR Restore FPU state.

If any exceptions are unmasked, an exception handler must be provided in the form of an
interrupt procedure that is designated to be invoked via interrupt vector number 16. The
exception handler can use the GET$REAL$ERROR procedure to obtain the low-order byte
of the FPU status word and to then clear the exception flags. The byte returned by
GET$REAL$ERROR contains the exception flags; these can be examined to determine the
source of the exception.

The SAVE$REAL$STATUS and RESTORE$REAL$STATUS procedures are provided for
multitasking environments where a running task that uses the FPU may be preempted by
another task that also uses the FPU. It is the responsibility of the operating system to issue
SAVE$REAL$STATUS before it executes any statements that affect the FPU; these include
the INIT$REAL$MATH$UNIT and SET$REAL$MODE procedures as well as arithmetic
expressions. SAVE$REAL$STATUS saves the FPU state (registers, status, and control
words, etc.) on the memory stack. RESTORE$REAL$STATUS reloads the state information;
the preempting task must invoke this procedure before terminating in order to restore the
FPU to its state at the time the running task was preempted. This enables the preempted task
to resume execution from the point of its preemption.

6.4.1.3. ASM386/486

The ASM386/486 assembly language provides programmers with complete access to all of
the facilities of the processor.

6.4.1.3.1. Defining Data

The ASM386/486 directives shown in Table 6-18 allocate storage for numeric variables and
constants. As with other storage allocation directives, the assembler associates a type with
any variable defined with these directives. The type value is equal to the length of the storage
unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of any variable
coded in an instruction to be certain that it is compatible with the instruction. For example,
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the coding FIADD ALPHA will be flagged as an error if ALPHA's type is not 2 or 4, because
integer addition is only available for word and short integer (doubleword) data types. The
operand's type also tells the assembler which machine instruction to produce; although to the
programmer there is only an FIADD instruction, a different machine instruction is required
for each operand type.

Table 6-18.  ASM386/486 Storage Allocation Directives

Directives Interpretation Data Types

DW Define Word Word integer

DD Define Doubleword Short integer, short real

DQ Define Quadword Long integer, long real

DT Define Tenbyte Packed decimal, temporary real

On occasion it is desirable to use an instruction with an operand that has no declared type.
For example, if register BX points to a short integer variable, a programmer may want to
code FIADD [BX]. This can be done by informing the assembler of the operand's type in the
instruction, coding FIADD DWORD PTR [BX]. The corresponding overrides for the other
storage allocations are WORD PTR, QWORD PTR, and TBYTE PTR.

The assembler does not, however, check the types of operands used in processor control
instructions. Coding FRSTOR [BP] implies that the programmer has set up register BP to
point to the location (probably in the stack) where the processor's 94-byte state record has
been previously saved.

The initial values for numeric constants may be coded in several different ways. Binary
integer constants may be specified as bit strings, decimal integers, octal integers, or
hexadecimal strings. Packed decimal values are normally written as decimal integers,
although the assembler will accept and convert other representations of integers. Real values
may be written as ordinary decimal real numbers (decimal point required), as decimal
numbers in scientific notation, or as hexadecimal strings. Using hexadecimal strings is
primarily intended for defining special values such as infinities, NaNs, and denormalized
numbers. Most programmers will find that ordinary decimal and scientific decimal provide
the simplest way to initialize numeric constants. Example 6-3 compares several ways of
setting the various numeric data types to the same initial value.

Example 6-3.  Sample Numeric Constants

; THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126
; NOTE TWO'S COMPLEMENT STORAGE OF NEGATIVE BINARY INTEGERS.
;
EVEN ;FORCE WORD ALIGNMENT
WORD_INTEGER   DW 1111111110000010b ;BIT STRING
SHORT_INTEGER  DD 0FFFFFF82H ;HEX STRING MUST START

;WITH DIGIT
LONG_INTEGER   DQ -126 ;ORDINAL DECIMAL
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SINGLE_REAL    DD -126.0 ;NOTE PRESENCE OF .
DOUBLE_REAL    DD -1.26e2 ;SCIENTIFIC
PACKED_DECIMAL DT -126 ;ORDINARY DECIMAL INTEGER
;
; IN THE FOLLOWING, SIGN AND EXPONENT IS 'C005'
;    SIGNIFICAND IS '7300...00', 'R' INFORMS ASSEMBLER THAT
;    THE STRING REPRESENTS A REAL DATA TYPE.
;
EXTENDED_REAL  DT 0C0057E00000000000000R   ;HEX STRING

Note that preceding numeric variables and constants with the ASM386/486 EVEN directive
ensures that the operands will be word-aligned in memory. The best performance is obtained
when data transfers are aligned.  See Chapter 24 for alignment strategies for the different
processors. All numeric data types occupy integral numbers of words so that no storage is
"wasted" if blocks of variables are defined together and preceded by a single EVEN
declarative.

6.4.1.3.2. Records and Structures

The ASM386/486 RECORD and STRUC (structure) declaratives can be very useful in
numeric programming. The record facility can be used to define the bit fields of the control,
status, and tag words. Example 6-4 shows one definition of the status word and how it might
be used in a routine that polls the FPU until it has completed an instruction.

Example 6-4.  Status Word Record Definition

; RESERVE SPACE FOR STATUS WORD
STATUS_WORD
; LAY OUT STATUS WORD FIELDS
STATUS RECORD
& BUSY: 1,
& COND_CODE3: 1,
& STACK_TOP: 3,
& COND_CODE2: 1,
& COND_CODE1: 1,
& COND_CODE0: 1,
& INT_REQ: 1,
& S_FLAG: 1,
& P_FLAG: 1,
& U_FLAG: 1,
& O_FLAG: 1,
& Z_FLAG: 1,
& D_FLAG: 1,
& I_FLAG: 1
; REDUCE UNTIL COMPLETE
REDUCE:

FPREM1
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FNSTSW STATUS_WORD
TEST STATUS_WORD, MASK_COND_CODE2
JNZ REDUCE

Because structures allow different but related data types to be grouped together, they often
provide a natural way to represent "real world" data organizations. The fact that the structure
template may be "moved" about in memory adds to its flexibility. Example 6-5 shows a
simple structure that might be used to represent data consisting of a series of test score
samples. This sample structure can be reorganized, if necessary, for the sake of more
efficient execution. If the two double real fields were listed before the integer fields, then
(provided that the structure is instantiated only at addresses divisible by eight) all the fields
would be optimally aligned for efficient memory access and caching. A structure could also
be used to define the organization of the information stored and loaded by the FSTENV and
FLDENV instructions.

Example 6-5.  Structure Definition

SAMPLE STRUC
N_OBSDD ? ; SHORT INTEGER
MEAN DQ ? ; DOUBLE REAL
MODE DW ? ; WORD INTEGER
STD_DEV DQ ? ; DOUBLE REAL
; ARRAY OF OBSERVATIONS -- WORD INTEGER
TEST_SCORES DW 1000 DUP (?)

SAMPLE ENDS

6.4.1.3.3. Addressing Methods

Numeric data in memory can be accessed with any of the memory addressing methods
provided by the ModR/M byte and (optionally) the SIB byte. This means that numeric data
types can be incorporated in data aggregates ranging from simple to complex according to
the needs of the application. The addressing methods and the ASM386/486 notation used to
specify them in instructions make the accessing of structures, arrays, arrays of structures, and
other organizations direct and straightforward. Table 6-19 gives several examples of numeric
instructions coded with operands that illustrate different addressing methods.



NUMERIC APPLICATIONS EE

6-42

Table 6-19.  Addressing Method Examples

Coding Interpretation

FIADD ALPHA ALPHA is a simple scalar (mode is direct).

FDIVR ALPHA.BETA BETA is a field in a structure that is “overlaid” on
ALPHA (mode is direct).

FMUL QWORD PTR [BX] BX contains the address of a long real variable (mode
is register indirect).

FSUB ALPHA [SI] ALPHA is an array and SI contains the offset of an
array element from the start of the array (mode is
indexed).

FILD [BP].BETA BP contains the address of a structure on the CPU
stack and BETA is a field in the structure (mode is
based).

FBLD TBYTE PTR [BX] [DI] BX contains the address of a packed decimal array
and DI contains the offset of an array element (mode
is based indexed).

6.4.1.4. COMPARATIVE PROGRAMMING EXAMPLE

Examples 6-6 and 6-7 show the PL/M-386/486 and ASM386/486 code for a simple numeric
program, called ARRSUM. The program references an array (X$ARRAY), which contains
0–00 single real values; the integer variable N$OF$X indicates the number of array elements
the program is to consider. ARRSUM steps through X$ARRAY accumulating three sums:

• SUM$X, the sum of the array values

• SUM$INDEXES, the sum of each array value times its index, where the index of the
first element is 1, the second is 2, etc.

• SUM$SQUARES, the sum of each array element squared

Example 6-6.  Sample PL/M-386/486 Program

/*************************************************************
*   *
*                    ARRAYSUM MODULE   *
*   *
***************************************************************/

array$sum: do;
declare (sum$x, sum$indexes, sum$squares) real;
declare x$array(100) real;
declare (n$of$x, i) integer;
declare control $ FPU literally '033eh';

/ *Assume x$array and n$of$x are initialized */
call init$real$math$unit;
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call set$real$mode(control $ FPU);

/* Clear sums */
sum$x, sum$indexes, sum$squares = 0.0;

/* Loop through array, accumulating sums */
do i = 0 to n$of$x - 1;

sum$x = sum$x + x$array(i);
sum$indexes = sum$indexes + (x$array(i)*float(i+1));
sum$squares = sum$squares + (x$array(i)*x$array(i));

end;

/* etc. */
end array$sum;

Example 6-7.  Sample ASM386/486 Program

name arraysum

; Define initialization routine

extrn initFPU:far

; Allocate space for data

data segment rw public
control_FPU dw 033eh
n_of_x dd ?
x_array dd 100 dup(?)
sum_squares dd ?
sum_indexes dd ?
sum_x dd ?

data ends

; Allocate CPU stack space

stack stackseg 400

; Begin code

code segment er public

assume ds:data, ss:stack

start:
mov ax, data
mov ds, ax
mov ax, stack
mov ss, ax
mov esp, stackstart stack

; Assume x_array and n_of_x have been initialized

; Prepare the FPU or its emulator

call initFPU
fldcwcontrol_FPU
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; Clear three registers to hold running sums

fldz
fldz
fldz

; Setup ECX as loop counter and ESI as index into x_array

mov ecx, n_of_x
imul ecx
mov esi, eax

; ESI now contains index of last element + 1
; Loop through x_array and accumulate sum

sum_next:
; Back up one element and push on the stack

sub esi, type x_array
fld x_array[esi]

; Add to the sum and duplicate x on the stack

fadd st(3), st
fld st

; Square it and add into the sum of (index+1) and discard

fmul st, st
faddpst(2), st
fmul n_of_x
faddpst(2), st

; Reduce index for next iteration

loop sum_next

; Pop sums into memory

pop_results:
fstp sum_squares
fstp sum_indexes
fstp sum_x
fwait

;
; Etc.
;
code ends
end start, ds:data, ss:stack

(A true program, of course, would go beyond these steps to store and use the results of these
calculations.) The control word is set with the recommended values: round to nearest, 64-bit
precision, interrupts enabled, and all exceptions masked except invalid operation. It is
assumed that an exception handler has been written to field the invalid operation if it occurs,
and that it is invoked by interrupt pointer 16.
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The PL/M-386/486 version of ARRAYSUM is very straightforward and illustrates how easily
the numerics capabilities of the Intel486 processor can be used in this language. After
declaring variables, the program calls built-in procedures to initialize the FPU and to load to
the control word. The program clears the sum variables and then steps through X$ARRAY
with a DO-loop. The loop control takes into account PL/M-386/486's practice of considering
the index of the first element of an array to be 0. In the computation of SUM$INDEXES, the
built-in procedure FLOAT converts I+1 from integer to real because the language does not
support "mixed mode" arithmetic. One of the strengths of the Intel486 processor FPU, of
course, is that it does support arithmetic on mixed data types (because all values are
converted internally to the 80-bit extended-precision real format).

The ASM386/486 version defines the external procedure INITFPU, which makes the
different initialization requirements of the processor and its emulator transparent to the
source code. After defining the data and setting up the segment registers and stack pointer,
the program calls INITFPU and loads the control word. The computation begins with the
next three instructions, which clear three registers by loading (pushing) zeros onto the stack.
As shown in Figure 6-12, these registers remain at the bottom of the stack throughout the
computation while temporary values are pushed on and popped off the stack above them.
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Figure 6-12.  Instructions and Register Stack

The program uses the LOOP instruction to control its iteration through X_ARRAY; register
ECX, which LOOP automatically decrements, is loaded with n_of_x the number of array
elements to be summed. Register ESI is used to select (index) the array elements. The
program steps through X_ARRAY from back to front, so ESI is initialized to point at the
element just beyond the first element to be processed. The ASM386/486 TYPE operator is
used to determine the number of bytes in each array element. This permits changing
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X_ARRAY to a double-precision real array by simply changing its definition (DD to DQ)
and reassembling.

Figure 6-12 shows the effect of the instructions in the program loop on the FPU register
stack. The figure assumes that the program is in its first iteration, that N_OF_X is 20, and
that X_ARRAY(19) (the 20th element) contains the value 2.5. When the loop terminates, the
three sums are left as the top stack elements so that the program ends by simply popping
them into memory variables.

6.4.1.5. CONCURRENT PROCESSING

Because the Intel Pentium Processor Integer Unit (IU) and FPU execution units are separate,
it is possible for the FPU to execute numeric instructions in parallel with integer instructions.
This simultaneous execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent
execution; numeric instructions are simply placed in line with the integer instructions.
Integer and numeric instructions are initiated in the same order as they are encountered in the
instruction stream.  However, because numeric operations performed by the FPU generally
require more time than integer operations, the IU can often execute several instructions
before the FPU completes a numeric instruction previously initated.

This concurrency offers obvious advantages in terms of execution performance, but
concurrency also imposes several rules that must be observed in order to assure proper
synchronization of the IU and FPU .

All Intel high-level languages automatically provide for and manage concurrency in the FPU.
Assembly-language programmers, however, must understand and manage some areas of
concurrency in exchange for the flexibility and performance of programming in assembly
language. This section is for the assembly-language programmer or well-informed high-
level-language programmer.

6.4.1.6. MANAGING CONCURRENCY

The activities of numeric programs can be split into two major areas: program control and
arithmetic. The program control part performs activities such as deciding what functions to
perform, calculating addresses of numeric operands, and loop control. The arithmetic part
simply adds, subtracts, multiplies, and performs other operations on the numeric operands.
The processor is designed to handle these two parts separately and efficiently.

Concurrency management is required to check for an exception before letting the processor
change a value just used by the FPU. Almost any numeric instruction can, under the wrong
circumstances, produce a numeric exception. For programmers in higher-level languages, all
required synchronization is automatically provided by the appropriate compiler. For
assembly-language programmers exception synchronization remains the responsibility of the
programmer.
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A complication is that a programmer may not expect their numeric program to cause numeric
exceptions, but in some systems, they may regularly happen. To better understand these
points, consider what can happen when the FPU detects an exception.

Depending on options determined by the software system designer, the processor can perform
one of two things when a numeric exception occurs:

• The FPU can provide a default fix-up for selected numeric exceptions. Programs can
mask individual exception types to indicate that the FPU should generate a safe,
reasonable result whenever that exception occurs. The default exception fix-up activity is
treated by the FPU as part of the instruction causing the exception; no external indication
of the exception is given. When exceptions are detected, a flag is set in the numeric
status register, but no information regarding where or when is available. If the FPU
performs its default action for all exceptions, then the need for exception
synchronization is not manifest. However, as will be shown later, this is not sufficient
reason to ignore exception synchronization when designing programs that use the FPU.

• As an alternative to the default fix-up of numeric exceptions, the IU can be notified
whenever an exception occurs. When a numeric exception is unmasked and the
exception occurs, the FPU stops further execution of the numeric instruction and signals
this event. On the next occurrence of an ESC or WAIT instruction, the processor traps to
a software exception handler. The exception handler can then implement any sort of
recovery procedures desired for any numeric exception detectable by the FPU. Some
ESC instructions do not check for exceptions. These are the nonwaiting forms FNINIT,
FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX.

When the FPU signals an unmasked exception condition, it is requesting help. The fact that
the exception was unmasked indicates that further numeric program execution under the
arithmetic and programming rules of the FPU is unreasonable.

If concurrent execution is allowed, the state of the processor when it recognizes the exception
is undefined. It may have changed many of its internal registers and be executing a totally
different program by the time the exception occurs. To handle this situation, the FPU has
special registers updated at the start of each numeric instruction to describe the state of the
numeric program when the failed instruction was attempted.

Exception synchronization ensures that the FPU is in a well-defined state after an unmasked
numeric exception occurs. Without a well-defined state, it would be impossible for exception
recovery routines to determine why the numeric exception occurred, or to recover
successfully from the exception.

The following two sections illustrate the need to always consider exception synchronization
when writing numeric code, even when the code is initially intended for execution with
exceptions masked. If the code is later moved to an environment where exceptions are
unmasked, the same code may not work correctly. An example of how some instructions
written without exception synchronization will work initially, but fail when moved into a
new environment, is shown in the following section.
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6.4.1.7. EXCEPTION SYNCHRONIZATION

In the following examples, three instructions are shown to load an integer, calculate its
square root, then increment the integer. The synchronous execution of the FPU will allow
this program to execute correctly when no exceptions occur on the FILD instruction.

Incorrect Error Synchronization:

FILD COUNT ; FPU instruction
INC COUNT ; integer instruction alters operand
FSQRT ; subsequent FPU instruction -- error

; from previous FPU
; instruction detected here

Proper Error Synchronization:

FILD COUNT ; FPU instruction
FSQRT ; subsequent FPU instruction -- error from

; previous FPU
; instruction detected here

INC COUNT ; integer instruction alters operand

This situation changes if the numeric register stack is extended to memory. To extend the
FPU stack to memory, the invalid exception is unmasked. A push to a full register or pop
from an empty register sets SF and causes an invalid exception.

The recovery routine for the exception must recognize this situation, fix up the stack, then
perform the original operation. The recovery routine will not work correctly in the first
example shown in the figure. The problem is that the value of COUNT is incremented before
the exception handler is invoked, so that the recovery routine will load an incorrect value of
COUNT, causing the program to fail or behave unreliably.

6.4.1.8. PROPER EXCEPTION SYNCHRONIZATION

Exception synchronization relies on the WAIT instruction. Whenever an unmasked
numerical exception occurs, the FPU asserts an error-condition signal internal to the
processor. When the next WAIT instruction (or an ESC instruction other than FNINIT,
FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, FNSTENV, FNSAVE) is encountered, the
error-condition signal is acknowledged and a software exception handler is invoked. (See
Chapter 7 and section 23.3.7 for a more detailed discussion of the various floating-point
error-reporting mechanisms and Pentium processor implementation specifics respectively.) If
this WAIT or ESC instruction is properly placed, the processor will not yet have disturbed
any information vital to recovery from the exception.  A WAIT instruction should also be
placed after the last floating-point instruction in an application so that any unmasked
exceptions will be serviced before the task completes.
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CHAPTER 7
SPECIAL COMPUTATIONAL SITUATIONS

Besides being able to represent positive and negative numbers, the numerical data formats
may be used to describe other entities. These special values provide extra flexibility, but
most users will not need to understand them in order to use the numerics capabilities of the
processor successfully. This section describes the special values that may occur in certain
cases and the significance of each. The numeric exceptions are also described, for writers of
exception handlers and for those interested in probing the limits of numeric computation.

The material presented in this section is mainly of interest to programmers concerned with
writing exception handlers. Many readers will only need to skim this section.

When discussing these special computational situations, it is useful to distinguish between
arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions are those
that have no operands or transfer their operands without substantial change; arithmetic
instructions are those that make significant changes to their operands. Table 7-Error!
Bookmark not defined. defines these two classes of instructions.

7.1. SPECIAL NUMERIC VALUES
The numerical data formats encompass encodings for a variety of special values in addition
to the typical real or integer data values that result from normal calculations. These special
values have significance and can express relevant information about the computations or
operations that produced them. The various types of special values are:

• Denormal real numbers

• Zeros

• Positive and negative infinity

• NaN (Not-a-Number)

• Indefinite

• Unsupported formats

The following sections explain the origins and significance of each of these special values.
Tables 7-2 through Tables 7-Error! Bookmark not defined.  show how each of these special
values is encoded for each of the numeric data types.
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Table 7-1.  Arithmetic and Nonarithmetic Instructions

Nonarithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD (P)

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOMP(P)(P)

FINCSTP FCOS

FINIT FDIV(R)(P)

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM(P)

FLD constant FIDIV(R)

FLDCW FILD

FLDENV FIMUL

FNOP FIST(P)

FRSTOR FISUB(R)

FSAVE FLD (conversion)

FST(P) (register-to-register) FMUL(P)

FSTP (extended format to memory) FPATAN

FSTCW FPREM

FSTENV FPREM1

FSTSW FPTAN

FWAIT FRNDINT

FXAM FSCALE

FXCH FSIN

FSINCOS

FSQRT

FST(P) (conversion)

FSUB(R)(P)

FTST

FUCOM(P)(P)

FXTRACT

FYL2X

FYL2XP1
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Table 7-2.  Binary Integer Encodings

Class Sign Magnitude

Positives

(Largest) 0 11..11

. .

. .

. .

(Smallest) 0 00..01

Zero 0 00..00

Negatives

(Smallest) 1 11..11

. .

. .

. .

. .

(Largest/Indefinite*) 1 00..00

Word: 15 bits

Short: 31 bits

Long: 63 bits

NOTES:

*If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the FPU
interprets it as the largest negative number representable in the format... –215, –231, or –263. The FPU
delivers this encoding to an integer destination in two cases:

1. If the result is the largest negative number.

2. As the response to a masked invalid operation exception, in which case it represents the special value
integer indefinite.
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Table 7-3.  Packed Decimal Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positives

Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

. . .

Smallest 0 0000000 0000 0000 0000 0000 ... 0001

Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negatives

Zero 1 0000000 0000 0000 0000 0000 ... 0000

Smallest 1 0000000 0000 0000 0000 0000 ... 0000

. . .

. . .

. . .

.

Largest 1 0000000 1001 1001 1001 1001 ... 1001

Indefinite* 1 1111111 1111 1111 UUUU** UUUU ... UUUU

1 byte 9 bytes

* The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception.
Attempting to load this value via FBLD produces an undefined result.

** UUUU means bit values are undefined and may contain any value.
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Table 7-4.  Single and Double Real Encodings

Class Sign Biased Exponent
Significand

ff-ff*

Positive NaNs

Quiet
0
.
.
0

11..11
    .
    .

11..11

11..11
    .
    .

10..00

Signaling
0
.
.
0

11..11
    .
    .

11..11

01..11
    .
    .

00..01

Infinity 0 11..11 00..00

Positive Reals

Normals
0
.
.
0

11..10
    .
    .

00..01

11..11
    .
    .

00..00

Denormals
0
.
.
0

00..00
    .
    .

00..00

11.11
    .
    .

00..01

Zero 0 00..00 00..00

Negative Reals

Zero 1 00..00 00..00

Denormals
1
.
.
1

00..00
    .
    .

00..00

00..01
    .
    .

11..11

Normals
1
.
.
1

00..01
    .
    .

11..10

00..00
    .
    .

11..11

Infinity 1 11..11 00..00

Negative NaNs

Signaling
1
.
.
1

11..11
    .
    .

11..11

00..01
    .
    .

01..11

Quiet
1 (Indefinite)

.

.
1

11..11
    .
    .

11..11

10..00
    .
    .

11..11

Single:
Double:

 8 bits
11 bits

23 bits
52 bits

*Integer bit is implied and not stored.
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Table 7-5.  Extended Real Encodings

Class Sign Biased Exponent
Significand

ff-ff*

Positive NaNs

Quiet
0
.
.
0

11..11
    .
    .
11..11

1 11..11
    .
    .
1 10..00

Signaling
0
.
.
0

11..11
    .
    .
11..11

1 01..11
    .
    .
1 00..01

Infinity 0 11..11 1 00..00

Positive Reals

Normals
0
.
.
0

11..10
    .
    .
00..01

1 11..11
    .
    .
1 00..00

Pseudodenormals
0
.
0

00..00
    .
00..00

1 11.11
    .
1 00..01

Denormals
0
.
.
0

00..00
    .
    .
00..00

0 11.11
    .
    .
0 00..01

Zero 0 00..00 0 00..00

Negative Reals
Zero 1 00..00 0 00..00

Denormals
1
.
.
1

00..00
    .
    .
00..00

0 00..01
    .
    .
0 11..11

Pseudodenormals
1
.
1

00..00
    .
00..00

1 11..11
    .
1 00..00

Normals
1
.
.
1

00..01
    .
    .
11..10

1 00..00
    .
    .
1 11..11

Infinity 1 11..11 1 00..00

Negative NaNs

Signaling
1
.
.
1

11..11
    .
    .
11..11

1 00..01
    .
    .
1 01..11

Quiet
1 (Indefinite)
.
.
1

11..11
    .
    .
11..11

1 10..00
    .
    .
1 11..11

 15 bits 64 bits

*Integer bit is implied and not stored.
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Table 7-6.  Unsupported Formats

Class Sign Biased Exponent
Significand

f∆∆ff-ff*

Positive Pseudo-NaNs

Quiet
0
.
.
0

11..11
    .
    .

11..11

0∆ 11..11
    .
    .

0 10..00

Signaling
0
.
.
0

11..11
    .
    .

11..11

0 01..11
    .
    .

0 00..01

Pseudoinfinity 0 11..11 0 00..00

Positive Reals

Unnormals
0
.
.
0

11..10
    .
    .

00..01

0 11..11
    .
    .

0 00..00

Negative Reals

Unnormals
1
.
.
1

11..10
    .
    .

00..01

0 11..01
    .
    .

0 00..00

Pseudoinfinity 1 11..11 0 00..00

Negative Pseudo NaNs

Signaling
1
.
.
1

11..11
    .
    .

11..11

0 01..11
    .
    .

0 00..01

Quiet
1
.
.
1

11..11
    .
    .

11..11

0 11..11
    .
    .

0 10..00

15 bits 64 bits

*Integer bit is implied and not stored.

7.1.1. Denormal Real Numbers
The processor generally stores nonzero real numbers in normalized floating-point form; that
is, the integer (leading) bit of the significand is always a one. (Refer to the previous section
for a review of operand formats.) This bit is explicitly stored in the extended format, and is
implicitly assumed to be a one (1∆) in the single and double formats. Since leading zeros are
eliminated, normalized storage allows the maximum number of significant digits to be held
in a significand of a given width.

When a numeric value becomes very close to zero, normalized floating-point storage cannot
be used to express the value accurately. The term tiny is used here to precisely define what
values require special handling. A number R is said to be tiny when –2Emin < R < 0 or 0 < R
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< +2Emin. (As defined in the previous section, Emin is –126 for single format, –1022 for
double format, and –16382 for extended format.) In other words, a nonzero number is tiny if
its exponent would be too negative to store in the destination format.

To accommodate these instances, the processor can store and operate on reals that are not
normalized, i.e., whose significands contain one or more leading zeros. Denormals typically
arise when the result of a calculation yields a value that is tiny.

Denormal values have the following properties:

• The biased floating-point exponent is stored at its smallest value (zero)

• The integer bit of the significand (whether explicit or implicit) is zero

The leading zeros of denormals permit smaller numbers to be represented, at the possible
cost of some lost precision (the number of significant bits is reduced by the leading zeros). In
typical algorithms, extremely small values are most likely to be generated as intermediate,
rather than final, results. By using the extended real format for holding intermediate values,
quantities as small as ±3.37 × 10–4932 can be represented; this makes the occurrence of
denormal numbers a rare phenomenon in numerical applications. Nevertheless, the processor
can load, store, and operate on denormalized real numbers when they do occur.

Denormals receive special treatment by the processor in three respects:

• The processor avoids creating denormals whenever possible. In other words, it always
normalizes real numbers except in the case of tiny numbers.

• The processor provides the unmasked underflow exception to permit programmers to
detect cases when denormals would be created.

• The processor provides the denormal operand exception to permit programmers to detect
cases when denormals enter into calculations.

Denormalizing means incrementing the true result's exponent and inserting a corresponding
leading zero in the significand, shifting the rest of the significand one place to the right.
Denormal values may occur in any of the single, double, or extended formats. Table 7-7
shows the range of denormalized values in each format.

Table 7-7.  Denormalized Values

Smallest Magnitude Largest Magnitude

Format (Exact) (Approx.) (Exact) (Approx.)

Single Precision 2–149 10–46 2–126–2–150 10–38

Double Precision 2–1074 10–324 2–1022–2–1075 10–308

Extended 2–16445 10–4951 2–16382–2–16445 10–4932

Denormalization produces either a denormal or a zero. Denormals are readily identified by
their exponents, which are always the minimum for their formats; in biased form, this is
always the bit string: 00..00. This same exponent value is also assigned to the zeros, but a
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denormal has a nonzero significand. A denormal in a register is tagged special. Tables 7-2
through Table 7-Error! Bookmark not defined.  show how denormal values are encoded in
each of the real data formats.

The denormalization process causes loss of significance if low-order one-bits are shifted off
the right of the significand. In a severe case, all the significand bits of the true result are
shifted out and replaced by the leading zeros. In this case, the result of denormalization is a
true zero, and, if the value is in a register, it is tagged as a zero.

Denormals are rarely encountered in most applications. Typical debugged algorithms
generate extremely small results only during the evaluation of intermediate subexpressions;
the final result is usually of an appropriate magnitude for its single or double format real
destination. If intermediate results are held in temporary real, as is recommended, the greater
range of this format makes underflow very unlikely. Denormals are likely to arise only when
an application generates a great many intermediates, so many that they cannot be held on the
register stack or in extended format memory variables. If storage limitations force the use of
single or double format reals for intermediates, and small values are produced, underflow
may occur, and, if masked, may generate denormals.

When a denormal number in single or double format is used as a source operand and the
denormal exception is masked, the FPU automatically normalizes the number when it is
converted to extended format.

7.1.2. Zeros
The value zero in the real and decimal integer formats may be signed either positive or
negative, although the sign of a binary integer zero is always positive. For computational
purposes, the value of zero always behaves identically, regardless of sign, and typically the
fact that a zero may be signed is transparent to the programmer. If necessary, the FXAM
instruction may be used to determine a zero's sign.

A programmer can code a zero, or it can be created by the FPU as its masked response to an
underflow exception. If a zero is loaded or generated in a register, the register is tagged zero.
Table 7-8 lists the results of instructions executed with zero operands and also shows how a
zero may be created from nonzero operands.

7.1.3. Infinity
The real formats support signed representations of infinities. These values are encoded with a
biased exponent of all ones and a significand of 1∆00..00; if the infinity is in a register, it is
tagged special.

A programmer can code an infinity, or it can be created by the FPU as its masked response to
an overflow or a zero divide exception. Note that depending on rounding mode, the masked
response may create the largest valid value representable in the destination rather than
infinity.
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The signs of the infinities are observed, and comparisons are possible. Infinities are always
interpreted in the affine sense; that is, –∞ < (any finite number) < +∞. Arithmetic on
infinities is always exact and, therefore, signals no exceptions, except for the invalid
operations specified in Table 7-9.

Table 7-8.  Zero Operands and Results

Operation Operands Result

FLD, FLBD ±0 ∗0

FILD +0 +0

FST, FSTP, FRNDINT ±0 ∗0

+X +01

−X −01

FBSTP ±0 ∗0

FIST,FISTP ±0 ∗0

+X −03

−X −04

FCHS +0 −0

−0 +0

FABS ±0 +0

Addition +0 plus +0 +0

−0 plus −0 −0

+0 plus −0, −0 plus+0 +02

−X plus +X, +X plus−X ±0

±0 plus ± X, ± X plus ±0 #X

Subtraction +0 minus − 0 +0

−0  minus + 0 −0

+0 minus + 0, −0 minus ±02

−0 ±02

+X minus +X, −X minus −#X

−X #X

±0 minus ±X

±X minus ±0
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Table 7-8.  Zero Operands and Results (Contd.)

Operation Operands Result

Multiplication ±0 × ±0 0

±0 × ±X, ±X × ±0 0

+X × +Y, −X × −Y +01

+X × −Y, −X × +Y −01

Division ±0 ÷ ±0 Invalid Operation

±X ÷ ±0 ∞ (Zero Divide)

±X ÷ ±∞ 0

+0 ÷ +X, −0 ÷ −X +0

+0 ÷ −X, −0 ÷ +X −0

−X ÷ −Y, +X ÷ +Y +01

−X ÷ −Y, +X ÷ +Y −01

FPREM, FPREM1 ±0 rem ±0 Invalid Operation

±X rem ±0 Invalid Operation

+0 rem ±X +0

−0 rem ±X −0

+X rem ±Y +0 Y exactly divides X

−X rem ±Y −0 Y exactly divides X

FSQRT ±0 *0

Compare ±0 : +X ±0 < +X

±0 : ±0 ±0 = ±0

±0 : −X ±0  > −X

FTST ±0 ±0 = 0

FXAM +0 C3 = 1; C2 =C1 = C0 =0

−0 C3 =C1 = 1; C2 = C0 = 0

FSCALE ±0 scaled by −∞ ∗0

±0 scaled by  +∞ Invalid Operation

±0 scaled by X ∗0

FXTRACT +0 ST = +0,ST(1) = ∞,

−0 Zero divide

ST = −0,ST(1) = −∞,
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Table 7-8.  Zero Operands and Results (Contd.)

Operation Operands Result

Zero divide

FPTAN ±0 ∗0

FSIN (or SIN result of FSINCOS) ±0 ∗0

FCOS (or COS result of FSINCOS) ±0 +1

FPATAN ±0 ÷ + X ∗0

±0 ÷ − X ∗π

±X ÷ ±0 #π/2

±0 ÷ +0 ∗0

±0 ÷ −0 ∗π

+∞ ÷ ±0 +π/2

−∞ ÷ ±0 −π/2

±0 ÷ + ∞ ∗0

±0 ÷ − ∞ ∗π

F2XM1 +0 +0

−0 −0

FYL2X ±Y × log(±0) Zero Divide

±0 × log(±0) Invalid Operation

FYL2XP1 + Y × log(±0+1) ∗0

− Y × log(±0+1) −∗0

NOTES:

X and Ydenote nonzero positive operands

1 When extreme underflow denormalizes the result to zero.
2 Sign determined by rounding mode: + for nearest, up, or chop, − for down
3 When 0 < X < 1 and rounding mode is not up.
4 When −1 < X < 0 and rounding mode is not down.
* Sign of original zero operand.
# Sign of original X operand.
−# Complement of sign of original X operand.
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Table 7-9.  Infinity Operands and Results

Operation Operands Result

FLD,FBLD ±∞ ∗∞

FST,FSTP,FRNDINT ±∞ ∗∞

FCHS +∞ −∞

−∞ +∞

FABS ±∞ +∞

Addition +∞ plus +∞ +∞

−∞ plus −∞ −∞

+∞ plus −∞ Invalid Operation

−∞ plus +∞ Invalid Operation

±∞ plus ±X ∗∞

±X plus ±∞ ∗∞

Subtraction +∞ minus −∞ +∞

−∞ minus +∞ −∞

+∞ minus +∞ Invalid Operation

−∞ minus −∞ Invalid Operation

±∞ minus  ±X ∗∞

±X minus ±∞ −∗∞

Multiplication ±∞ × ±∞ ∞

±∞ × ±Y, ±Y × ±∞ ∞

±∞ × ±Y, ±Y × ±∞ ∞

±0 × ±∞, ±∞ × ±0 Invalid Operation

Division ±∞ ÷ ±∞ Invalid Operation

+∞ ÷ ±X ∞

±X ÷ ±∞ 0

FPREM,FPREM1 +∞ rem ±∞ Invalid Operation

±∞ rem ±X Invalid Operation

±X rem ±∞ $X, Q = 0

FSQRT −∞ Invalid Operation

+∞ +∞
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Table 7-9.  Infinity Operands and Results (Contd.)

Operation Operands Result

Compare +∞ : +∞ +∞ = +∞

−∞ : −∞ −∞ =  −∞

+∞ : −∞ +∞> −∞

−∞ : +∞ −∞ < +∞

+∞ : ±X +∞ > X

−∞ : ±X −∞ < X

±X : +∞ X < +∞

±X : −∞ X > +∞

+∞ +∞ > 0

FTST −∞ −∞ <0

FSCALE ±∞ scaled by −∞ Invalid Operation

±∞ scaled by +∞ ∗∞

±∞ scaled by ±X ∗∞

±0 scaled by −∞ ±01

±0 scaled by ∞ Invalid Operation

±Y scaled by +∞ #∞

±Y scaled by −∞ #0

FXTRACT ±∞ ST = ∗∞, ST(1) = +∞

FXAM +∞ C0 = C2 = 1;C1 = C3 = 0

−∞ C0 = C1 = C2 = 1; C3 = 0

FPATAN ±∞ ÷ ±X ∗π/2

±Y ÷ +∞ #0

±Y ÷ −∞ #π

±∞ ÷ +∞ ∗π/4

±∞÷ −∞ ∗3π/4

±∞ ÷ ±0 ∗π/2

+0 ÷ +∞ +0

+0 ÷ −∞ +π

−0 ÷ +∞ −0

−0 ÷ −∞ −π
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Table 7-9.  Operands and Results (Contd.)

Operation Operands Result

F2XM1 +∞ +∞

−∞ −1

FYL2X ±∞ X  log (1) Invalid Operation

±∞ × log (X>1) ∗∞

±∞ × log (0<X<1) −∗∞

±Y × log (+∞) #∞

±0 × log (+∞) Invalid Operation

±Y × log (−∞) Invalid Operation

FYL2XP1 ±∞ × log (1) Invalid Operation

±∞ × log (X>0) ∗∞

±∞ × log −∗∞

(−1<X<0) #∞

±Y × log (+∞) Invalid Operation

±0 × log (+∞) Invalid Operation

±Y × log (−∞)

NOTES:

X Zero or nonzero, positive, finite operand
Y Nonzero positive, finite operand
* Sign of original infinity operand.
−* Complement of sign of original infinity operand
$ Sign of original operand.
# Sign of the original Y operand.
1 Sign of original zero operand.

7.1.4. NaN (Not-a-Number)
A NaN (Not a Number) is a member of a class of special values that exists in the real formats
only. A NaN has an exponent of 11..11B, may have either sign, and may have any
significand except 1∆00..00B, which is assigned to the infinities. A NaN in a register is
tagged special.

There are two classes of NaN: signaling (SNaN) and quiet (QNaN). Among the QNaNs, the
value real indefinite is of special interest.
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7.1.4.1. SIGNALING NaNs

A signaling NaN is a NaN that has a zero as the most significant bit of its fraction. The rest
of the significand may be set to any value. The FPU never generates a signaling NaN as a
result; however, it recognizes signaling NaNs when they appear as operands. Arithmetic
operations (as defined at the beginning of this chapter) on a signaling NaN cause an invalid-
operation exception (except for load operations from the stack, FXCH, FCHS, and FABS).

By unmasking the invalid operation exception, the programmer can use signaling NaNs to
trap to the exception handler. The generality of this approach and the large number of NaN
values that are available provide the sophisticated programmer with a tool that can be applied
to a variety of special situations.

For example, a compiler could use signaling NaNs as references to uninitialized (real) array
elements. The compiler could preinitialize each array element with a signaling NaN whose
significand contained the index (relative position) of the element. If an application program
attempted to access an element that it had not initialized, it would use the NaN placed there
by the compiler. If the invalid operation exception were unmasked, an interrupt would occur,
and the exception handler would be invoked. The exception handler could determine which
element had been accessed, since the operand address field of the exception pointers would
point to the NaN, and the NaN would contain the index number of the array element.

7.1.4.2. QUIET NaNs

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The
processor creates the quiet NaN real indefinite (defined below) as its default response to
certain exceptional conditions. The processor may derive other QNaNs by converting an
SNaN. The processor converts a SNaN by setting the most significant bit of its significand to
one, thereby generating a QNaN. The remaining bits of the significand are not changed;
therefore, diagnostic information that may be stored in these bits of the SNaN is propagated
into the QNaN.

The processor will generate the special QNaN, real indefinite, as its masked response to an
invalid operation exception. This NaN is signed negative; its significand is encoded 1∆
100..00. All other NaNs represent values created by programmers or derived from values
created by programmers.

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as the
masked response for invalid-operation exceptions and as the result of an operation in which
at least one of the operands is a QNaN. The processor applies the rules shown in Table 7-10
when generating a QNaN.
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Table 7-10.  Rules for Generating QNaNs

Operation Action

Real operation on an SNaN and a QNaN. Deliver the QNaN operand.

Real operation on two SNaNs. Deliver the QNaN that results from converting the
SNaN that has the larger significand.

Real operation on two QNaNs. Deliver the QNaN that has the larger significand.

Real operation on an SNaN and another number. Deliver the QNaN that results from converting the
SNaN.

Real operation on a QNaN and another number. Deliver the QNaN.

Invalid operation that does not involve NaNs. Deliver the default QNaN real indefinite.

Note that handling of a QNaN operand has greater priority than all exceptions except certain
invalid-operation exceptions (refer to the section "Exception Priority" in this chapter).

Quiet NaNs could be used, for example, to speed up debugging. In its early testing phase, a
program often contains multiple errors. An exception handler could be written to save
diagnostic information in memory whenever it was invoked. After storing the diagnostic
data, it could supply a quiet NaN as the result of the erroneous instruction, and that NaN
could point to its associated diagnostic area in memory. The program would then continue,
creating a different NaN for each error. When the program ended, the NaN results could be
used to access the diagnostic data saved at the time the errors occurred. Many errors could
thus be diagnosed and corrected in one test run.

In embedded applications which use computed results in further computations, an undetected
QNaN can invalidate all subsequent results. Such applications should therefore periodically
check for QNaNs and provide a recovery mechanism to be used if a QNaN result is detected.

7.1.5. Indefinite
For each numeric data type, one unique encoding is reserved for representing the special
value indefinite. The processor produces this encoding as its response to a masked invalid-
operation exception.

In the case of reals, the indefinite value is a QNaN as discussed in the prior section.

Packed decimal indefinite may be stored with a FBSTP instruction; attempting to use this
encoding in a FBLD instruction, however, will have an undefined result; thus indefinite
cannot be loaded from a packed decimal integer.
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In the binary integers, the same encoding may represent either indefinite or the largest
negative number supported by the format (–215, –231, or –263). The processor will store this
encoding as its masked response to an invalid operation, or when the value in a source
register represents or rounds to the largest negative integer representable by the destination.
In situations where its origin may be ambiguous, the invalid-operation exception flag can be
examined to see if the value was produced by an exception response. When this encoding is
loaded or used by an integer arithmetic or compare operation, it is always interpreted as a
negative number; thus, indefinite cannot be loaded from a binary integer.

7.1.6. Encoding of Data Types
Table 7-2 through Table 7-5 show how each of the special values just described is encoded
for each of the numeric data types. In these tables, the least-significant bits are shown to the
right and are stored in the lowest memory addresses. The sign bit is always the left-most bit
of the highest-addressed byte.

7.1.6.1. UNSUPPORTED FORMATS

The extended format permits many bit patterns that do not fall into any of the previously
mentioned categories. Table 7-Error! Bookmark not defined.  shows these unsupported
formats. Some of these encodings were supported by the Intel287 math coprocessor;
however, most of them are not supported by the Intel387 math coprocessor, Intel486
processor, and Pentium processor FPUs. These changes are required due to changes made in
the final version of IEEE Std 754 that eliminated these data types.

The categories of encodings formerly known as pseudo-NaNs, pseudoinfinities, and
unnormal numbers are not supported. The Intel387 math coprocessor, Intel486 processor and
Pentium processor FPU's raise the invalid-operation exception when they are encountered as
operands.

The encodings formerly known as pseudodenormal numbers are not generated by the
Pentium processor; however, they are correctly utilized when encountered as operands. The
exponent is treated as if it were 00..01 and the mantissa is unchanged. The denormal
exception is raised.

7.1.7. Numeric Exceptions
The FPU can recognize six classes of numeric exception conditions while executing numeric
instructions:

1. I — Invalid operation

 Stack fault

 IEEE standard invalid operation

2. ZDivide-by-zero
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3. DDenormalized operand

4. ONumeric overflow

5. UNumeric underflow

6. PInexact result (precision)

7.1.8. Handling Numeric Exceptions
When numeric exceptions occur, the processor takes one of two possible courses of action:

• The FPU can itself handle the exception, producing the most reasonable result and
allowing numeric program execution to continue undisturbed.

• A software exception handler can be invoked to handle the exception.

Each of the six exception conditions described above has a corresponding flag bit in the FPU
status word and a mask bit in the FPU control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the processor takes an appropriate default
action and continues with the computation. If the exception is unmasked (mask = 0), a
software exception handler is invoked immediately before execution of the next WAIT or a
floating-point instruction other than FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, FNSAVE. Depending on the value of the NE bit of the CR0 control register, the
exception handler is invoked either (NE = 1) through interrupt vector 16 or (NE = 0) through
an external interrupt.

Note that when exceptions are masked, the FPU may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked
response. For example, the FPU could detect a denormalized operand, perform its masked
response to this exception, and then detect an underflow.

7.1.8.1. AUTOMATIC EXCEPTION HANDLING

The processor has a default fix-up activity for every possible exception condition it may
encounter. These masked-exception responses are designed to be safe and are generally
acceptable for most numeric applications.

As an example of how even severe exceptions can be handled safely and automatically using
the default exception responses, consider a calculation of the parallel resistance of several
values using only the standard formula (Figure 7-1). If R1 becomes zero, the circuit
resistance becomes zero. With the divide-by-zero and precision exceptions masked, the
processor will produce the correct result.
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Figure 7-1.  Arithmetic Example Using Infinity

By masking or unmasking specific numeric exceptions in the FPU control word,
programmers can delegate responsibility for most exceptions to the processor, reserving the
most severe exceptions for programmed exception handlers. Exception-handling software is
often difficult to write, and the masked responses have been tailored to deliver the most
reasonable result for each condition. For the majority of applications, masking all exceptions
yields satisfactory results with the least programming effort. Certain exceptions can usefully
be left unmasked during the debugging phase of software development, and then masked
when the clean software is actually run. An invalid-operation exception for example,
typically indicates a program error that must be corrected.

The exception flags in the FPU status word provide a cumulative record of exceptions that
have occurred since these flags were last cleared. Once set, these flags can be cleared only by
executing the FCLEX (clear exceptions) instruction, by reinitializing the FPU with FINIT, or
by overwriting the flags with an FRSTOR or FLDENV instruction. This allows a
programmer to mask all exceptions, run a calculation, and then inspect the status word to see
if any exceptions were detected at any point in the calculation.

7.1.8.2. SOFTWARE EXCEPTION HANDLING

If the Pentium processor and Intel486 processor FPU encounters an unmasked exception
condition, a software exception handler is invoked immediately before execution of the next
WAIT or non-control floating-point instruction. The exception handler is invoked either
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through interrupt vector 16 or through an external interrupt, depending on the value of the
NE bit of the CR0 control register.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately before
the execution of the next non-control floating-point or WAIT instruction. Interrupt 16 is an
operating-system call that invokes the exception handler. Chapter 14 contains a general
discussion of exceptions and interrupts.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception causes
the processor to freeze immediately before executing the next non-control floating-point or
WAIT instruction. The frozen processor waits for an external interrupt, which must be
supplied by external hardware in response to the FERR# output of the processor. (Regardless
of the value of NE, an unmasked numerical exception causes the FERR# output to be
activated.) In this case, the external interrupt invokes the exception-handling routine. If NE =
0 but the IGNNE# input is active, the processor disregards the exception and continues. Error
reporting via external interrupt is supported for DOS compatibility. Chapter 23 contains
further discussion of compatibility issues.

If the Intel387 math coprocessor NPX encounters an unmasked exception condition, it
signals the exception to the Intel386 CPU using the ERROR# status line between the two
processors. See Chapter 23 for differences in FPU exception handling.

The exception-handling routine is normally a part of the systems software. The routine must
clear (or disable) the active exception flags in the FPU status word before executing any FP
instructions that cannot complete execution when there is a pending FP exception. Otherwise,
the FP instruction will trigger the FPU interrupt again, and the system will be caught in an
endless loop. In any event, the routine must clear (or disable) the active exception flags in the
FPU status word after handling them, and before IRET(D). Typical exception responses may
include:

• Incrementing an exception counter for later display or printing

• Printing or displaying diagnostic information (e.g., the FPU environment and registers)

• Aborting further execution, or using the exception pointers to build an instruction that
will run without exception and executing it

Applications programmers should consult their operating system's reference manuals for the
appropriate system response to numerical exceptions. For systems programmers, some details
on writing software exception handlers are provided in Chapter 14.

7.1.9. Invalid Operation
This exception may occur in response to two general classes of operations:

1. Stack operations

2. Arithmetic operations
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The stack flag (SF) of the status word indicates which class of operation caused the
exception. When SF is 1 a stack operation has resulted in stack overflow or underflow; when
SF is 0, an arithmetic instruction has encountered an invalid operand.

7.1.9.1. STACK EXCEPTION

When SF is 1, indicating a stack operation, the O/U# bit of the condition code (bit C1)
distinguishes between stack overflow and underflow as follows:

O/U# = 1 Stack overflow—an instruction attempted to push down a nonempty stack
location.

O/U# = 0 Stack underflow—an instruction attempted to read an operand from an
empty stack location.

When the invalid-operation exception is masked, the FPU returns the QNaN indefinite. This
value overwrites the destination register, destroying its original contents.

When the invalid-operation exception is not masked, an exception handler is invoked. TOP is
not changed, and the source operands remain unaffected.

7.1.9.2. INVALID ARITHMETIC OPERATION

This class includes the invalid operations defined in IEEE Std 854. The FPU reports an
invalid operation in any of the cases shown in Table 7-Error! Bookmark not defined. . Also
shown in this table are the FPU's responses when the invalid exception is masked. When
unmasked, an exception handler is invoked, and the operands remain unaltered. An invalid
operation generally indicates a program error.

Table 7-11.  Masked Responses to Invalid Operations

Condition Masked Response

Any arithmetic operation on an unsupported format. Return the QNaN indefinite.

Any arithmetic operation on a signaling NaN. Return a QNaN (refer to the section “Rules for
Generating QNaNs”).

Compare and test operations: one or both operands
is a NaN.

Set condition codes “not comparable.”

Addition of opposite-signed infinities or subtraction of
like-signed infinities.

Return the QNaN indefinite.

Multiplication: ∞ × 0; or 0 × ∞. Return the QNaN indefinite.

Division: ∞ ÷ ∞; or 0 ÷ 0. Return the QNaN indefinite.

Remainder instructions FPREM, FPREM1 when
modulus (divisor) is zero or dividend is ∞.

Return the QNaN indefinite; set C2 = 0.

Trigonometric instructions FCOS, FPTAN, FSIN,
FSINCOS when argument is ∞.

Return the QNaN indefinite; set C2 = 0.
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Table 7-11.  Masked Responses to Invalid Operations (Contd.)

Condition Masked Response

FSQRT of negative operand (except FSQRT
(–0) = –0), FYL2X of negative operand (except
FYL2X (–0) = –∞), FYL2XP1 of operand more
negative than –1.

Return the QNaN indefinite.

FBSTP instruction when source register is empty, a
NaN, ∞, or exceeds 18 decimal  digits.

Store packed decimal indefinite.

FXCH instruction when one or both registers are
tagged empty.

Change empty registers to the QNaN indefinite and
then perform exchange.

7.1.10. Division by Zero
If an instruction attempts to divide a finite nonzero operand by zero, the FPU will report a
zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instructions that
perform division internally: FYL2X and FXTRACT. The masked response for FDIV is to
return an infinity signed with the exclusive OR of the sign of the two operands. FYL2X
returns an infinity signed with the opposite sign of the non-zero operand. For FXTRACT,
ST(1) is set to –∞; ST is set to zero with the same sign as the original operand. If the divide-
by-zero exception is unmasked, an exception handler is invoked; the operands remain
unaltered.

7.1.11. Denormal Operand
If an arithmetic instruction attempts to operate on a denormal operand, the FPU reports the
denormal-operand exception. Denormal operands may have reduced significance due to lost
low-order bits, therefore it may be advisable in certain applications to preclude operations on
these operands. This can be accomplished by an exception handler that responds to unmasked
denormal operand exceptions. Most users will mask this exception so that computation may
proceed; any loss of accuracy will be analyzed by the user when the final result is delivered.

When this exception is masked, the FPU sets the DE-bit in the status word, then proceeds
with the instruction. Gradual underflow and denormal numbers will produce results at least
as good as, and often better than what could be obtained from a machine that flushes
underflows to zero. In fact, a denormal operand in single- or double-precision format will be
normalized to the extended-real format when loaded into the FPU. Subsequent operations
will benefit from the additional precision of the extended-real format used internally.

When this exception is not masked, the DE-bit is set and the exception handler is invoked.
The operands are not changed by the instruction and are available for inspection by the
exception handler.
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The Pentium processor FPU, Intel486 processor FPU, and Intel387 math coprocessors handle
denormal values differently than the 8087 and Intel287 math coprocessors. This change is
due to revisions in the IEEE standard before being approved. The difference in operation
occurs when the denormal exception is masked. The Pentium processor FPU, Intel486
processor FPU, and Intel387 math coprocessors will automatically normalize denormals. The
8087 and Intel287 math coprocessors will generate a denormal result.

The difference in denormal handling is usually not an issue. The denormal operand exception
is normally masked for the Intel387 math coprocessor, Intel486 processor, and Pentium
processor FPUs. For programs that also run on an Intel287 math coprocessor, the denormal
exception is often unmasked and an exception handler is provided to normalize any denormal
values. Such an exception handler is redundant for the Pentium processor, Intel486 processor
and Intel387 DX math coprocessor FPUs. The default exception handler should be used.  See
Chapter 23 for more information on the handling of exceptions by the various Intel
architectures.

A program can detect at run time whether it is running on a Pentium processor, Intel486
processor, or Intel387 math coprocessor FPU or the older 8087/Intel287 math coprocessors.
See Chapter 5 for example code sequences to determine the presence of 8087/Intel287 and
Intel387 math coprocessors, as well as processor type. This example can be used to
selectively mask the denormal exception for Intel387 DX math coprocessor, Intel486
processor or Pentium processor FPUs. A denormal exception handler should also be provided
to support 8087/Intel287 math coprocessors. This code example can also be used to set a flag
to allow use of new instructions added to the Intel387 math coprocessor, Intel486 processor,
and Pentium processor FPUs beyond the instructions of the 8087/Intel287 math coprocessors.

7.1.12. Numeric Overflow and Underflow
If the exponent of a numeric result is too large for the destination real format, the FPU
signals a numeric overflow. Conversely, if the exponent of a result is too small to be
represented in the destination format, a numeric underflow is signaled. If either of these
exceptions occur, the result of the operation is outside the range of the destination real
format.

Typical algorithms are most likely to produce extremely large and small numbers in the
calculation of intermediate, rather than final, results. Because of the great range of the
extended-precision format, overflow and underflow are relatively rare events in most
numerical applications.

7.1.12.1. OVERFLOW

The overflow exception can occur whenever the rounded true result would exceed in
magnitude the largest finite number in the destination format. The exception can occur in the
execution of most of the arithmetic instructions and in some of the conversion instructions;
namely, FST(P), F(I)ADD(P), F(I)SUB(R)(P), F(I)MUL(P), FDIV(R)(P), FSCALE, FYL2X,
and FYL2XP1.
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The response to an overflow condition depends on whether the overflow exception is
masked:

• Overflow exception masked. The value returned depends on the rounding mode as
Table 7-12 illustrates.

• Overflow exception not masked. The unmasked response depends on whether the
instruction is supposed to store the result on the stack or in memory:

 If the destination is the stack, then true result is divided by 224,576 and rounded. (The
bias 24,576 is equal to 3 × 213.) The significand is rounded to the appropriate
precision (according to the precision control (PC) bit of the control word, for those
instructions controlled by PC, otherwise to extended precision). The roundup bit
(C1) of the status word is set if the significand was rounded upward. The biasing of
the exponent by 24,576 normally translates the number as nearly as possible to the
middle of the exponent range so that, if desired, it can be used in subsequent scaled
operations with less risk of causing further exceptions. With the instruction
FSCALE, however, it can happen that the result is too large and overflows even after
biasing. In this case, the unmasked response is exactly the same as the masked
round-to-nearest response, namely ± infinity. The intention of this feature is to
ensure the trap handler will discover that a translation of the exponent by –24574
would not work correctly without obliging the programmer of Decimal-to-Binary or
Exponential functions to determine which trap handler, if any, should be invoked.

 If the destination is memory (this can occur only with the store instructions), then no
result is stored in memory. Instead, the operand is left intact in the stack. Because
the data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as
the standard requires. The exception handler should ultimately store a value into the
destination location in memory if the program is to continue.

Table 7-12.  Masked Overflow Results

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
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7.1.12.2. UNDERFLOW

Underflow can occur in the execution of the instructions FST(P), FADD(P), FSUB(RP),
FMUL(P), F(I)DIV(RP), FSCALE, FPREM(1), FPTAN, FSIN, FSINCOS, FPATAN,
F2XM1, FYL2X, and FYL2XP1.

Two related events contribute to underflow:

1. Creation of a tiny (denormal) result which, because it is so small, may cause some other
exception later (such as overflow upon division).

2. Creation of an inexact result; i.e., the delivered result differs from what would have been
computed were both the exponent range and precision unbounded.

Which of these events triggers the underflow exception depends on whether the underflow
exception is masked:

1. Underflow exception masked. The underflow exception is signaled when the result is
both tiny and inexact.

2. Underflow exception not masked. The underflow exception is signaled when the result is
tiny, regardless of inexactness.

The response to an underflow exception also depends on whether the exception is masked:

1. Masked response. The result is denormal or zero. The precision exception is also
triggered.

2. Unmasked response. The unmasked response depends on whether the instruction is
supposed to store the result on the stack or in memory.

 If the destination is the stack, then the true result is multiplied by 224,576 and
rounded. (The bias 24,576 is equal to 3 × 213.) The significand is rounded to the
appropriate precision (according to the precision control (PC) bit of the control
word, for those instructions controlled by PC, otherwise to extended precision). The
roundup bit (C1) of the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly as
possible to the middle of the exponent range so that, if desired, it can be used in
subsequent scaled operations with less risk of causing further exceptions. With the
instruction FSCALE, however, it can happen that the result is too tiny and
underflows even after biasing. In this case, the unmasked response is exactly the
same as the masked round-to-nearest response, namely ±0. The intention of this
feature is to ensure the trap handler will discover that a translation by +24576 would
not work correctly without obliging the programmer of Decimal-to-Binary or
Exponential functions to determine which trap handler, if any, should be invoked.

 If the destination is memory (this can occur only with the store instructions), then no
result is stored in memory. Instead, the operand is left intact in the stack. Because
the data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as
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the standard requires. The exception handler should ultimately store a value into the
destination location in memory if the program is to continue.

7.1.13. Inexact (Precision)
This exception condition occurs if the result of an operation is not exactly representable in
the destination format. For example, the fraction 1/3 cannot be precisely represented in
binary form. This exception occurs frequently and indicates that some (generally acceptable)
accuracy has been lost.

By their nature, the transcendental instructions cause the inexact exception for their core
cases.  This means that some special cases where results are represented exactly will
nonetheless cause the inexact exception, e.g. arguments into log2 which are integer powers of
2. Table 7-13 lists the core cases for each of the transcendental instructions.

Table 7-13.  Transcendental Core Ranges

Instruction Core Range

FSIN  | θ | < 263

FCOS  | θ | < 263

FSINCOS | θ | < 263

FPTAN  | θ | < 263

FPATAN no restriction

F2XM1 –1 < X < 1

FYL2X* X > 0

FYL2XP1* –(1–(√2 / 2)) ≤ ST ≤ √2 –1

NOTES: For these 2-operand instructions, Y should be normal for the core cases.

The C1 (roundup) bit of the status word indicates whether the inexact result was rounded up
(C1 = 1) or chopped (C1 = 0).

The inexact exception accompanies the underflow exception when there is also a loss of
accuracy. When underflow is masked, the underflow exception is signaled only when there is
a loss of accuracy; therefore the precision flag is always set as well. When underflow is
unmasked, there may or may not have been a loss of accuracy; the precision bit indicates
which is the case.

This exception is provided for applications that need to perform exact arithmetic only. Most
applications will mask this exception. The FPU delivers the rounded or over/underflowed
result to the destination, regardless of whether a trap occurs.
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7.1.14. Exception Priority
The processor deals with exceptions according to a predetermined precedence. Precedence in
exception handling means that higher-priority exceptions are flagged and results are
delivered according to the requirements of that exception. Lower-priority exceptions may not
be flagged even if they occur. For example, dividing an SNaN by zero causes an invalid-
operand exception (due to the SNaN) and not a zero-divide exception; the masked result is
the QNaN real indefinite, not ∞. A denormal or inexact (precision) exception, however, can
accompany a numeric underflow or overflow exception.

The precedence among numeric exceptions is as follows:

1. Invalid operation exception, subdivided as follows:

a. Stack underflow.

b. Stack overflow.

c. Operand of unsupported format.

d. SNaN operand.

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing with
it has precedence over lower-priority exceptions. For example, a QNaN divided by zero
results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower-priority
exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.

6. Inexact result (precision).

7.1.15. Standard Underflow/Overflow Exception Handler
As long as the underflow and overflow exceptions are masked, no additional software is
required to cause the output of the processor to conform to the requirements of IEEE Std 854.
When unmasked, these exceptions give the exception handler an additional option in the case
of store instructions. No result is stored in memory; instead, the operand is left intact on the
stack. The handler may round the significand of the operand on the stack to the destination's
precision as the standard requires, or it may adjust the operand and reexecute the faulting
instruction.
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CHAPTER 8
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs written in ASM386/486.
These examples are intended to illustrate some of the techniques useful for programming
numeric applications.

8.1. CONDITIONAL BRANCHING EXAMPLE
As discussed earlier, several numeric instructions post their results to the condition code bits
of the FPU status word. Although there are many ways to implement conditional branching
following a comparison, the basic approach is as follows:

• Execute the comparison.

• Store the status word. (The FPU status word can be stored directly into AX register.)

• Inspect the condition code bits.

• Jump on the result.

Example 8-1 is a code fragment that illustrates how two memory-resident double-format real
numbers might be compared (similar code could be used with the FTST instruction). The
numbers are called A and B, and the comparison is A to B.

Example 8-1.  Conditional Branching for Compares

      .
      .
A   DQ     ?
B   DQ     ?
      .
      .
      .

FLD A ; LOAD A ONTO TOP OF FPU STACK
FCOMPB ; COMPARE A;B POP A
FSTSWAX ; STORE  RESULT TO AX REGISTER

;
; CPU AX REGISTER CONTAINS CONDITION CODES
;          (RESULTS OF COMPARE)
; LOAD CONDITION CODES INTO FLAGS
;

SAHF
;
; USE CONDITONAL JUMPS TO DETERMINE ORDERING OF A TO B
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;
JP A_B_UNORDERED ;  TEST C2 (PF)

 JB A_LESS ;  TEST CO (CF)
 JE A_EQUAL ;  TEST C3 (ZF)
A_GREATER: ;  C0 (CF) = 0, C3 (ZF) = 0
        .
        .
A_EQUAL : ;  C0 (CF) 1, C3 (ZF) = 0
        .
        .
A_LESS ;  CD (CF) = 1, C3 (ZF) = 0
       .
       .
A_B_UNORDERED: ;  C2 (PF) = 1
      .
      .

The comparison itself requires loading A onto the top of the FPU register stack and then
comparing it to B, while popping the stack with the same instruction. The status word is then
written into the AX register.

A and B have four possible orderings, and bits C3, C2, and C0 of the condition code indicate
which ordering holds. These bits are positioned in the upper byte of the FPU status word so
as to correspond to the zero, parity, and carry flags (ZF, PF, and CF), when the byte is
written into the flags. The code fragment sets ZF, PF, and CF of the EFLAGS register to the
values of C3, C2, and C0 of the FPU status word, and then uses the conditional jump
instructions to test the flags. The resulting code is extremely compact, requiring only seven
instructions.

The FXAM instruction updates all four condition code bits. Example 8-2 shows how a jump
table can be used to determine the characteristics of the value examined. The jump table
(FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for each
possible condition code setting. Note that four of the table entries contain the same value,
"EMPTY." The first two condition code settings correspond to "EMPTY." The two other
table entries that contain "EMPTY" will never be used on the 32-bit processors with
integrated FPU or the Intel387 math coprocessor, but may be used if the code is executed
with an Intel287 math coprocessor.

Example 8-2.  Conditional Branching for FXAM

;   JUMP TABLE FOR EXAMINE ROUTINE
;
FXAM-TBL  DD POSS_UNNORM, POS NAN, NEG_UNNORN, NEG_NAN,
&       POS_NORM, POS_INFINITY, NEG_NORM,
&       NEG_NFINITY, POS_ZERO, EMPTY, NEG_ZERO
&       EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

         .
         .
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     ; EXAMINE ST AND STORE RESULT (CONDITION CODES)
FXAM
XOR EAX, EAX ; CLEAR EAX
FSTSWAX

     ; CALCULATE OFFSET INTO JUMP TABLE

AND AX, 0100011100000000B ; CLEAR ALL BITS EXCEPT C3,
C2-C0

SHR EAX, 6 ; SHIFT C2-C0 INTO PLACE
(000XXX00)

SAL AH, 5 ; POSITION C3 (00X00000)
OR AL, AH ; DROP C3 IN ADJACENT TO C2

 (00XXXX00)
XOR AH, AH ; CLEAR OUT THE OLD COPY OF

C3

; JUMP TO THE ROUTINE ' ADDRESSED' BY CONDITION CODE

JMP FXAM_TBL[EAX]

 ;  HERE ARE THE JUMP TARGETS, ONE TO HANDLE
 ;           EACH POSSIBLE RESULT OF FXAM

 POS_UNNORM:
         .
 POS_NAM:
         .
 NEG_UNNOM:
         .
 NEG_NAM:
         .
 POS_NORM:
         .
 POS_INFINITY:
         .
 NEG_NORM:
         .
 NEG_INFINITY:
         .
 POS_ZERO:
         .
 EMPTY:
        .
 NEG_ZERO:
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        .
 POS_DENORM:
        .
 NEG_DENORM:

The program fragment performs the FXAM and stores the status word. It then manipulates
the condition code bits to finally produce a number in register AX that equals the condition
code times 2. This involves zeroing the unused bits in the byte that contains the code, shifting
C3 to the right so that it is adjacent to C2, and then shifting the code to multiply it by 2. The
resulting value is used as an index that selects one of the displacements from FXAM_TBL
(the multiplication of the condition code is required because of the 2-byte length of each
value in FXAM_TBL). The unconditional JMP instruction effectively vectors through the
jump table to the labeled routine that contains code (not shown in the example) to process
each possible result of the FXAM instruction.

8.2. EXCEPTION HANDLING EXAMPLES
There are many approaches to writing exception handlers. One useful technique is to
consider the exception handler procedure as consisting of "prologue," "body," and "epilogue"
sections of code. This procedure is invoked via interrupt number 16.

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, interrupts
have been disabled by hardware. The prologue performs all functions that must be protected
from possible interruption by higher-priority sources. Typically, this involves saving registers
and transferring diagnostic information from the FPU to memory. When the critical
processing has been completed, the prologue may re-enable interrupts to allow higher-
priority interrupt handlers to preempt the exception handler. The standard "prologue" not
only saves the registers and transfers diagnostic information from the FPU to memory but
also clears the FP exception flags in the status word. Alternatively, when it is not necessary
for the handler to be re-entrant, another technique may also be used. In this technique, the
exception flags are not cleared in the "prologue" and the body of the handler must not
contain any FP instructions that cannot complete execution when there is a pending FP
exception. Please refer to section 6.3.7 where these instructions are classified. Note that the
handler must still clear the exception flag(s) before executing the IRET. If the exception
handler uses neither of these techniques the system will be caught in an endless loop.

The body of the exception handler examines the diagnostic information and makes a
response that is necessarily application-dependent. This response may range from halting
execution, to displaying a message, to attempting to repair the problem and proceed with
normal execution.

The epilogue essentially reverses the actions of the prologue, restoring the processor so that
normal execution can be resumed. The epilogue must not load an unmasked exception flag
into the FPU or another exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton exception
handlers. They show how prologues and epilogues can be written for various situations, but
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provide comments indicating only where the application dependent exception handling body
should be placed.

The first two are very similar; their only substantial difference is their choice of instructions
to save and restore the FPU. The tradeoff here is between the increased diagnostic
information provided by FNSAVE and the faster execution of FNSTENV. For applications
that are sensitive to interrupt latency or that do not need to examine register contents,
FNSTENV reduces the duration of the "critical region," during which the processor does not
recognize another interrupt request.

After the exception handler body, the epilogues prepare the processor to resume execution
from the point of interruption (i.e., the instruction following the one that generated the
unmasked exception). Notice that the exception flags in the memory image that is loaded into
the FPU are cleared to zero prior to reloading (in fact, in these examples, the entire status
word image is cleared).

Example 8-3 and Example 8-4 assume that the exception handler itself will not cause an
unmasked exception. Where this is a possibility, the general approach shown in Example 8-5
can be employed. The basic technique is to save the full FPU state and then to load a new
control word in the prologue. Note that considerable care should be taken when designing an
exception handler of this type to prevent the handler from being reentered endlessly.

Example 8-3.  Full-State Exception Handler

SAVE_ALL PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE
; FOR FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108

;SAVE FULL FPU STATE, ENABLE INTERRUPTS
FNSAVE [EBP-108]
STI

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING
; CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD
; (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

; DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
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.
POP EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRET
SAVE_ALL ENDP

Example 8-4.  Reduced-Latency Exception Handler

SAVE_ENVIRONMENT PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE
; FOR FPU ENVIRONMENT

PUSH  EBP
.
.
MOV EBP, ESP
SUB ESP, 28

;SAVE ENVIRONMENT, ENABLE INTERRUPTS
FNSTENV ..[EBP-28]
STI

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING
; CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD
; (WHICH IS IN MEMORY)
; RESTORE MODIFIED ENVIRONEMNT IMAGE

MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

; DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRET
SAVE_ENVRIONEMNT ENDP

Example 8-5.  Reentrant Exception Handler

.

.
LOCAL_CONTROL DW ? ; ASSUME INITIALIZED

.
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.
REENTRANT PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE
; FOR FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108

; SAVE STATE, LOAD NEW CONTROL WORD,
; ENABLE INTERRUPTS

FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
STI
.
.

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING
; CODE GOES HERE
; AN UNMASKED EXCEPTION GENERATED HERE WILL
; CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
; IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED
; ON THE STACK.
;

.

.
; CLEAR EXCEPTION FLAGS IN STATUS WORD
; (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

; DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO POINT OF INTERRUPTION

IRET
REENTRANT ENDP

8.3. FLOATING POINT TO ASCII CONVERSION EXAMPLES
Numeric programs must typically format their results at some point for presentation and
inspection by the program user. In many cases, numeric results are formatted as ASCII



NUMERIC PROGRAMMING EXAMPLES EE

8-8

strings for printing or display. This example shows how floating-point values can be
converted to decimal ASCII character strings. Example 8-6 was developed using Intel's
assemblers. Modification will need to be made to meet the requirements of other vendor's
assemblers or their interface to high level languages.

Shortness, speed, and accuracy were chosen rather than providing the maximum number of
significant digits possible. An attempt is made to keep integers in their own domain to avoid
unnecessary conversion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy
of three units in the 16th decimal position for a noninteger value or integers greater than
1018. This is double precision accuracy. With values having decimal exponents less than 100
in magnitude, the accuracy is one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size, and
lower performance.

Example 8-6.  Floating Point to ASCII Conversion Routine

SOURCE

+1 $title ('Convert a floating point number to ASCII')

name floating_to_ascil

public floating_to_ascii
extrn get_power_10:near, tos_status:near

;
; This subroutine will convert the floating point
; number in the top of the NPX stack to an ASCII
; string and separate power of 10 scaling value
; (in binary). The maximum width of the ASCII string
; formed is controlled by a parameter which must be
; >1. Unnormal values, denormal values, and pseudo
; zeros will be correctly converted. However,
; unnormals and pseudo zeros are no longer supported
; formats on the Intel486 processor in conformance with
; the IEEE floating point standard) and hence
; not generated internally. A returned value will
; indicate how many binary bits of precision were lost
; in an unnormal or denormal value. The magnitude
; (in terms of binary power) of a psuedo zero will also
; be indicated. Integers less than 10**18 in magnitude
; are accurately converted if the destination ASCII
; string field is wide enough to hold all the digits.
; Otherwise the value is converted to scientific notation.
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;
; The status of the conversion is indentified by the
; return value, it can be:
;
; 0 Conversion complete, string size is defined
; 1 invalid arguments
; 2 exact integer conversion, string_size is defined
; 3 indefinite
; 4 + NAN (Not A Number)
; 5 - NAN
; 6 + Infinity
; 7 - Infinity
; 8 pseudo zero found, string_size is defined

; The PLM-386/486 calling convention is:
;
; floating_to_ascii:
; procedure (number, denormal_ptr,string_ptr, size_ptr,
; field_size, power_ptr) word external:
; declare (denormal_ptr, string_ptr, size_ptr)
; pointer;
; declare field_size word,
; string_size based size_ptr word;
; declare number real;
; declare denormal integer based denormal_ptr;
; declare power integer based power_ptr;
; end floating_to_ascii;
;
; The floating point value is expected  to be
; on the top of the FPU stack. This subroutine
; expects 3 free entries on the FPU stack and
; will pop the passed value off when done. The
; generated ASCII string will have a leading
; character either '-' or '+' indicating the sign
; of the value. The ASCII decimal digits will
; immediately follow. The numeric value of the
; ASCII string is (ASCII STRING.)*10 power. If
; the given number was zero, the ASCII string will
; contain a sign and a single zero character. The
; value string_size indicates the total length of
; ASCII string including the sign character.
; String(0) will always hold the sign. It is
; possible for string_size to be less than
; field_size. This occurs for zeroes of integer
; values. A psuedo zero will return a special
; return code. The denormal count will indicate
; the power of two originally associated with the
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; value. The power of ten and ASCII string will
; be as if the value was an ordinary zero.
;
; This subroutine is accurate up to a maximum of
; 18 decimal digits for integers. Integer values
; will have a decimal power of zero associated
; with the item. For non-integers, the result will be
; accurate to within 2 decimal digits of the 16th
; decimal place(double precision). The exponeniate
; instruction is also  used for scaling the value into
; the range acceptable for the BCD data type. The
; rounding mode in effect on entry to the
; subroutine is used for the conversion.
;
; The following registers are not transparent:
;
; eax ebx edx esi edi eflags
;
;
; Define the stack layout.
;
ebp_save equ dword ptr [ebp]
es_save equ ebp_save + size ebp_save
return_ptr equ es_save + size es_save
power_ptr equ return_ptr + size return_ptr
field_size equ power_ptr + size power_ptr
size_ptr equ field_size + size field_size
string_ptr equ size_ptr + size size_ptr
denormal_ptr equ string_ptr + size string_ptr

parms_size equ size power_ptr + size field_size +
& size size_ptr + size string_ptr +
& size denormal_ptr

;
; Define Constants used
;
BCD DIGITS equ 18 ; number of digits in bcd_value
WORD_SIZE equ 4
BCD_SIZE equ 10
MINUS equ 1 ; Define return values
NAN equ 4 ; The exact values chosen
INFINITY equ 6 ; here are important. They must
INDEFINITE equ 3 ; correspond to the possible return
PSUDO-ZERO equ 8 ; values and be in the same numeric
INVALID equ -2 ; order as tested by the program.
ZERO equ -4



EE NUMERIC PROGRAMMING EXAMPLES

8-11

DENORMAL equ -6
UNNORMAL equ -8
NORMAL equ 0
EXACT equ 2
;
; Define layout of temporary storage area.
;
power_two equ word ptr [EBP - WORD_SIZE]
bcd_value equ tbyte ptr power_two - BCD_SIZE
bcd_byte equ byte ptr bcd_value
fraction equ bcd_value

local_size equ size power_two + size bcd_value
;
; Allocate stack space for the temporaries so
; the stack will be big enough
;
stack stackseg (local_size+6) ; allocate stack
; space for locals

code   segment public er
extrn power_table:qword

;
;Constants used by this function
;

even ; Optimize for 16 bits
const10 dw  ; Adjustment value for

; too big BCD

; Convert the C3,C2, C1, C0 encoding from tos_status
; into meaningful bit flags and values.
;
status_table db UNNORMAL, NAN, UNNORMAL + MINUS,
& NAN + MINUS, NORMAL, INFINITY,
& NORMAL + MINUS, INFINITY + MINUS,
& ZERO, INVALID, ZERO + MINUS, INVALID,
& DENORMAL, INVALID, DENORMAL + MINUS, INVALID
floating_to_ascii proc

call tos_status ; Look at status of ST(0)

; Get descriptor from table
movzxeax, staus_table[eax]
cmp al, INVALID ; Look for empty ST(0)
jne not_empty

;
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; ST(0) is empty!  Return the status value.
ret parms_size

;
; Remove infinity from stack and exit.
;
found_infinity:

fstp st(0) ; OK to leave fstp running
jmp short exit_proc

;
; String space is too small
; Return invalid code.
;
small_string:

mov al,INVALID
exit_proc:

leave ; Restore stack setup

pop es
ret parms_size

;
; ST(0) is NAN or indefinite. Store the
; value in memory and look at the fraction
; field to separate indefinite from an ordinary NAN.
;
NAN_or_indefinite:

fstp fraction ; remove value from stack
; for examination

test al, MINUS ; Look at sign bit
fwait ; Insure store is done
jz exit_proc ; Can't be indefinite if positive

mov ebx,0C0000000H ; Match against upper 32 bits of fraction

; Compare bits 63-32
sub ebx, dword ptr fraction + 4

; Bits 31-0 must be zero
or ebx, dword ptr fraction
jnz exit_proc

; Set return value for idefinite value
mov al, INDEFINITE
jmp exit_proc

;
; Allocate stack space for local variables
; and establish parameter addressability.
;
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not_empty:
push es ; Save working register
enterlocal_size, 0 ; Setup stack addressing

; check for enough string space
mov ecx, field_size
cmp ecx, 2
jl small_string

dec ecx ;adjust for sign character

; See if string is too large for BCD
cmp ecx,BCD_DIGITS
jbe size_ok

; Else set maximum string size
mov ecx, BCD_DIGITS

size_ok:
cmp al,INFINITY ;Look for infinity

; Return status value for + or - inf
jge found_infinity
cmp al, NAN ; Look for NAN INDEFINITE
jge NAN_or_indefinite

;
; Set default return values and check that
; the number is normalized.
;

fabs ;use positive value
only

; sign bit in al
has true sign of

; value
xor edx,edx ; form 0 constant
mov edi, denormal_ptr ; zero denormal count
mov [edi], dx
mov ebx, power_ptr ; zero power of ten value
mov [ebx], dx
mov dl, al
and dl, 1
add dl, EXACT
cmp al, ZERO ; Test for zero
jae convert_integer ; skip power code if value is zero
fstp fraction
fwait
mov al, bcd_byte +7
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or byte ptr bcd_byte +7, 80h
fld fraction
fxtract
test al, 80h
jnz normal_value

fld1
fsub
ftst
fstswax
sahf
jnz set_unnormal_count

;
; Found a psuedo zero
;

fldlg2 ; Develop power of ten
estimate

add dl, PSUEDO_ZERO - EXACT
fmulpst(2), st
fxch ; Get power of ten
fistpword ptr [ebx] ; set power of ten
jmp convert_integer

set_unnormal_count:
fxtract ; Get original fraction,

; now normalized
fxch ; Get unnormal count
fchs
fistpword ptr [edi] ; set unnormal count

; Calculate the decimal magnitude associated
; with this number to within one order. This
;  error will always be inevitable due to
; rounding and lost precision. As a result,
; we will deliberately fail to consider the
; LOG10 of the fraction value in calculating
; the order. Since the fraction will always
; be 1 <= f < 2, its LOG10 will not change
; the basic accuracy of the function. To
; get the decimal order of magnitude, simply
; multiply the power of two by LOG10(2) and
; truncate the result to an integer.
;
normal_value:

fstp fraction ; Save the fraction field
; for later use
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fist power_two ; Save  power of two
fldlg2 ; Get LOG10(2)

; Power_two is now safe
to use

fmul ; Form LOG10(of exponent of
number)

fistpword ptr [ebx] ; Any rounding mode will work here
;
; Check if the magnitude of the number rules
; out treating it is an integer.
;
; CX has the maximum number of decimal digits
; allowed.
;

fwait ; Wait for power-ten to be
valid

;  Get power of ten of value
movsxsi, word ptr [ebx]
sub esi, ecx ; Form scaling factor necessary in ax
ja adjust_result ; Jump if number will not fit

;
; The number is between 1 and 10**(field_size).
; Test if it is an integer.
;

fild power_two ; Restore original number
sub dl, NORMAL_EXACT ; Convert to exact return value
fld fraction
fscale ; Form full value, this

; is safe here
fst st(1) ; Copy value for compare
frndint ; Test if its an integer
fcomp ; Compare values
fstswax ; Save status
sahf ; C3=1 implies it was an integer
jnz convert_integer

fstp st(0) ; Remove non integer value
add dl, NORMAL_EXACT ; Restore original return

; Scale the number to within the range allowed
; by the BCD format. The scaling operation should
; produce a number within one decimal order of
; magnitude of the largest decimal number
; representative within the given string width.
;
; The scaling power of ten value is in si.
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;
adjust_result:

mov eax,esi ; Setup for pow10
mov word ptr [ebx], ax ; Set initial power

; of ten
return value

neg eax ; Subtract one for each
order of

; magnitude
the value is scaled by

call get_power_10 ; Scaling factor is returned
as

; exponent
and fraction

fld fraction ; Get fraction
fmul ; Combine

fractions
mov esi, ecx ; Form power of ten of the

maximum
shl esi, 3 ; BCD value to fit in

; the string
fild power_two ; combine powers of two
faddpst(2),st
fscale ; Form full value

; exponent
was safe

fstp st(1) ; remove exponent
;
; Test the adjusted value against a table
; of exact powers of ten. The combined errors
; of the magnitude estimate and power function
; can result in a value one order of magnitude
; too small or too large to fit correctly in
; the BCD field. To handle this problem, pretest
; the adjusted value, if it is too small or
; large, then adjust it by ten and adjust the
; power of ten value.
;
test_power:

; compare against exact power entry. Use the next
; entry since cx has been decremenated by one

fcom power_table[esi]+type power_table
fstswax ; No wait is necessary
sahf ; If C3 = C0 = 0 then
jb test_for_small ; too big
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fdiv const10 ; Else adjust value
and dl, not EXACT ; Remove exact flag
inc word ptr [ebx] ; Adjust power of ten value
jmp short in_range ; Convert the value to a BCD

; integer
test_for_small:

fcom power_table[esi]; Test relative size
fstswax ; no wait is nessesary
sahf ; If C0 = 0 then

;   st (0) >=
lower_bound

jc in_range ; Convert the value to a
; BCD integer

fimulconst10 ; Adjust value into range
dec word ptr [ebx] ; Adjust power of ten value

in_range:
frndint ; Form integer value

;
; Assert: 0 <= TOS <= 999,999,999,999,999,999
; The TOS number will be exactly representable
; in 18 digit BCD format.
;
convert_integer:

fbstpbcd_value ; Store as BCD format number
;
; While the store BCD runs, setup registers
; for the conversion to ASCII.
;

mov esi, BCD_SIZE-2  ; Initial BCD index value
mov cx, 0F04h ; Set shift count and mask
mov ebx, 1 ; Set initial size of ASCII

; Field for sign
mov edi, string_ptr ; Get address of start of

; ASCII string
mov ax,ds ; Copy ds to es
mov es, ax
cld ; Set autoincrement mode
mov al, '+' ; Clear sign field
test dl, MINUS ; Look for negative value
jz positive_result

mov al, '-'
positive_result:

stosb ; Bump string pointer
; past sign

and dl, not MINUS ; Turn off sign bit
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fwait ; Wait for fbstp to finish
;
;Register usage:
; ah: BCD byte value in use
; al: ASCII character value
; dx: Return value
; ch: BCD mask = 0Fh
; cl: BCD shift count = 4
; ebx: ASCII string field width
; esi: BCD field index
; edi: ASCII string field pointer
; ds,es: ASCII string segment base
;
;Remove leading zereos from the number.
;
skip_leading_zeroes:

mov ah, bcd_byte[esi] ; Get BCD byte
mov al,ah ; Copy value
shr al,cl ; Get high order digit
and al, 0Fh ; Set zero flag
jnz enter_odd ; Exit loop if leading

; non zero found

mov al, ah ; Get BCD byte again
and al, 0fh ; Get low order digit
jnz enter_even ; Exit loop if non zero

; digit found

dec esi ; Decrement BCD index
jns skip_leading_zeroes

;
;  The significand was all zeroes.
;

mov al, '0'  ; Set initial zero
stosb
inc ebx ; Bump string length
jmp short exit_with_value

;
; Now expand the BCD string into digit
; per byte values 0-9.
;
digit_loop:

mov ah,bcd_byte[esi] ; Get BCD byte
mov al,ah
shr al,cl ; Get high order digit

enter_odd:
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add al, '0' ; Convert to ASCII
stosb ; Put digit into ASCII

   ; string area
mov al,ah   ; Get low order digit
and al,0Fh
inc ebx ; Bump field size counter

enter_even:
add al, '0' ; Convert to ASCII
stosb ; Put digit into ASCII

area
inc ebx ; Bump field size counter
dec esi ; Go to next BCD byte
jns digit_loop

;
; Conversion complete. set the string
; size and reminder.
;
exit_with_value:

mov edi,size_ptr
mov word ptr [edi],bx
mov eax,edx ; set return value
jmp exit_proc

floating_to_ascii endp
code ends
     end

+ 1 $title(calculate the value of 10**eax)
; This subroutine will calculate the
; value of 10**eax. For values of
; 0 <= eax <19, the result will exact.
; All registers are transparent
; and results are returned on the TOS
; as two numbers, exponent in st(1) and
; fraction is st(0). The exponent value
; can be larger than the largest
; exponent of an extended real format
; number. Three stack entries are used.
;

name get_power 10
public get_power_10, power_table

stack stackseg 8

code   segment public er
;
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;  Use exact values from 1.0 to 1e18.
;

even ; optimize 16 bit access
power_table dq 1.0,1e,1e2,1e3

dq 1e4,1e5,1e6,1e7
dq 1e8,1e9,1e10,1e11
dq 1e12, 1e13, 1e14,1e15
dq 1e16,1e17, 1e18

get_power_10 proc

cmp eax,18 ; Test for 0 <=
ax < 19

ja out_of_range

fld power_table[eax*8] ; Get exact value
fxtract ; Separate

power
; and

fraction
ret ; OK to

leave fxtract running
;
; Calculate the value using the
; exponentiate instruction. The following
; relations are used:
; 10**x= 2**(log2(10)*x)
; 2**(I+F) = 2**I * 2**F
; if st(1) - I and st(0) = 2**F then
; fscale produces 2**(I+F)
;
out_of-range:

fldl2t ; TOS =
LOG2(10)

enter4,0

; Save power of 10 value, P
mov  [edp-4], eax

; TOS,X= LOG2(10)*P = LOG2(10**P)
fimul dword ptr[edp-4]
fld1 ; Set TOS =

1.0
fchs
fld  st(1) ; Copy power

value
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; in
base two

frndint ; TOS = I: -
inf < I <= x

; where
I is an integer

;
Rounding mode does

; not
matter

fxch  st(2) ; TOS = x,
st(1) = 1.0

; st(2)
= I

fsub  st,st(2) ; TOS,F = x - I:
; -1.0

< TOS <= 1.0

; Restore original rounding control
pop  eax
fx2m1 ; TOS =

2**(F) - 1.0
leave ; Restore

stack
fsubr ; Form

2**(F)
ret ; OK to

leave fsubr running

get_power_10 endp

code ends
end

+1 $Title(Determine TOS register contents)
;
; This subroutine will return a value
; from 0-15 in eax corresponding
; to the contents of FPU TOS. All
; registers are transparent and no
; errors are possible. The return
; value corresponds to c3,c2,c1,c0
; of FXAM instuction.
;

name tos_status
public tos_status
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stackstackseg 6

code segment public er

tos_status proc

fxam ; Get status of TOS register
fstswax ; Get current status
mov al,ah ; Put bits 10-8 into bits 2-0
and eax,4007h ; Mask out bits c3,c2,c1,c0
shr ah, 3 ; Put bits c3 into bit 11
or al, ah ; Put c3 into bit 3
mov ah, 0 ; Clear return value
ret

tos_status endp

code ends
end

8.3.1. Function Partitioning
Three separate modules implement the conversion. Most of the work of the conversion is
done in the module FLOATING__TO_ASCII. The other modules are provided separately,
because they have a more general use. One of them, GET_POWER_10, is also used by the
ASCII to floating-point conversion routine. The other small module, TOS_STATUS,
identifies what, if anything, is in the top of the numeric register stack.

8.3.2. Exception Considerations
Care is taken inside the function to avoid generating exceptions. Any possible numeric value
is accepted. The only possible exception is insufficient space on the numeric register stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and
status (denormal, zero, sign). The string size is tested for a minimum and maximum value. If
the top of the register stack is empty, or the string size is too small, the function returns with
an error code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

8.3.3. Special Instructions
The functions demonstrate the operation of several numeric instructions, different data types,
and precision control. Shown are instructions for automatic conversion to BCD, calculating
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the value of 10 raised to an integer value, establishing and maintaining concurrency, data
synchronization, and use of directed rounding on the FPU.

Without the extended precision data type and built-in exponential function, the double
precision accuracy of this function could not be attained with the size and speed of the shown
example.

The function relies on the numeric BCD data type for conversion from binary floating-point
to decimal. It is not difficult to unpack the BCD digits into separate ASCII decimal digits.
The major work involves scaling the floating-point value to the comparatively limited range
of BCD values. To print a 9-digit result requires accurately scaling the given value to an
integer between 108 and 109. For example, the number +0.123456789 requires a scaling
factor of 109 to produce the value +123456789.0, which can be stored in 9 BCD digits. The
scale factor must be an exact power of 10 to avoid changing any of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field
size given. Integer values that fit in the given string size are not be scaled, but directly stored
into the BCD form. Noninteger values exactly representable in decimal within the string size
limits are also exactly converted. For example, 0.125 is exactly representable in binary or
decimal. To convert this floating-point value to decimal, the scaling factor is 1000, resulting
in 125. When scaling a value, the function must keep track of where the decimal point lies in
the final decimal value.

8.3.4. Description of Operation
Converting a floating-point number to decimal ASCII takes three major steps: identifying the
magnitude of the number, scaling it for the BCD data type, and converting the BCD data type
to a decimal ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is
represented by I × 10X, where 1.0 ≤ I < 10.0. Scaling the number requires multiplying it by a
scaling factor 10S, so that the result is an integer requiring no more decimal digits than
provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form
easy to convert to decimal ASCII by host software.

Implementing each of these three steps requires attention to detail. To begin with, not all
floating-point values have a numeric meaning. Values such as infinity, indefinite, or NaN
may be encountered by the conversion routine. The conversion routine should recognize
these values and identify them uniquely.

Special cases of numeric values also exist. Denormals have numeric values, but should be
recognized because they indicate that precision was lost during some earlier calculations.

Once it has been determined that the number has a numeric value, and it is normalized
(setting appropriate denormal flags, if necessary, to indicate this to the calling program), the
value must be scaled to the BCD range.
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8.3.5. Scaling the Value
To scale the number, its magnitude must be determined. It is sufficient to calculate the
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After
scaling the number, a check is made to see if the result falls in the range expected. If not, the
result can be adjusted one decimal order of magnitude up or down. The adjustment test after
the scaling is necessary due to inevitable inaccuracies in the scaling value.

Because the magnitude estimate for the scale factor need only be close, a fast technique is
used. The magnitude is estimated by multiplying the power of 2, the unbiased floating-point
exponent, associated with the number by log102. Rounding the result to an integer produces
an estimate of sufficient accuracy. Ignoring the fraction value can introduce a maximum
error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be
calculated. Calculating the scaling factor is the most inaccurate operation of the conversion
process. The relation 10X=2(X*log210) is used for this function. The exponentiate instruction
F2XM1 is used.

Due to restrictions on the range of values allowed by the F2XM1 instruction, the power of 2
value is split into integer and fraction components. The relation 2(I + F) = 2I × 2F allows using
the FSCALE instruction to recombine the 2F value, calculated through F2XM1, and the 2I

part.

8.3.5.1. INACCURACY IN SCALING

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed into
the fraction value of the power of two when stripping off the integer valued bits. For each
integer valued bit in the power of 2 value separated from the fraction bits, one bit of
precision is lost in the fraction field due to the zero fill occurring in the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating-point exponent
value is 214–1. These bits directly reduce the accuracy of the calculated scale factor, thereby
reducing the accuracy of the scaled value. For numbers in the range of 10±30, a maximum of
8 bits of precision are lost in the scaling process.

8.3.5.2. AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and
overflow in calculating the scaling values. For example, to scale 10–4932 to 108 requires a
scaling factor of 104950, which cannot be represented by the the Intel FPU's.

By separating the exponent and fraction, the scaling operation involves adding the exponents
separate from multiplying the fractions. The exponent arithmetic involves small integers, all
easily represented by the Intel FPU's.
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8.3.5.3. FINAL ADJUSTMENTS

It is possible that the power function (Get_Power_10) could produce a scaling value such that
it forms a scaled result larger than the ASCII field could allow. For example, scaling
9.9999999999999999 × 104900 by 1.00000000000000010 × 10–4883 produces
1.00000000000000009 × 1018. The scale factor is within the accuracy of the FPU and the
result is within the conversion accuracy, but it cannot be represented in BCD format. This is
why there is a post-scaling test on the magnitude of the result. The result can be multiplied or
divided by 10, depending on whether the result was too small or too large, respectively.

8.3.6. Output Format
For maximum flexibility in output formats, the position of the decimal point is indicated by a
binary integer called the power value. If the power value is zero, then the decimal point is
assumed to be at the right of the rightmost digit. Power values greater than zero indicate how
many trailing zeros are not shown. For each unit below zero, move the decimal point to the
left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal
point lies. The BCD string is then unpacked into ASCII decimal characters. The ASCII sign
is set corresponding to the sign of the original value.

8.4. TRIGONOMETRIC CALCULATION EXAMPLES
In this example, the kinematics of a robot arm is modeled with the 4 × 4 homogeneous
transformation matrices proposed by Denavit and Hartenberg1,2. The translational and
rotational relationships between adjacent links are described with these matrices using the D-
H matrix method. For each link, there is a 4 × 4 homogeneous transformation matrix that
represents the link's coordinate system (L i) at the joint (Ji) with respect to the previous link's
coordinate system (Ji–1, L i–1). The following four geometric quantities completely describe
the motion of any rigid joint/link pair (Ji, L i), as Figure 8-1 illustrates.

θi = The angular displacement of the xi axis from the xi-1 axis by rotating around the zi-1
axis (anticlockwise).

di = The distance from the origin of the (i-1)th coordinate system along the zi-1 axis to the
xi axis.

ai = The distance of the origin of the ith coordinate system from the zi-1 axis along the –xi
axis.

αi= The angular displacement of the zi axis from the zi-1 about the xi axis (anticlockwise).

                                                       
1 J. Denavit and R.S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices",  J. Applied

Mechanics, June 1955, pp. 215-221.

2 C.S. George Lee, "Robot Arm Kinematics, Dynamics, and Control," IEEE Computer, Dec. 1982.
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Figure 8-1.  Relationships Between Adjacent Joints

The D-H transformation matrix A
i

i – 1 for adjacent coordinate frames (from jointi-1 to jointi is
calculated as follows:

A
i
i – 1 = Tz,d × Tz,θ × Tx,a × Tx,α

where:

Tz,d represents a translation along the zi-1 axis

Tz,θ represents a rotation of angle θ about the zi-1 axis

Tx,a represents a translation along the xi axis

Tx,α represents a rotation of angle α about the xi axis
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A
i
i – 1 = 









cos θi  – cos αi sin θi  sin αi sin θi  cos θi

sin θi  cos αi cos θi  – sin αi cos θi  sin θi

0 sin αi cos αi di

0 0 0 1

The composite homogeneous matrix T which represents the position and orientation of the
joint/link pair with respect to the base system is obtained by successively multiplying the D-
H transformation matrices for adjacent coordinate frames.

Example 8-7 illustrates how the transformation process can be accomplished using the
floating-point capabilities of the Intel architectures. The program consists of two major
procedures. The first procedure TRANS_PROC is used to calculate the elements in each D-H
matrix, A

i

i – 1. The second procedure MATRIXMUL_PROC finds the product of two
successive D-H matrices.

T
i
0 = A

1
0 × A

2
1 × … × A

i

i – 1

Example 8-7.  Robot Arm Kinematics Example

NAME ROT_MATRIX_CAL
; This example illustrates the use
; of the Intel486  floating point
; instuctions, in paticular, the
; FSINCOS function which gives both
; the SIN and COS values.
; The program calculates the
; composite matrix for base to end-
; effector transformation.
;
; Only the kinematics is considered in
; this example.
;
; If the composite matrix mentioned above
; is given by:
; t1n = A1 x A2 ... x An
; T1n is found by successively calling
; trans_proc and matrixmul_proc until
; all matrices have been exhausted.
;
; trans_proc calculates entries in each
; A(A1,...,An) while matrixmul_proc
; performs the matrix multiplication for
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; Ai and Ai+1. matrixmul_proc in turn
; calls matrix_row and matrix_elem to
; do the multiplication.

; Define stack space

trans_stack stackseg 400

; Define the matrix structure for
; 4x4 transformational matrices

a_matrix struc
all dq ?
a12 dq ?
a13 dq ?
a14 dq ?
a21 dq ?
a22 dq ?
a23 dq ?
a24 dq ?
a31 dq 0h
a32 dq ?
a33 dq ?
a34 dq ?
a41 dq 0h
a42 dq 0h
a43 dq 0h
a44 dq 1h

a_matrix ends

; Assume  One joint in the storage
; allocation and hence for
; two seats of parameters; however,
; more joints are possible
;
alp_deg struc

alpha_deg1 dd ?
alpha_deg2 dd ?

alp_deg ends

tht_deg struc
theta_deg dd ?

tht_deg ends
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a_array struc
A1 dd ?
A2 dd ?

A_array ends

D_array struc
D1 dq ?
D2 dq ?

D_array ends

; trans-data is the data segment
;

trans_data segment rw public

Amx a_matrix<>
Bmx a_matrix<>
Tmx a _marix<>
ALPHA_DEG alp_deg<>
THETA_DEG tht_deg<>
A_VECTOR A_array<>
D_VECTOR D_array<>
ZERO dd 0
d180 dd 180
NUM_JOINT equ 1
NUM_ROW equ 4
NUM_COL equ 4
REVERSE db 1h

trans_data ends

assume ds:trans_data, es:trans_data

; Trans code contains the procedures
; for calculating matrix elements and
; matrix multiplications

trans_code segment er publlic
trans_proc proc far

; Calculate alpha and theta in radians
; from their values in degrees

fldpi
fdiv d180
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; Duplicate pi/180
fld st(0)

fmul qword ptr ALPHA_DEG[ecx*8]
fxch st(1)
fmul qword ptr THETA_DEG[ecx*8]

; theta(radians) in ST and
; alpha(radians) in ST(1)

; Calculate matrix elements
; a11 = cos theta
; a12 = -cos alpha * sin thet
; a13 = sin alpha * sin theta
; a14 = A *cos theta
; a21 = sin theta
; a22 = cos alpha * cos theta
; a23 = sin alpha * cos theta
; a24 = A * sin theta
; a32 = sin alpha
; a33 = cos alpha
; a34 = D
; a31 = a41 = a2 = a43 = 0.0
; a44 = 1

; ebx contains the offset for the matrix

fsincos ; cos theta in ST
; sin theta inst(1)

fld st(0) ; duplicate cos theta
fst [ebx].all ; cos theta in all
fmul qword ptr A_VECTOR[ecx*8]
fstp [ebx].a14 ; A* cos theta in a14
fxch st(1) ; sin theta in ST
fst [exb].a21 ; sin theta in a21
fld st ; duplicate sin theta
fmul qword ptr A_VECTOR[ecx*8]
fstp [ebx].a24 ; A * sin theta in a24
fld st(2) ; alpha in ST
fsincos ; cos alpha in ST

;sin alpha in ST(1)
;sin theta in ST(2)
;cos theta in ST (3)

fst [ebx].a33 ;cos alpha in a33
fxch st(1) ;sin alpha in ST
fst [ebx].a32 ;sin sin alpha in a32
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fld st (2) ;sin theta in ST
;sin alpha in ST (1)

fmul st,st(1) ;sin alpha  * sin theta
fstp [ebx].a13 ;stored in a 13a
fmul st,st(3) ;costheta * sin alpha
fchs ;cos theta * sin alpha
fstp [ebx].a23 ;stored in a23
fld st(2) ;cos theta in ST

;cos alpha in ST(1)
;sin theta in ST(2)
;cos theta in ST(3)

fmul st,st(1) ;cos theta * cos alpha
fstp [ebx].a22 ;stored in a22
fmul st,st(1) ;cos alpha * sin theta

;
; To take advantage of parallel operations
; between the IU and FPU

push eax ;save eax
;
; also move D into a34 in a faster way

mov eax, dword ptr D_VECTOR[ecx*8]
mov dword ptr [ebx + 88], eax
mov eax, dword ptr D_VECTOR[ecx * 8 + 4]
mov dword ptr [ebx + 92], eax
pop eax ;restore eax
fchs ;cos alpha * sin theta
fstp [ebx].a12 ;stored in a12

;and all nonzero
elements

;have been calculated
ret

trans_proc endp

matrix_elem proc far

; This procedure calculates the dot product of the ith row
; of the first matrix and the jth column of the second
; matrix:

; TIJ where TIJ = sum of Aik x Bkj over k
;
; parameters passed from the calling routine,
; matrix_row:
; ESI = (i-1)*8
; EDI = (j-1)*8
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; local register, EBP = (k-1)*8

push ebp ; save ebp
push ecx ; ecx to be used as a tmp reg
mov ecx, esi ; save it for later indexing

; locating the element in the first matrix, A
imul ecx, NUM_COL ; ecx contains offset due

; to preceding rows; the
; offset is from the

beginning
; of the matrix

xor ebp, ebp ; clear ebp, which will be
; used as a temp reg to

index(k)
; across the ith row of the

first
; matrix as well as down the

jth
; column of the second

matrix

; clear Tij for accumulating Aik*Bkj
mov dword ptr [edx][edi], ebp
mov dword ptr [edx][edi+4], ebp

push ecx ; save on stack:  esi * num_col =
; the offset of the

beginning of
; the ith row from the
; beginning of the A matrix

NXT_k:
add ecx, ebp ;get to the kth column entry

;of the ith row of the A
matrix

; load Aik into FPU
fld qword ptr [eax][ecx]
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; locating Bkj
mov ecx, ebp
imul ecx, NUM_ROW ; ecx contains the offset of the

; beginning of
the kth row from

; the beginning
of the B matrix

add ecx, edi ; get to the jth column
; of the kth row

of the B matrix
fmul qword ptr [ebx][ecx] ;Aik & Bkj
pop ecx ;esi * num_col in ecx again
push ecx ;also at top of program

stack

; add to the result in the output matrix, Tij
add ecx, edi

; accumulating the sum of Aik * Bkj
fadd qword ptr [edx][ecx]
fstp qword ptr [edx][ecx]

; increment k by 1, i.e., ebp by 8
add ebp, 8

; Has k reached the width of the matrix yet?
cmp ebp, NUM_COL*8
jl NXT_k

; Restore registers
pop ecx ;clear esi_num_col from stack
pop ecx ;restore ecx
pop ebp ;restore ebp
ret

matrix_elem endp

matrix_row proc far
xor edi, edi
;scan across a row

NXT_COL:
call matrix_elem
add edi, 8
cmp edi, NUM_COL*8
jl NXT_COL
ret



NUMERIC PROGRAMMING EXAMPLES EE

8-34

matrix_row endp

matrixmul_proc proc far
; This procedure does the matrix multiplication by calling
; matrix_row to calculate entries in each row.
;
; The matrix multiplication is performed in the following
; manner,
; Tij = Aik x Bkj
; where i and j denote the row and column
; respectively and k is the index for scanning
; across the ith row of the first matrix and
; the jth column of the second matrix.

mov ebp, esp ; use base pointer for
indexing

mov edx, dword ptr [ebp+4] ; offset Tmx in edx
mov ebx, dword ptr [ebp+8] ; offset Bmx in ebx
mov eax, dword ptr [ebp+12] ; offset Amx in eax

; setup esi and edi
; edi points to the column
; esi points to the row

xor esi, esi ; clear esi

NXT_ROW:
call matrix_row
add esi, 8
cmp esi, NUM_ROW*8
jl NXT_ROW
ret 12 ;pop off matrix

pointers

matrixmul_proc endp

trans_code ends

;******************************************
;

;
; Main Program

;
;

;
;******************************************
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main_code segment er

START:
mov esp, stackstart trans_stack

pushad ;save all registers

; ECX denotes the number of joints where
; number of matrices = NUM_JOINT + 1
; Find the first matrix (from the base of the
; system to the first joint) and call it Bmx

xor ecx, ecx ;1st matrix
mov ebx, offset Bmx
call trans_proc ; is Bmx
inc ecx

NXT_MATRIX:
; From the 2nd matrix and on, it will be stored in Amx.
; The result from the first matrix mult. is stored in
; Tmx but will be accessed as Bmx in the next multiplication.
; As a matter of fact, the roles of Bmx and Tmx alternate in
; successive multiplications.  This is achieved by reversing
; the order of the Bmx and Tmx pointers being passed onto the
; program stack.  Thus, this is invislbe to the matrix
; mutliplication procedure.
; REVERSE serves as the indicator
; REVERSE = 0 means that the result is to be placed in Tmx

mov ebx, offset Amx ;find Amx
call trans_proc
inc ecx
xor REVERSE, 1h
jnz Bmx_as_Tmx

; No reversing.  Bms as the second input
; matrix while Tmx as the output matrix.

push offset Amx
push offset Bmx
push offset Tmx
jmp CONTINUE

; Reversing.  Tmx as the second input
; matrix while Bms as the output matrix.
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Bmx_as_Tmx:
push offset Amx
push offset Tmx ;reversing the
push offset Bmx ;pointers passed

CONTINUE:
call matrixmul_proc
cmp ecx, NUM_JOINT
jle NXT_MATRIX

; if REVERSE = 1 then the final answer
; will be in Bmx, otherwise in Tmx.

popad

main_code ends

end START, ds:trans_data, ss:trans_stack
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CHAPTER 9
REAL-ADDRESS MODE SYSTEM

ARCHITECTURE

The real-address mode of the Pentium processor runs programs written for the 8086, 8088,
80186, or 80188 processors, or for the real-address mode of Intel 286, Intel386, or Intel486
processors.

The architecture of the processor in this mode is almost identical to that of the 8086, 8088,
80186, and 80188 processors. To a programmer, a 32-bit processor in real-address mode
appears as a high-speed 8086 processor or real-mode Intel 286 processor with extensions to
the instruction set and registers. The principal features of this architecture are defined in
Chapter 3 and Chapter 4.

This chapter discusses certain additional topics which complete the system programmer's
view of real-address mode:

• Address formation.

• Interrupt and exception handling.

• Real-address mode exceptions.

For information on input and output both in real-address mode and protected mode, refer to
Chapter 15.

9.1. ADDRESS TRANSLATION
In real-address mode, the processor does not interpret selectors by referring to descriptors;
instead, it forms linear addresses as an 8086 processor would. It shifts the selector left by
four bits to form a 20-bit base address. The effective address is extended with four clear bits
in the upper bit positions and added to the base address to create a linear address, as shown in
Figure 9-1.
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APM69

16-BIT SEGMENT SELECTOR

16-BIT EFFECTIVE ADDRESS

X X X X X X X X X X X X X X X X X X X X X

BASE

OFFSET

LINEAR
ADDRESS

0 0 0 0

0 0 0 0

Figure 9-1.  8086 Address Translation

Because of the possibility of a carry, the resulting linear address may have as many as 21
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 to
10_FFEFH (1 megabyte plus approximately 64K bytes) of the linear address space. (Note,
however, that on the Intel486 and Pentium processors, the A20M# signal can be used in real-
address mode to mask address signal A20, thereby mimicking the 20-bit wrap-around
behavior of the 8086 processor.) Because paging is not available in real-address mode, the
linear address is used as the physical address.

Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the
Pentium processor can generate 32-bit effective addresses using an address override prefix;
however in real-address mode, the value of a 32-bit address may not exceed 65,535 without
causing an exception. For full compatibility with Intel 286 real-address mode, pseudo-
protection faults (interrupt 12 or 13 with no error code) occur if an effective address is
generated outside the range 0 through 65,535.

9.2. REGISTERS AND INSTRUCTIONS
The register set available in real-address mode includes all the registers defined for the 8086
processor plus the new registers introduced with the Intel386 processor and Intel387
coprocessor: FS, GS, debug registers, control registers, test registers, and floating-point unit
registers. New instructions which explicitly operate on the segment registers FS and GS are
available, and the new segment-override prefixes can be used to cause instructions to use the
FS and GS registers for address calculations.

The instruction codes which generate invalid-opcode exceptions include instructions from
protected mode which move or test protected-mode segment selectors and segment
descriptors, i.e., the VERR, VERW, LAR, LSL, LTR, STR, LLDT, and SLDT instructions.
Programs executing in real-address mode are able to take advantage of the new application-
oriented instructions added to the architecture with the introduction of the 80186, 80188,
Intel 286, Intel386, Intel486, and Pentium processors.
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Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the
Pentium processor offers an operand-size override prefixe which enables access to 32-bit
operands. This prefix should not be used, however, if compatibility with the 8086 or Intel
286 processors is desired.

9.3. INTERRUPT AND EXCEPTION HANDLING
Interrupts and exceptions in real-address mode work much as they do on an 8086 processor.
Interrupts and exceptions call interrupt procedures through an interrupt table. The processor
scales the interrupt or exception identifier by four to obtain an index into the interrupt table.
The entries of the interrupt table are far pointers to the entry points of interrupt or exception
handler procedures. When an interrupt occurs, the processor pushes the current values of the
CS and IP registers onto the stack, disables interrupts, clears the TF flag, and transfers
control to the location specified in the interrupt table. An IRET instruction at the end of the
handler procedure reverses these steps before returning control to the interrupted procedure.
Exceptions do not return error codes in real-address mode.

The primary difference in the interrupt handling of the 32-bit processors in real-address mode
compared to the 8086 processor is that the location and size of the interrupt table depend on
the contents of the IDTR register. Ordinarily, this fact is not apparent to programmers,
because, after reset initialization, the IDTR register contains a base address of 0 and a limit
of 3FFH, which is compatible with the 8086 processor. However, the LIDT instruction can
be used in real-address mode to change the base and limit values in the IDTR register. See
Chapter 9 for details on the IDTR register, and the LIDT and SIDT instructions. If an
interrupt occurs and its entry in the interrupt table is beyond the limit stored in the IDTR
register, a double-fault exception is generated.

9.4. REAL-ADDRESS MODE EXCEPTIONS
The processor reports some exceptions differently when executing in real-address mode than
when executing in protected mode. Table 9-Error! Bookmark not defined.  details the real-
address-mode exceptions.
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Table 9-1.  Exceptions and Interrupts

Description Vector
Source of the

Exception

Does the Return Address
Point to the

Instruction Which Caused
the Exception?

Divide Error  0 DIV and IDIV instructions yes

Debug  1 Any 1

NMI  2 Nonmaskable Interrupt yes

Breakpoint  3 INT instruction no

Overflow  4 INTO instruction no

Bounds Check  5 BOUND instruction yes

Invalid Opcode  6 Reserved opcodes and improper use
of LOCK prefix

yes

Device not available  7 ESC or WAIT instructions yes

Double Fault  8 Interrupt table limit too small, fault
occurring while handling another fault

yes

Reserved  9

Invalid Task State
Segment3

10 JMP, CALL, IRET instructions,
interrupts and exceptions

yes

Segment not present3 11 Any instruction which changes
segments

yes

Stack Exception 12 Stack operation crosses address
limit (beyond offset FFFFH)

yes

CS, DS, ES, FS, GS
Segment Overrun

13 Word memory reference beyond
offset FFFFH. An attempt to execute
past the end of CS segment.

yes

Page Fault3 14 Any instruction that references
memory

yes

Reserved 15

Floating-Point Error 16 ESC or WAIT instructions yes2

Alignment Check3 17 Any data reference no

Intel Reserved 18–31

Software Interrupt 0–255 INT n instructions no

Maskable Interrupt 32–255 yes

NOTES:

1. Some debug exceptions point to the faulting instruction, others point to the following instruction. The
exception handler can test the DR6 register to determine which has occurred.

2. Floating-point errors are reported on the first ESC or WAIT instruction after the ESC instruction which
generated the error.

3. Exceptions 10, 11, 14 and 17 do not occur in Real Mode, but are possible in virtual 8086 mode.
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CHAPTER 10
PROTECTED-MODE SYSTEM ARCHITECTURE

OVERVIEW

Many of the architectural features of the processor are used only by system programmers.
This chapter presents an overview of these features. Application programmers may need to
read this chapter, and the following chapters which describe the use of these features, in
order to understand the hardware facilities used by system programmers to create a reliable
and secure environment for application programs. The system-level architecture also supports
powerful debugging features which application programmers may wish to use during
program development.

The system-level features of the architecture include:

• Memory Management

• Protection

• Multitasking

• Exceptions and Interrupts

• Input/Output

• Initialization and Mode Switching

• FPU Management

• Debugging

• Cache Management

• Multiprocessing

These features are supported by registers and instructions, all of which are introduced in the
following sections. The purpose of this chapter is not to explain each feature in detail, but
rather to place the remaining chapters about protected mode and systems programming in
perspective. When a register or instruction is mentioned, it is accompanied by an explanation
or a reference to a following chapter.

10.1. SYSTEM REGISTERS
The registers intended for use by system programmers fall into these categories:

• EFLAGS Register

• Memory-Management Registers

• Control Registers

• Debug Registers
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The system registers control the execution environment of application programs. Most
systems restrict access to these facilities by application programs (although systems can be
built where all programs run at the most privileged level, in which case application programs
are allowed to modify these facilities).

10.1.1. System Flags
The system flags of the EFLAGS register control I/O, maskable interrupts, debugging, task
switching, and the virtual-8086 mode. An application program should ignore these system
flags, and should not attempt to change their state. In some systems, an attempt to change the
state of a system flag by an application program results in an exception. These flags are
shown in Figure 10-1.
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Figure 10-1.  System Flags

ID (Identification Flag, bit 21)

The ability of a program to set and clear the ID flag indicates that the processor supports the
CPUID instruction. Refer to Chapter 25 for details about CPUID.

VIP (Virtual Interrupt Pending Flag, bit 20)

The VIP flag together with the VIF enable each applications program in a multitasking
environment to have virtualized versions of the system's IF flag. For more on the use of these
flags in virtual-8086 mode and in protected mode, refer to Appendix H.
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VIF (Virtual Interrupt Flag, bit 19)

The VIF is a virtual image of IF (the interrupt flag) used with VIP.

AC (Alignment Check Mode, bit 18)

Setting the AC flag and the AM bit in the CR0 register enables alignment checking on
memory references. An alignment-check exception is generated when reference is made to an
unaligned operand, such as a word at an odd byte address or a doubleword at an address
which is not an integral multiple of four. Alignment-check exceptions are generated only in
user mode (privilege level 3). Memory references which default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by a memory
reference in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when
exchanging data with other processors, such as the i860 microprocessor, which require all
data to be aligned. The alignment-check exception can also be used by interpreters to flag
some pointers as special by misaligning the pointer. This eliminates overhead of checking
each pointer and only handles the special pointer when used.

VM (Virtual-8086 Mode, bit 17)

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of the
programming environment of an 8086 processor. See Chapter 22 for more information.

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug faults so that an instruction can be restarted after a
debug fault without immediately causing another debug fault. The debugger sets this flag
with the IRETD instruction when returning to the interrupted program. The RF flag is not
affected by the POPF, POPFD or IRET instructions. See Chapter 14 and Chapter 17 for
details.

NT (Nested Task, bit 14)

The processor sets and tests the nested task flag to control chaining of interrupted and called
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected by
the POPF, POPFD, and IRET instructions. Improper changes to the state of this flag can
generate unexpected exceptions in application programs. See Chapter 13 and Chapter 14 for
more information on nested tasks.

IOPL (I/O Privilege Level, bits 12 and 13)

The I/O privilege level is used by the protection mechanism to control access to the I/O
address space. The privilege level of the code segment currently executing (CPL) and the
IOPL determine whether this field can be modified by the POPF, POPFD, and IRET
instructions. See Chapter 15 for more information.
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IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode in which it responds to maskable interrupt
requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF flag has no
effect on either exceptions or nonmaskable interrupts (NMI interrupts). The CPL and IOPL
determine whether this field can be modified by the CLI, STI, POPF, POPFD, and IRET
instructions. See Chapter 14 for more details about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this mode, the
processor generates a debug exception after each instruction, which allows a program to be
inspected as it executes each instruction. Single-stepping is just one of several debugging
features of the processor. If an application program sets the TF flag using the POPF, POPFD,
or IRET instructions, a debug exception is generated. See Chapter 14 and Chapter 17 for
more information.

10.1.2. Memory-Management Registers
Four registers of the processor specify the locations of the data structures which control
segmented memory management, as shown in Figure 10-2. Special instructions are provided
for loading and storing these registers. The GDTR and IDTR registers can be loaded with
instructions which get a six-byte block of data from memory. The LDTR and TR registers
can be loaded with instructions which take a 16-bit segment selector as an operand. The
remaining bytes of these registers are then loaded automatically by the processor from the
descriptor referenced by the operand.
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Figure 10-2.  Memory Management Registers

Most systems protect the instructions which load memory-management registers from use by
application programs (although a system in which no protection is used is possible).
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GDTR Global Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the global descriptor
table (GDT). When a reference is made to data in memory, a segment selector is used to find
a segment descriptor in the GDT or LDT. A segment descriptor contains the base address for
a segment. See Chapter 11 for an explanation of segmentation.

LDTR Local Descriptor Table Register

This register holds the 32-bit base address, 32-bit segment limit, descriptor attributes, and
16-bit segment selector for the local descriptor table (LDT). The segment which contains the
LDT has a segment descriptor in the GDT. There is no segment selector for the GDT. When
a reference is made to data in memory, a segment selector is used to find a segment
descriptor in the GDT or LDT. A segment descriptor contains the base address for a segment.
See Chapter 11 for an explanation of segmentation.

IDTR Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the interrupt
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an index to
get a gate descriptor from this table. The gate descriptor contains a pointer used to start up
the interrupt handler. See Chapter 14 for details of the interrupt mechanism.

TR Task Register

This register holds the 32-bit base address, 32-bit segment limit, descriptor attributes, and
16-bit segment selector for the task currently being executed. It references a task state
segment (TSS) descriptor in the global descriptor table. See Chapter 13 for a description of
the multitasking features of the processor.

10.1.3. Control Registers
Figure 10-3 shows the format of the control registers CR0, CR1, CR2, CR3, and CR4. Most
systems prevent application programs from loading the control registers (although an
unprotected system would allow this). Application programs can read these registers; for
example, reading CR0 to determine if a numerics coprocessor is present. Forms of the MOV
instruction allow these registers to be loaded from or stored in general registers. For example:

MOV    EAX,  CR0
MOV    CR3,  EBX

Refer to Chapter 16 for a list of the initial values of all these registers.
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Figure 10-3.  Control Registers

The CR0 register contains system control flags, which control modes or indicate states which
apply generally to the processor, rather than to the execution of an individual task. A
program should not attempt to change any of the reserved bit positions. Reserved bits should
always be set to the value previously read.

PG (Paging, bit 31 of CR0)

This bit enables paging when set and disables paging when clear. See Chapter 11 for more
information about paging. See Chapter 16 for information on how to enable paging.

When an exception is generated during paging, the CR2 register has the 32-bit linear address
which caused the exception. See Chapter 14 for more information about handling exceptions
generated during paging (page faults).

When paging is used, the CR3 register has the 20 most-significant bits of the address of the
page directory (the first-level page table). The CR3 register is also known as the page-
directory base register (PDBR). Note that the page directory must be aligned to a page
boundary, so the low 12 bits of the register are not used as address bits. Unlike the Intel386
DX processor, the Intel486 and Pentium processors assign functions to two of these bits.
These are:

• PCD (Page-Level Cache Disable, bit 4 of CR3)

The state of this bit is driven on the PCD pin during bus cycles which are not paged, such
as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PCD pin is used to control caching in an external
cache on a cycle-by-cycle basis.



EE PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

10-7

• PWT (Page-Level Writes Transparent, bit 3 of CR3)

The state of this bit is driven on the PWT pin during bus cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven low during all
bus cycles when paging is not enabled. The PWT pin is used to control write through in
an external cache on a cycle-by-cycle basis.

CD (Cache Disable, bit 30 of CR0)

This bit enables the internal cache fill mechanism when clear and disables it when set. Cache
misses do not cause cache line fills when the bit is set. Note that cache hits are not disabled;
to completely disable the cache, the cache must be invalidated. See Chapter 18 for
information on caching.

NW (Not Writethrough, bit 29 of CR0)

This bit enables writethroughs and cache invalidation cycles when clear and disables
invalidation cycles and writethroughs which hit in the cache when set. See Chapter 18 for
information on caching.

AM (Alignment Mask, bit 18 of CR0)

This bit allows alignment checking when set and disables alignment checking when clear.
Alignment checking is performed only when the AM bit is set, the AC flag is set, and the
CPL is 3 (user mode).

WP (Write Protect, bit 16 of CR0)

When set, this bit write-protects pages against supervisor-level writes. When this bit is clear,
read-only pages can be written by a supervisor process. This feature is useful for
implementing the copy-on-write method of creating a new process (forking) used by some
operating systems, such as UNIX*.

NE (Numeric Error, bit 5 of CR0)

This bit enables the standard mechanism for reporting floating-point numeric errors when set.
When NE is clear and the IGNNE# input is active, numeric errors are ignored. When the NE
bit is clear and the IGNNE# input is inactive, a numeric error causes the processor to stop
and wait for an interrupt. The interrupt is generated by using the FERR# pin to drive an input
to the interrupt controller (the FERR# pin emulates the ERROR# pin of the Intel287 and
Intel387 DX math coprocessors). The NE bit, IGNNE# pin, and FERR# pin are used with
external logic to implement PC-style error reporting.

ET (Extension Type, bit 4 of CR0)

This bit is one to indicate support of Intel387 DX math coprocessor instructions (on the
Pentium microprocessor, this bit is reserved).
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TS (Task Switched, bit 3 of CR0)

The processor sets the TS bit with every task switch and tests it when interpreting floating-
point arithmetic instructions. This bit allows delaying save/restore of numeric context until
the numeric data is actually used. The CLTS instruction clears this bit.

EM (Emulation, bit 2 of CR0)

When the EM bit is set, execution of a numeric instruction generates the device-not-available
exception. The EM bit must be set when the processor does not have a floating-point unit.

MP (Monitor coProcessor, bit 1 of CR0)

On the Intel 286 and Intel386 DX processors, the MP bit controls the function of the WAIT
instruction, which is used to synchronize with a coprocessor. When running Intel 286 and
Intel386 DX CPU programs on processors with the Intel486 processor and Pentium processor
FPUs, this bit should be set. The MP bit should be reset in the Intel486 SX CPU.

PE (Protection Enable, bit 0 of CR0)

Setting the PE bit enables segment-level protection. See Chapter 12 for more information
about protection. See Chapter 16 for information on how to enable paging.

The CR4 register contains bits that enable certain architectural extensions. This register is
new with the Pentium microprocessor.

VME (Virtual-8086 Mode Extensions, bit 0 of CR4)

Setting this bit to 1 enables support for a virtual interrupt flag in virtual-8086 mode. This
feature can improve the performance of virtual-8086 applications by eliminating the
overhead of faulting to a virtual-8086 monitor for emulation of certain operations. Refer to
Appendix H for more information on this feature.

PVI (Protected-Mode Virtual Interrupts, bit 1 of CR4)

Setting this bit to 1 enables support for a virtual interrupt flag in protected mode. This feature
can enable some programs designed for execution at privilege level 0 to execute at privilege
level 3. Refer to Appendix H for more information on this feature.

TSD (Time Stamp Disable, bit 2 of CR4)

Setting this bit to 1 makes RDTSC (read from time stamp counter) a privileged instruction.
Refer to Chapter 25 for details on the RDTSC instruction.

DE (Debugging Extensions, bit 3 of CR4)

Setting this bit to 1 enables I/O breakpoints. Refer to Chapter 17 for more information on
debugging.
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PSE (Page Size Extensions, bit 4 of CR4)

Setting this bit to 1 enables four-megabyte pages. Refer to Appendix H for information about
this feature.

MCE (Machine Check Enable, bit 6 of CR4)

Setting this bit to 1 enables the machine check exception.

Notes

All new features (VME, PVI, TSD, DE and PSE) in the CPUID feature flag should be
qualified with the CPUID instruction and are model specific.

10.1.4. Debug Registers
The debug registers bring advanced debugging abilities to the processor, including data
breakpoints and the ability to set instruction breakpoints without modifying code segments
(useful in debugging ROM-based software). Only programs executing at the highest privilege
level can access these registers. See Chapter 17 for a complete description of their formats
and use. The debug registers are shown in Figure 10-4.
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10.2. SYSTEM INSTRUCTIONS
System instructions deal with functions such as:

1. Verfication of pointer parameters (see Chapter 12):

Instruction Description
Useful to

Application?
Protected from
Application?

ARPL Adjust RPL No No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

2. Addressing descriptor tables (see Chapter 11):

Instruction Description
Useful to

Application?
Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register Yes No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

3. Multitasking (see Chapter 13):

Instruction Description
Useful to

Application?
Protected from
Application?

LTR Load Task Register No Yes

STR Store Task Register Yes No

4. Floating-point numerics (see Chapter 6):

Instruction Description
Useful to

Application?
Protected from
Application?

CLTS Clear TS bit in CR0 No Yes

ESC Escape Instructions Yes No

WAIT Wait Until Coprocessor Not
Busy

Yes No
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5. Input and output (see Chapter 15):

Instruction Description
Useful to

Application?
Protected from
Application?

IN Input Yes Can be

OUT Output Yes Can be

INS Input String Yes Can be

OUTS Output String Yes Can be

6. Interrupt control (see Chapter 14):

Instruction Description
Useful to

Application?
Protected from
Application?

CLI Clear IF flag Can be Can be

STI Set IF flag Can be Can be

LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

7. Debugging (see Chapter 17):

Instruction Description
Useful to

Application?
Protected from
Application?

MOV Load and store debug
registers

No Yes

8. Cache Management (see Chapter 18):

Instruction Description
Useful to

Application?
Protected from
Application?

INVD Invalidate cache,
no writeback

No Yes

WBINVD Invalidate cache,
with writeback

No Yes

INVLPG Invalidate TLB entry No Yes
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9. System Control:

Instruction Description
Useful to

Application?
Protected from
Application?

SMSW Store MSW Yes No

LMSW Load MSW No Yes

MOV Load And Store Control
Register

No Yes

HLT Halt Processor No Yes

LOCK Bus Lock No No

RSM Return from system
management mode

No Yes

The SMSW and LMSW instructions are provided for compatibility with the 16-bit
Intel 286 processor. Programs for 32-bit processors such as the Pentium microprocessor
should not use these instructions. Instead, they should access the Control Registers using
forms of the MOV instruction. The LMSW instruction does not affect the PG, CD, NW,
AM, WP, NE or ET bits, and it cannot be used to clear the PE bit.

The HLT instruction stops the processor until an enabled interrupt or RESET signal is
received. (Note that the NMI and SMI interrupts are always enabled.) A special bus
cycle is generated by the processor to indicate halt mode has been entered. Hardware
may respond to this signal in a number of ways. An indicator light on the front panel
may be turned on. An NMI interrupt for recording diagnostic information may be
generated. Reset initialization may be invoked. Software designers may need to be aware
of the response of hardware to halt mode.

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write
operation when modifying a memory operand. The LOCK# signal is asserted and the
processor does not respond to requests for bus control during a locked operation. This
mechanism is used to allow reliable communications between processors in
multiprocessor systems.

In addition to the chapters mentioned above, detailed information about each of these
instructions can be found in the instruction reference chapter, Chapter 25.
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CHAPTER 11
PROTECTED-MODE MEMORY MANAGEMENT

Memory management is a hardware mechanism which lets operating systems create
simplified environments for running programs. For example, when several programs are
running at the same time, they must each be given an independent address space. If they all
had to share the same address space, each would have to perform difficult and time-
consuming checks to avoid interfering with the others.

Memory management consists of segmentation and paging. Segmentation is used to give
each program several independent, protected address spaces. Paging is used to support an
environment where large address spaces are simulated using a small amount of RAM and
some disk storage. System designers can choose to use either or both of these mechanisms.
When several programs are running at the same time, either mechanism can be used to
protect programs against interference from other programs.

Segmentation allows memory to be completely unstructured and simple, like the memory
model of an 8-bit processor, or highly structured with address translation and protection. The
memory management features apply to units called segments. Each segment is an
independent, protected address space. Access to segments is controlled by data which
describes its size, the privilege level required to access it, the kinds of memory references
which can be made to it (instruction fetch, stack push or pop, read operation, write operation,
etc.), and whether it is present in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is used to
simplify the linkage of object code modules. There is no reason to write position-independent
code when full use is made of the segmentation mechanism, because all memory references
can be made relative to the base addresses of a module's code and data segments.
Segmentation can be used to create ROM-based software modules, in which fixed addresses
(fixed, in the sense that they cannot be changed) are offsets from a segment's base address.
Different software systems can have the ROM modules at different physical addresses
because the segmentation mechanism will direct all memory references to the right place.

In a simple memory architecture, all addresses refer to the same address space. This is the
memory model used by 8-bit microprocessors, such as the 8080 processor, where the logical
address is the physical address. The 32-bit processors in protected mode can be used in this
way by mapping all segments into the same address space and keeping paging disabled. This
might be done where an older design is being updated to 32-bit technology without also
adopting the new architectural features.

An application also could make partial use of segmentation. A frequent cause of software
failures is the growth of the stack into the instruction code or data of a program.
Segmentation can be used to prevent this. The stack can be put in an address space separate
from the address space for either code or data. Stack addresses always would refer to the
memory in the stack segment, while data addresses always would refer to memory in the data
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segment. The stack segment would have a maximum size enforced by hardware. Any attempt
to grow the stack beyond this size would generate an exception.

A complex system of programs can make full use of segmentation. For example, a system in
which programs share data in real time can have precise control of access to that data.
Program bugs appear as exceptions generated when a program makes improper access. This
is useful as an aid to debugging during program development, and it also can be used to
trigger error-recovery procedures in systems delivered to the end user.

Segmentation hardware translates a segmented (logical) address into an address for a
continuous, unsegmented address space, called a linear address. If paging is enabled, paging
hardware translates a linear address into a physical address. If paging is not enabled, the
linear address is used as the physical address. The physical address appears on the address
bus coming out of the processor.

Paging is a mechanism used to simulate a large, unsegmented address space using a small,
fragmented address space and some disk storage. Paging provides access to data structures
larger than the available memory space by keeping them partly in memory and partly on
disk.

Paging is applied to units of 4 kilobytes called pages. When a program attempts to access a
page which is on disk, the program is interrupted in a special way. Unlike other exceptions
and interrupts, an exception generated due to address translation restores the contents of the
processor registers to values which allow the exception-generating instruction to be re-
executed. This special treatment enables instruction restart; that is, it allows the operating
system to read the page from disk, update the mapping of linear addresses to physical
addresses for that page, and restart the program. This process is transparent to the program.

Paging is optional. If an operating system never enables the paging mechanism, linear
addresses will be used as physical addresses. This might be done where a design using a 16-
bit processor is being updated to use a 32-bit processor. An operating system written for a 16-
bit processor does not use paging because the size of its address space is so small (64K bytes)
that it is more efficient to swap entire segments between RAM and disk, rather than
individual pages.

Paging would be enabled for operating systems, such as UNIX, which can support demand-
paged virtual memory. Paging is transparent to application software, so an operating system
intended to support application programs written for 16-bit processors can run those
programs with paging enabled. Unlike paging, segmentation is not transparent to application
programs. Programs which use segmentation must be run with the segments they were
designed to use.

11.1. SELECTING A SEGMENTATION MODEL
A model for the segmentation of memory is chosen on the basis of reliability and
performance. For example, a system which has several programs sharing data in real time
would get maximum performance from a model which checks memory references in
hardware. This would be a multisegment model.
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At the other extreme, a system which has just one program may get higher performance from
an unsegmented or "flat" model. The elimination of "far" pointers and segment-override
prefixes reduces code size and increases execution speed. Context switching is faster,
because the contents of the segment registers no longer have to be saved or restored.

Some of the benefits of segmentation also can be provided by paging. For example, data can
be shared by mapping the same pages onto the address space of each program.

11.1.1. Flat Model
The simplest model is the flat model. In this model, all segments are mapped to the entire
physical address space. A segment offset can refer to either code or data areas. To the
greatest extent possible, this model removes the segmentation mechanism from the
architecture seen by either the system designer or the application programmer. This might be
done for a programming environment like UNIX, which supports paging but does not support
segmentation.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. Both descriptors
have the same base address value. Whenever memory is accessed, the contents of one of the
segment registers are used to select a segment descriptor. The segment descriptor provides
the base address of the segment and its limit, as well as access control information (see
Figure 11-1).

ROM usually is put at the top of the physical address space, because the processor begins
execution at FFFF_FFF0H. RAM is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4 gigabytes.
By setting the segment limit to 4 gigabytes, the segmentation mechanism is kept from
generating exceptions for memory references which fall outside of a segment. Exceptions
could still be generated by the paging or segmentation protection mechanisms, but these also
can be removed from the memory model.
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Figure 11-1.  Flat Model

11.1.2. Protected Flat Model
The protected flat model is like the flat model, except the segment limits are set to include
only the range of addresses for which memory actually exists. A general-protection exception
will be generated on any attempt to access unimplemented memory. This might be used for
systems in which the paging mechanism is disabled, because it provides a minimum level of
hardware protection against some kinds of program bugs.

In this model, the segmentation hardware prevents programs from addressing nonexistent
memory locations. The consequences of being allowed access to these memory locations are
hardware-dependent. For example, if the processor does not receive a READY# signal (the
signal used to acknowledge and terminate a bus cycle), the bus cycle does not terminate and
program execution stops.

Although no program should make an attempt to access these memory locations, an attempt
may occur as a result of program bugs. Without hardware checking of addresses, it is
possible that a bug could suddenly stop program execution. With hardware checking,
programs fail in a controlled way. A diagnostic message can appear and recovery procedures
can be attempted.

An example of a protected flat model is shown in Figure 11-2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. The code segment base and
limit can optionally be set to allow access to DRAM area. The data segment limit must be set
to the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be addressed
just beyond the end of DRAM area.
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Figure 11-2.  Protected Flat Model

11.1.3. Multisegment Model
The most sophisticated model is the multisegment model. Here, the full capabilities of the
segmentation mechanism are used. Each program is given its own table of segment
descriptors, and its own segments. The segments can be completely private to the program,
or they can be shared with specific other programs. Access between programs and particular
segments can be individually controlled.

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by loading
their segment selectors into the segment registers (see Figure 11-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents of
one segment by reading beyond the end of another. Every memory operation is checked
against the limit specified for the segment it uses. An attempt to address memory beyond the
end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address ranges
to each segment. There may be situations in which it is desirable to have segments which
share the same range of addresses. For example, a system can have both code and data stored
in a ROM. A code segment descriptor would be used when the ROM is accessed for
instruction fetches. A data segment descriptor would be used when the ROM is accessed as
data.
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11.2. SEGMENT TRANSLATION
A logical address consists of the 16-bit segment selector for its segment and a 32-bit offset
into the segment. The logical address is checked for access rights and range. If it passes these
tests, the logical address is translated into a linear address by adding the offset to the base
address of the segment. The base address comes from the segment descriptor, a data structure
in memory which provides the size and location of a segment, as well as access control
information. The segment descriptor comes from one of two tables, the global descriptor
table (GDT) or the local descriptor table (LDT). There is one GDT for all programs in the
system and one LDT for each separate program being run. If the operating system allows,
different programs can share the same LDT. The system also can be set up with no LDTs; all
programs will then use the GDT.

Every logical address is associated with a segment (even if the system maps all segments into
the same linear address space). Although a program can have thousands of segments, only six
can be available for immediate use. These are the six segments whose segment selectors are
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loaded in the processor. The segment selector holds information used to translate the logical
address into the corresponding linear address.

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, and data spaces). They hold the segment selectors for the segments
currently in use. Access to other segments requires loading a segment register using a form of
the MOV instruction. Up to four data spaces can be available at the same time, thus
providing a total of six segment registers.

When a segment selector is loaded, the base address, segment limit, and access control
information also are loaded into the segment register. The processor does not reference the
descriptor tables in memory again until another segment selector is loaded. The information
saved in the processor allows it to translate addresses without making extra bus cycles. In
systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified. If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index is
scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit base
address of the descriptor table. The base address comes from either the global descriptor
table register (GDTR) or the local descriptor table register (LDTR). These registers hold the
linear address of the beginning of the descriptor tables. A bit in the segment selector specifies
which table to use, as shown in Figure 11-4.
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Figure 11-4.  TI Bit Selects Descriptor Table

The translated address is the linear address, as shown in Figure 11-5. If paging is not used, it
is also the physical address. If paging is used, a second level of address translation produces
the physical address. This translation is described in Section 11.3.
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11.2.1. Segment Registers
Each kind of memory reference is associated with a segment register. Code, data, and stack
references each access the segments specified by the contents of their segment registers.
More segments can be made available by loading their segment selectors into these registers
during program execution.

Every segment register has a "visible" part and an "invisible" part, as shown in Figure 11-6.
There are forms of the MOV instruction to load the visible part of these segment registers.
The invisible part is loaded by the processor.
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Figure 11-6.  Segment Registers
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The operations which load these registers are instructions for application programs (described
in Chapter 4). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP
instructions. These instructions change the contents of the CS register as an incidental
part of their function.

When one of these instructions is executed, the visible part of the segment register is loaded
with a segment selector. The processor automatically loads the invisible part of the segment
register with information (such as the base address) from the descriptor table. Because most
instructions refer to segments whose selectors already have been loaded into segment
registers, the processor can add the logical-address offset to the segment base address with no
performance penalty.

11.2.2. Segment Selectors
A segment selector points to the information which defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors occupy
segment registers. When this is true, the program uses forms of the MOV instruction to
change the contents of these registers when it needs to access a new segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a part of
a pointer variable, but the values of selectors are usually assigned or modified by link editors
or linking loaders, not application programs. Figure 11-7 shows the format of a segment
selector.
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Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the descriptor table (from the GDTR or LDTR register).

Table Indicator bit:  Specifies the descriptor table to use. A clear bit selects the GDT; a set
bit selects the current LDT.

Requestor Privilege Level: When this field of a selector contains a privilege level having a
greater value (i.e., less privileged) than the program, it effectively overrides the program's
privilege level for accesses that use that selector. When a program uses a less privileged
segment selector, memory accesses take place at the lesser privilege level. This is used to
guard against a security violation in which a less privileged program uses a more privileged
program to access protected data.

For example, system utilities or device drivers must run with a high level of privilege in
order to access protected facilities such as the control registers of peripheral interfaces. But
they must not interfere with other protected facilities, even if a request to do so is received
from a less privileged program. If a program requested reading a sector of disk into memory
occupied by a more privileged program, such as the operating system, the RPL can be used
to generate a general-protection exception when the less privileged segment selector is used.
This exception occurs even though the program using the segment selector would have a
sufficient privilege level to perform the operation on its own.

Because the first entry of the GDT is not used by the processor, a selector which has an index
of 0 and a table indicator of 0 (i.e., a selector which points to the first entry of the GDT) is
used as a "null selector." The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access
memory. This feature can be used to initialize unused segment registers.

11.2.3. Segment Descriptors
A segment descriptor is a data structure in memory which provides the processor with the
size and location of a segment, as well as control and status information. Descriptors
typically are created by compilers, linkers, loaders, or the operating system, but not
application programs. Figure 11-8 illustrates the general descriptor format. All types of
segment descriptors use a variation of this basic format.
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Figure 11-8.  Segment Descriptors

Base: Defines the location of the segment within the 4-gigabyte physical address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment
base values should be aligned to 16-byte boundaries to allow programs to maximize
performance by aligning code/data on 16-byte boundaries.

Granularity bit:  Turns on scaling of the Limit field by a factor of 4096 (212). When the bit
is clear, the segment limit is interpreted in units of one byte; when set, the segment limit is
interpreted in units of 4K bytes. Note that the twelve least significant bits of the address are
not tested when scaling is used. For example, a limit of 0 with the Granularity bit set results
in valid offsets from 0 to 4095. Also note that only the Limit field is affected. The base
address remains byte granular.

Limit:  Defines the size of the segment. The processor puts together the two limit fields to
form a 20-bit value. The processor interprets the segment size in one of two ways, depending
on the setting of the Granularity bit:

1. If the Granularity bit is clear, the segment size is from 1 byte to 1 megabyte, in
increments of 1 byte.

2. If the Granularity bit is set, the segment size is from 4 kilobytes to 4 gigabytes, in
increments of 4K bytes.
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For expand-up segments, a logical address can have an offset ranging from 0 to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they can be addressed with any offset except those from 0 to the limit (see the Type
field, below). This is done to allow segments to be created in which increasing the value held
in the Limit field allocates new memory at the bottom of the segment's address space, rather
than at the top. Expand-down segments are intended to hold stacks, but it is not necessary to
use them. If a stack is going to be put in a segment which does not need to change size, it can
be a normal data segment.

S bit: Determines whether a given segment is a system segment or a code or data segment. If
the S bit is set, then the segment is either a code or a data segment. If it is clear, then the
segment is a system segment.

D bit/B bit:  In a code segment, this bit is called the D bit, and it indicates the default length
for operands and effective addresses. If the D bit is set, then 32-bit operands and 32-bit
effective addressing modes are assumed. If it is clear, then 16-bit operands and addressing
modes are assumed. In a data segment, this bit is called the B bit, and it controls two aspects
of stack operation:

1. The size of the stack pointer register. If B = 1, pushes, pops and calls all use 32-bit ESP
register; if B = 0, stack operations use the 16-bit SP register.

2. The upper bound of an expand-down stack. In expand-down segments, the Limit field
specifies the lower bound of the stack segment, while the upper bound is an address of
all 1-bits. If B = 1, the upper bound is FFFF_FFFFH; if B = 0, the upper bound is
FFFFH.

Type: The interpretation of this field depends on whether the segment descriptor is for an
application segment or a system segment. System segments have a slightly different
descriptor format, discussed in Chapter 12. The Type field of a memory descriptor specifies
the kind of access which may be made to a segment, and its direction of growth (see Table
11-1).

For data segments, the three lowest bits of the type field can be interpreted as expand-down
(E), write enable (W), and accessed (A). For code segments, the three lowest bits of the type
field can be interpreted as conforming (C), read enable (R), and accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments which must
be read/write. Loading the SS register with a segment selector for any other type of segment
generates a general-protection exception. If the stack segment needs to be able to change
size, it can be an expand-down data segment. The meaning of the segment limit is reversed
for an expand-down segment. The valid offsets in an expand-down segment are those which
generate exceptions in expand-up segments. Expand-up segments must be addressed by
offsets which are equal or less than the segment limit. Offsets into expand-down segments
always must be greater than the segment limit. This interpretation of the segment limit causes
memory space to be allocated at the bottom of the segment when the segment limit is
decreased, which is correct for stack segments because they grow toward lower addresses. If
the stack is given a segment which does not change size, the segment does not need to be
expand-down.
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Table 11-1.  Application Segment Types

Type
11 10

E
9
W

8
A

Descriptor
Type Description

0
1
2
3
4
5
6
7

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Data
Data
Data
Data
Data
Data
Data
Data

Read-Only
Read-Only, accessed
Read/Write
Read/Write, accessed
Read-Only, expand-down
Read-Only, expand-down, accessed
Read/Write, expand-down
Read/Write, expand-down, accessed

Type
11 10

C
9
R

8
A

Descriptor
Type Description

8
9
10
11
12
13
14
15

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Code
Code
Code
Code
Code
Code
Code
Code

Execute-Only
Execute-Only, accessed
Execute/Read
Execute/Read, accessed
Execute-Only, conforming
Execute-Only, conforming, accessed
Execute/Read-Only, conforming
Execute/Read-Only, conforming, accessed

Code segments can be execute-only or execute/read. An execute/read segment might be used,
for example, when constants have been placed with instruction code in a ROM. In this case,
the constants can be read either by using an instruction with a CS override prefix or by
placing a segment selector for the code segment in a segment register for a data segment.

Code segments can be either conforming or non-conforming. A transfer of execution into a
more privileged conforming segment keeps the current privilege level. A transfer into a non-
conforming segment at a different privilege level results in a general-protection exception,
unless a task gate is used (see Chapter 13 for a discussion of multitasking). System utilities
which do not access protected facilities, such as data-conversion functions (e.g.,
EBCDIC/ASCII translation, Huffman encoding/decoding, math library) and some types of
exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND range exceeded) may
be loaded in conforming code segments.

The A (accessed) bit of the Type field is set by the processor to indicate that a segment has
been loaded into a segment register. By clearing the A-bit initially, then testing it later,
software can monitor segment usage. For example, a program development system might
clear all of the Accessed bits for the segments of an application. If the application crashes,
the states of these bits can be used to generate a map of all the segments accessed by the
application. Unlike the breakpoints provided by the debugging mechanism (Chapter 17), the
usage information applies to segment usage rather than linear address matches.

The processor may update the Type field when a segment is accessed, even if the access is a
read cycle. If the descriptor tables have been put in ROM, it may be necessary for hardware
to prevent the ROM from being enabled onto the data bus during a write cycle. It also may
be necessary to return the READY# signal to the processor when a write cycle to ROM
occurs, otherwise the cycle does not terminate. These features of the hardware design are
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necessary for using ROM-based descriptor tables with the Intel386 DX processor, which
always sets the Accessed bit when a segment descriptor is loaded. The Intel486 and Pentium
processors, however, only set the Accessed bit if it is not already set. Writes to descriptor
tables in ROM can be avoided by setting the Accessed bits in every descriptor.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in Chapter 12.

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present
exception when a selector for the descriptor is loaded into a segment register. This is used to
detect access to segments which have become unavailable. A segment can become
unavailable when the system needs to create free memory. Items in memory, such as
character fonts or device drivers, which currently are not being used are deallocated. An item
is deallocated by marking the segment "not present" (this is done by clearing the Segment-
Present bit). The memory occupied by the segment then can be put to another use. The next
time the deallocated item is needed, the segment-not-present exception will indicate the
segment needs to be loaded into memory. When this kind of memory management is
provided in a manner invisible to application programs, it is called virtual memory. A system
can maintain a total amount of virtual memory far larger than physical memory by keeping
only a few segments present in physical memory at any one time.

Figure 11-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to store its
own data, such as information regarding the whereabouts of the missing segment.
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Figure 11-9.  Segment Descriptor (Segment Not Present)

11.2.4. Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

• The global descriptor table (GDT)

• The local descriptor tables (LDT)
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There is one GDT for all tasks, and an LDT for each task being run. A descriptor table is an
array of segment descriptors, as shown in Figure 11-10. A descriptor table is variable in
length and can contain up to 8192 (213) descriptors. The first descriptor in the GDT is not
used by the processor. A segment selector to this "null descriptor" does not generate an
exception when loaded into a data segment register (DS, ES, FS, or GS), but it always
generates an exception when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to unused
segment registers can be guaranteed to generate an exception.
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Figure 11-10.  Descriptor Tables

11.2.5. Descriptor Table Base Registers
The processor finds the global descriptor table (GDT) and interrupt descriptor table (IDT)
using the GDTR and IDTR registers. These registers hold 32-bit base addresses for tables in
the linear address space. They also hold 16-bit limit values for the size of these tables.

When the IDTR and GDTR registers are loaded or stored, a 48-bit "pseudo-descriptor" is
accessed in memory, as shown in Figure 11-11. To avoid alignment check faults in user
mode (privilege level 3). the pseudo-descriptor should be located at an odd word address
(i.e., an address which is 2 MOD 4). This causes the processor to store an aligned word,
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followed by an aligned doubleword. User-mode programs normally do not store pseudo-
descriptors, but the possibility of generating an alignment check fault can be avoided by
aligning pseudo-descriptors in this way.
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Figure 11-11.  Pseudo-Descriptor Format

The base addresses of the GDT and IDT should be aligned on an eight-byte boundary to
maximize performance of cache line fills.

The limit values for both the GDT and IDT are expressed in bytes. As with segments, the
limit value is added to the base address to get the address of the last valid byte. A limit value
of zero results in exactly one valid byte. Because segment descriptors are always eight bytes
long, the limit should always be one less than an integral multiple of eight (i.e., 8N – 1). The
LGDT and SGDT instructions write and read the GDTR register; the LIDT and SIDT
instructions write and read the IDTR register.

A third descriptor table is the local descriptor table (LDT). It is identified by a 16-bit
segment selector held in the LDTR register. The LLDT and SLDT instructions write and read
the segment selector in the LDTR register. The LDTR register also holds the base address
and limit for the LDT, but these are loaded automatically by the processor from the segment
descriptor for the LDT (which is taken from the GDT). The LDT should be aligned on an
eight-byte boundary to maximize performance of cache line fills.

11.3. PAGE TRANSLATION
A linear address is a 32-bit address into a uniform, unsegmented address space. This address
space can be a large physical address space (i.e., an address space composed of several
gigabytes of RAM), or paging can be used to simulate this address space using a small
amount of RAM and some disk storage. When paging is used, a linear address is translated
into its corresponding physical address, or an exception is generated. The exception gives the
operating system a chance to read the page from disk (perhaps sending a different page out to
disk in the process), then restart the instruction which generated the exception.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed
size. If segmentation is the only form of address translation which is used, a data structure
which is present in physical memory will have all of its parts in memory. If paging is used, a
data structure can be partly in memory and partly in disk storage.
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The information which either maps linear addresses into physical addresses or raises
exceptions is held in data structures in memory called page tables. As with segmentation, this
information is cached within the CPU to minimize the number of bus cycles required for
address translation. Unlike segmentation, the address translation caches are completely
invisible to application programs. The processor's caches for address translation information
are called translation lookaside buffers (TLB). The TLBs satisfy most requests for reading
the page tables. Extra bus cycles occur only when the TLBs cannot satisfy a request. This
typically happens when a page has not been accessed for a long time.

11.3.1. Paging Options
Paging is enabled when bit 31 (the PG bit) of the CR0 register is set. This bit usually is set by
the operating system during software initialization. (Refer to Chapter 16 for information on
how to change PG.) When paging is enabled, a second stage of address translation is used to
generate the physical address from the linear address. If paging is not enabled, the linear
address is used as the physical address. The PG bit must be set if the operating system is
running more than one program in virtual-8086 mode or if demand-paged virtual memory is
used.

11.3.2. Linear Address
Figure 11-12 shows the format of a linear address for a 4K page.
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Figure 11-12.  Format of a Linear Address

Figure 11-13 shows how the processor translates the DIRECTORY, TABLE, and OFFSET
fields of a linear address into the physical address by consulting page tables. The addressing
mechanism uses the DIRECTORY field as an index into a page directory. It uses the TABLE
field as an index into the page table determined by the page directory. It uses the OFFSET
field to address an operand within the page specified by the page table.
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11.3.3. Page Tables
A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of data or at most 1K 32-bit entries. Four kilobyte pages, including page directories and
page tables, are aligned to 4K-byte boundaries. Two levels of tables are used to address a
page of memory. At the highest level is a page directory. A page directory holds up to 1K
entries that address page tables of the second level. A page table of the second level
addresses up to 1K pages in physical memory. All the tables addressed by one page directory,
therefore, can address 1M (220) four-Kbyte pages. If each page contains 4K (212) bytes, the
tables of one page directory can span a linear address space of four gigabytes (220 × 212 =
232).  For information on support of page sizes larger than 4K, see Appendix H.
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Figure 11-13.  Page Translation

The physical address of the current page directory is stored in the CR3 register, also called
the page directory base register (PDBR). Memory management software has the option of
using one page directory for all tasks, one page directory for each task, or some combination
of the two. See Chapter 16 for information on initialization of the CR3 register. See
Chapter 13 for how the contents of the CR3 register can change for each task.

11.3.4. Page-Table Entries
Page-table and page-directory entries for 4K pages have one of the formats shown by Figure
11-14.  For information on page-table and page-directory formats for pages larger than 4K,
see Appendix H.
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Figure 11-14.  Format of  Page Directory and Page Table Entries for 4K Pages

11.3.4.1. PAGE FRAME ADDRESS

The page frame address specifies the physical starting address of a page. In a page directory,
the page frame address is the address of a page table. In a second-level page table, the page
frame address is the address of the four kilobyte page that contains the desired memory
operand or instructions.

11.3.4.2. PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to a page
in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table entry
is available for the operating system, for example, to store information regarding the
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whereabouts of the missing page. Figure 11-15 illustrates the format of a page table entry
when the Present bit is clear.

APM100

A V A I L A B L E 0

Figure 11-15.  Format of a Page Table Entry for a Not-Present Page

If the Present bit is clear in either level of page tables when an attempt is made to use a page
table entry for address translation, a page-fault exception is generated. In systems which
support demand-paged virtual memory, the following sequence of events then occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and sets its
Present bit. Other bits, such as the dirty and accessed bits, may be set, too.

3. Because a copy of the old page table entry may still exist in a translation lookaside
buffer (TLB), the operating system invalidates them. See Section 11.3.5. for a discussion
of TLBs and how to invalidate them.

4. The program which caused the exception is then restarted.

Note that there is no Present bit in CR3 for the page directory itself. The page directory may
be not-present while the associated task is suspended, but the operating system must ensure
that the page directory indicated by the CR3 image in a process's TSS is present in physical
memory before the process is dispatched. The page directory must also remain in memory as
long as the task is active.

11.3.4.3. ACCESSED AND DIRTY BITS

These bits provide data about page usage in both levels of page tables. The Accessed bit is
used to report read or write access to a page or to a second-level page table. The Dirty bit is
used to report write access to a page. These bits are set by the hardware; however, the
processor does not implicitly clear either of these bits.

The processor sets the Accessed bit in both levels of page table before a read or write
operation to a page. The processor sets the Dirty bit before a write operation to an address
mapped by that page table entry. Only the Dirty bit in the second-level page table is used; the
processor does not use the Dirty bit of the page directory.

The operating system may use the Accessed bit when it needs to create some free memory by
sending a page or second-level page table to disk storage. By periodically clearing the
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Accessed bits in the page tables, it can see which pages have been used recently. Pages
which have not been used are candidates for sending out to disk.

The operating system may use the Dirty bit when a page is sent back to disk. By clearing the
Dirty bit when the page is brought into memory, the operating system can see if it has
received any write access. If there is a copy of the page on disk and the copy in memory has
not received any writes, there is no need to update disk from memory.

See Chapter 19 for how the processor updates the Accessed and Dirty bits in multiprocessor
systems.

11.3.4.4. READ/WRITE AND USER/SUPERVISOR BITS

The Read/Write and User/Supervisor bits are used for protection checks applied to pages,
which the processor performs at the same time as address translation. See Chapter 12 for
more information on protection.

11.3.4.5. PAGE-LEVEL CACHE CONTROL BITS

The PCD and PWT bits are used for page-level cache management. Software can control the
caching of individual pages or second-level page tables using these bits. See Chapter 18 for
more information on caching.

11.3.5. Translation Lookaside Buffers
The processor stores the most recently used page table entries in on-chip caches called
translation lookaside buffers or TLBs. The Pentium microprocessor has separate TLB's for
the data and instruction caches. Most paging is performed using the contents of the TLBs.
Bus cycles to the page tables in memory are performed only when the TLBs do not contain
the translation information for a requested page.

The TLBs are invisible to application programs (with PL>0), but not to operating systems
(PL=0). Operating-system programmers must invalidate the TLBs (dispose of their page
table entries) immediately following and every time there are changes to entries in the page
tables (including when the present bit is set to zero). If this is not done, old data which has
not received the changes might be used for address translation and as a result, subsequent
page table references could be incorrect.

The operating system can invalidate the TLBs by loading the CR3 register. The CR3 register
can be loaded in either of two ways:

1. Explicit loading using MOV instructions, such as:

MOV CR3, EAX

2. Implicit loading by a task switch which changes the contents of the CR3 register. (See
Chapter 13 for more information on task switching.)
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When the mapping of an individual page is changed, the operating system should use the
INVLPG instruction. Where possible, INVLPG invalidates only an individual TLB entry;
however, in some cases, INVLPG invalidates the entire instruction-cache TLB.

11.4. COMBINING SEGMENT AND PAGE TRANSLATION
Figure 11-16 combines Figure 11-5 and Figure 11-13 to summarize both stages of translation
from a logical address to a physical address when paging is enabled. Options available in
both stages of address translation can be used to support several different styles of memory
management.

11.4.1. Flat Model
When a 32-bit processor is used to run software written without segments, it may be
desirable to remove the segmentation features of the processor. The 32-bit processors do not
have a mode bit for disabling segmentation, but the same effect can be achieved by mapping
the stack, code, and data spaces to the same range of linear addresses. The 32-bit offsets used
by 32-bit processor instructions can cover a four-gigabyte linear address space.

When paging is used, the segments can be mapped to the entire linear address space. If more
than one program is being run at the same time, the paging mechanism can be used to give
each program a separate address space.

11.4.2. Segments Spanning Several Pages
The architecture allows segments which are larger than the size of a page. For example, a
large data structure may span thousands of pages. If paging were not used, access to any part
of the data structure would require the entire data structure to be present in physical memory.
With paging, only the page containing the part being accessed needs to be in memory.

11.4.3. Pages Spanning Several Segments
Segments also can be smaller than the size of a page. If one of these segments is placed in a
page which is not shared with another segment, the extra memory is wasted. For example, a
small data structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page
by itself. If many semaphores are used, it is more efficient to pack them into a single page.
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Figure 11-16.  Combined Segment and Page Address Translation

11.4.4. Non-Aligned Page and Segment Boundaries
The architecture does not enforce any correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another.
Likewise, a segment can contain the end of one page and the beginning of another.

11.4.5. Aligned Page and Segment Boundaries
Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which can fit in
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one page is placed in two pages, there may be twice as much paging overhead to support
access to that segment.

11.4.6. Page-Table Per Segment
An approach to combining paging and segmentation which simplifies memory-management
software is to give each segment its own page table, as shown in Figure 11-17. This gives the
segment a single entry in the page directory which provides the access control information
for paging the segment.
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Figure 11-17.  Each Segment Can Have Its Own Page Table
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CHAPTER 12
PROTECTION

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks from
interfering with each other. For example, protection can keep one task from overwriting the
instructions or data of another task.

During program development, the protection mechanism can give a clearer picture of
program bugs. When a program makes an unexpected reference to the wrong memory space,
the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of software
failures caused by undetected program bugs. If a program fails, its effects can be confined to
a limited domain. The operating system can be protected against damage, so diagnostic
information can be recorded and automatic recovery attempted.

Protection can be applied to segments and pages. Two bits in a processor register define the
privilege level of the program currently running (called the current privilege level or CPL).
The CPL is checked during address translation for segmentation and paging.

Although there is no control register or mode bit for turning off the protection mechanism,
the same effect can be achieved by assigning privilege level 0 (the highest level of privilege)
to all segment selectors, segment descriptors, and page table entries.

12.1. SEGMENT-LEVEL PROTECTION
Protection provides the ability to limit the amount of interference a malfunctioning program
can inflict on other programs and their data. Protection is a valuable aid in software
development because it allows software tools (operating system, debugger, etc.) to survive in
memory undamaged. When an application program fails, the software is available to report
diagnostic messages, and the debugger is available for post-mortem analysis of memory and
registers. In production, protection can make software more reliable by giving the system an
opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. All checks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address
translation, there is no performance penalty. There are five protection checks:

1. Type check

2. Limit check

3. Restriction of addressable domain

4. Restriction of procedure entry points

5. Restriction of instruction set
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A protection violation results in an exception. See Chapter 14 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

12.2. SEGMENT DESCRIPTORS AND PROTECTION
Figure 12-1 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions.

When the operating system creates a descriptor, its sets the protection parameters. In general,
application programmers do not need to be concerned about protection parameters.

When a program loads a segment selector into a segment register, the processor loads both
the base address of the segment and the protection information. The invisible part of each
segment register has storage for the base, limit, type, and privilege level. While this
information is resident in the segment register, subsequent protection checks on the same
segment can be performed with no performance penalty.

12.2.1. Type Checking
In addition to the descriptors for application code and data segments, the processor has
descriptors for system segments and gates. These are data structures used for managing tasks
(Chapter 13) and exceptions and interrupts (Chapter 14). Table 12-Error! Bookmark not
defined. lists all the types defined for system segments and gates. Note that not all
descriptors define segments; gate descriptors hold pointers to procedure entry points.
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Table 12-1.  System Segment and Gate Types

Type

Decimal Binary Description

 0 0 0 0 0 Reserved

 1 0 0 0 1 Available 16-Bit TSS

 2 0 0 1 0 LDT

 3 0 0 1 1 Busy 16-Bit TSS

 4 0 1 0 0 16-Bit Call Gate

 5 0 1 0 1 Task Gate

 6 0 1 1 0 16-Bit Interrupt Gate

 7 0 1 1 1 16-Bit Trap Gate

 8 1 0 0 0 Reserved

 9 1 0 0 1 Available 32-Bit TSS

10 1 0 1 0 Reserved

11 1 0 1 1 Busy 32-Bit TSS

12 1 1 0 0 32-Bit Call Gate

13 1 1 0 1 Reserved

14 1 1 1 0 32-Bit Interrupt Gate

15 1 1 1 1 32-Bit Trap Gate

The Type fields of code and data segment descriptors include bits which further define the
purpose of the segment (see Figure 12-1):

• The Writable bit in a data-segment descriptor controls whether programs can write to the
segment.

• The Readable bit in an executable-segment descriptor specifies whether programs can
read from the segment (e.g., to access constants stored in the code space). A readable,
executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES, FS,
or GS registers).

Type checking can be used to detect programming errors which would attempt to use
segments in ways not intended by the programmer. The processor examines type information
on two kinds of occasions:
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1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

 The CS register only can be loaded with a selector for an executable segment.

 Selectors of executable segments which are not readable cannot be loaded into data-
segment registers.

 Only selectors of writable data segments can be loaded into the SS register.

2. When instructions access segments whose descriptors are already loaded into segment
registers. Certain segments can be used by instructions only in certain predefined ways;
for example:

 No instruction may write into an executable segment.

 No instruction may write into a data segment if the writable bit is not set.

 No instruction may read an executable segment unless the readable bit is set.

12.2.2. Limit Checking
The Limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity bit).
For data segments, the limit also depends on the E bit (Expansion Direction bit). The E bit is
a designation for one bit of the Type field, when referring to data segment descriptors.

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor. In
this case, the limit ranges from 0 to F_FFFFH (220 – 1 or 1 megabyte). When the G bit is set,
the processor scales the value in the Limit field by a factor of 212. In this case the limit
ranges from 0FFFH (212 – 1 or 4K bytes) to FFFF_FFFFH (232 – 1 or 4 gigabytes). Note that
when scaling is used, the lower twelve bits of the address are not checked against the limit;
when the G bit is set and the segment limit is 0, valid offsets within the segment are 0
through 4095.

For all types of segments except expand-down data segments, the value of the limit is one
less than the size, in bytes, of the segment. The processor causes a general-protection
exception in any of these cases:

• Attempt to access a memory byte at an address > limit

• Attempt to access a memory word at an address > (limit – 1)

• Attempt to access a memory doubleword at an address > (limit – 3)

• Attempt to access a memory quadword at an address > (limit – 7)

For expand-down data segments, the limit has the same function but is interpreted
differently. In these cases the range of valid offsets is from (limit + 1) to 232 – 1 if B-bit = 1
and 216 – 1 if B-bit = 0. An expand-down segment has maximum size when the segment limit
is 0.

Limit checking catches programming errors such as runaway subscripts and invalid pointer
calculations. These errors are detected when they occur, so identification of the cause is
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easier. Without limit checking, these errors could overwrite critical memory in another
module, and the existence of these errors would not be discovered until the damaged module
crashed, an event which may occur long after the actual error. Protection can block these
errors and report their source.

In addition to limit checking on segments, there is limit checking on the descriptor tables.
The GDTR, LDTR, and IDTR registers contain a 16-bit limit value. It is used by the
processor to prevent programs from selecting a segment descriptor outside the descriptor
table. The limit of a descriptor table identifies the last valid byte of the table. Because each
descriptor is eight bytes long, a table which contains up to N descriptors should have a limit
of 8N – 1.

A selector may be given a zero value. Such a selector refers to the first descriptor in the
GDT, which is not used. Although this descriptor can be loaded into a segment register, any
attempt to reference memory using this descriptor will generate a general-protection
exception.

12.2.3. Privilege Levels
The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The
greater numbers mean lesser privileges. If all other protection checks are satisfied, a general-
protection exception is generated if a program attempts to access a segment using a less
privileged level (greater privilege number) than that applied to the segment.

Although no control register or mode bit is provided for turning off the protection
mechanism, the same effect can be achieved by assigning all privilege levels the value of 0.
(The PE bit in the CR0 register is not an enabling bit for the protection mechanism alone; it
is used to enable protected mode, the mode of program execution in which the full 32-bit
architecture is available. When protected mode is disabled, the processor operates in real-
address mode, where it appears as a fast, enhanced 8086 processor.)

Privilege levels can be used to improve the reliability of operating systems. By giving the
operating system the greatest privilege (numerically lowest privilege level), it is protected
from damage by bugs in other programs. If a program crashes, the operating system has a
chance to generate a diagnostic message and attempt recovery procedures.

Another level of privilege can be established for other parts of the system software, such as
the programs which handle peripheral devices. If a device driver crashes, the operating
system should be able to report a diagnostic message, so it makes sense to protect the
operating system against bugs in device drivers. A device driver, however, may service an
important peripheral such as a disk drive. If the application program crashes, the device
driver should not corrupt the directory structure of the disk, so it makes sense to protect
device drivers against bugs in applications. Device drivers should be given an intermediate
privilege level between the operating system and the application programs. Application
programs are given the least privilege (numerically greatest level).

Figure 12-2 shows how these levels of privilege can be interpreted as rings of protection. The
center is for the segments containing the most critical software, usually the kernel of an
operating system. Outer rings are for less critical software.
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The following data structures contain privilege levels:

• The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being run. The lowest two bits of the SS
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The CPL changes when
control is transferred to a code segment with a different privilege level.

• Segment descriptors contain a field called the descriptor privilege level (DPL). The DPL
is the privilege level applied to a segment.

• Segment selectors contain a field called the requestor privilege level (RPL). The RPL is
intended to represent the privilege level of the procedure which created the selector. If
the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program, the RPL
causes the memory access to take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor is loaded into a segment
register. The checks used for data access differ from those used for transfers of execution
among executable segments; therefore, the two types of access are considered separately in
the following sections.
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Figure 12-2.  Protection Rings

12.3. RESTRICTING ACCESS TO DATA
To address operands in memory, a segment selector for a data segment must be loaded into a
data-segment register (the DS, ES, FS, GS, or SS registers). The processor checks the
segment's privilege levels. The check is performed when the segment selector is loaded. As
Figure 12-3 shows, three different privilege levels enter into this type of privilege check.

The three privilege levels which are checked are:

1. The CPL (current privilege level) of the program. This is held in the two least-significant
bit positions of the CS register.

2. The DPL (descriptor privilege level) of the segment descriptor of the segment containing
the operand.

3. The RPL (requestor's privilege level) of the selector used to specify the segment
containing the operand. This is held in the two lowest bit positions of the segment
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register used to access the operand (the SS, DS, ES, FS, or GS registers). If the operand
is in the stack segment, the RPL is the same as the CPL.
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Figure 12-3.  Privilege Check for Data Access

Instructions may load a segment register only if the DPL of the segment is the same or a less
privileged level (greater privilege number) than the less privileged of the CPL and the
selector's RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data
segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at
privilege level 3 are accessible.

Systems that use only two of the four possible privilege levels should use levels 0 and 3.
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12.3.1. Accessing Data in Code Segments
It may be desirable to store data in a code segment, for example, when both code and data
are provided in ROM. Code segments may legitimately hold constants; it is not possible to
write to a segment defined as a code segment, unless a data segment is mapped to the same
address space. The following methods of accessing data in code segments are possible:

1. Load a data-segment register with a segment selector for a nonconforming, readable,
executable segment.

2. Load a data-segment register with a segment selector for a conforming, readable,
executable segment.

3. Use a code-segment override prefix to read a readable, executable segment whose
selector already is loaded in the CS register.

The same rules for access to data segments apply to case 1. Case 2 is always valid because
the privilege level of a code segment with a set Conforming bit is effectively the same as the
CPL, regardless of its DPL. Case 3 is always valid because the DPL of the code segment
selected by the CS register is the CPL.

12.4. RESTRICTING CONTROL TRANSFERS
Control transfers are provided by the JMP, CALL, RET, INT, and IRET instructions, as well
as by the exception and interrupt mechanisms. Exceptions and interrupts are special cases
discussed in Chapter 14. This chapter discusses only the JMP, CALL, and RET instructions.

The near forms of the JMP, CALL, and RET instructions transfer program control within the
current code segment, and therefore are subject only to limit checking. The processor checks
that the destination of the JMP, CALL, or RET instruction does not exceed the limit of the
current code segment. This limit is cached in the CS register, so protection checks for near
transfers do not degrade performance.

The operands of the far forms of the JMP and CALL instruction refer to other segments, so
the processor performs privilege checking. There are two ways a JMP or CALL instruction
can refer to another segment:

1. The operand selects the descriptor of another executable segment.

2. The operand selects a call gate descriptor.

As Figure 12-4 shows, two different privilege levels enter into a privilege check for a control
transfer which does not use a call gate:

1. The CPL (current privilege level).

2. The DPL of the descriptor of the destination code segment.
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Figure 12-4.  Privilege Check for Control Transfer Without Gate

Normally the CPL is equal to the DPL of the segment which the processor is currently
executing. The CPL may, however, be greater (less privileged) than the DPL if the current
code segment is a conforming segment (as indicated by the Type field of its segment
descriptor). A conforming segment runs at the privilege level of the calling procedure. The
processor keeps a record of the CPL cached in the CS register; this value can be different
from the DPL in the segment descriptor of the current code segment.

The processor only permits a JMP or CALL instruction directly into another segment if either
of the following privilege rules is satisfied:

• The DPL of the segment is equal to the CPL.

• The segment is a conforming code segment, and its DPL is less (more privileged) than
the CPL.

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, which support applications but do not require access to protected system
facilities. When control is transferred to a conforming segment, the CPL does not change,
even if the selector used to address the segment has a different RPL. This is the only
condition in which the CPL may be different from the DPL of the current code segment.



PROTECTION EE

12-12

Most code segments are not conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. This is accomplished with
the CALL instruction using call-gate descriptors, which is explained in Chapter 13. The JMP
instruction may never transfer control to a nonconforming segment whose DPL does not
equal the CPL.

12.5. GATE DESCRIPTORS
To provide protection for control transfers among executable segments at different privilege
levels, the processor uses gate descriptors. There are four kinds of gate descriptors:

• Call gates

• Trap gates

• Interrupt gates

• Task gates

Task gates are used for task switching and are discussed in Chapter 13. Chapter 14 explains
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is
concerned only with call gates. Call gates are a form of protected control transfer. They are
used for control transfers between different privilege levels. They only need to be used in
systems in which more than one privilege level is used. Figure 12-5 illustrates the format of a
call gate.
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Figure 12-5.  Call Gate

A call gate has two main functions:

1. To define an entry point of a procedure.

2. To specify the privilege level required to enter a procedure.
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CALL and JMP instructions use call gate descriptors in the same manner as code segment
descriptors. When the hardware recognizes that the segment selector for the destination refers
to a gate descriptor, the operation of the instruction is determined by the contents of the call
gate. A call gate descriptor may reside in the GDT or in an LDT, but not in the interrupt
descriptor table (IDT).

The selector and offset fields of a gate form a pointer to the entry point of a procedure. A call
gate guarantees that all control transfers to other segments go to a valid entry point, rather
than to the middle of a procedure (or worse, to the middle of an instruction). The operand of
the control transfer instruction is not the segment selector and offset within the segment to
the procedure's entry point. Instead, the segment selector points to a gate descriptor, and the
offset is not used. Figure 12-6 shows this form of addressing.
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Figure 12-6.  Call Gate Mechanism

As shown in Figure 12-7, four different privilege levels are used to check the validity of a
control transfer through a call gate.
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The privilege levels checked during a transfer of execution through a call gate are:

1. The CPL (current privilege level).

2. The RPL (requestor's privilege level) of the segment selector used to specify the call
gate.

3. The DPL (descriptor privilege level) of the gate descriptor.

4. The DPL of the segment descriptor of the destination code segment.

The DPL field of the gate descriptor determines from which privilege levels the gate may be
used. One code segment can have several procedures which are intended for use from
different privilege levels. For example, an operating system may have some services which
are intended to be used by both the operating system and application software, such as
routines to handle character I/O, while other services may be intended only for use by
operating system, such as routines which initialize device drivers.

Gates can be used for control transfers to more privileged levels or to the same privilege
level (though they are not necessary for transfers to the same level). Only CALL instructions
can use gates to transfer to more privileged levels. A JMP instruction can use a gate only to
transfer control to a code segment with the same privilege level, or to a conforming code
segment with the same or a more privileged level.

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satisfied; otherwise, a general-protection exception is generated.

• MAX (CPL,RPL) ≤ gate DPL

• Destination code segment DPL = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general-protection exception is
generated.

• MAX (CPL,RPL) ≤ gate DPL

• Destination code segment DPL ≤ CPL

12.5.1. Stack Switching
A procedure call to a more privileged level does the following:

1. Changes the CPL.

2. Transfers control (execution).

3. Switches stacks.

All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiving
calls from less privileged levels. If the caller were to provide the stack, and the stack was too
small, the called procedure might crash as a result of insufficient stack space. Instead, the
processor prevents less privileged programs from crashing more privileged programs by
creating a new stack when a call is made to a more privileged level. The new stack is
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created, parameters are copied from the old stack, the contents of registers are saved, and
execution proceeds normally. When the procedure returns, the contents of the saved registers
restore the original stack.

The processor finds the space to create new stacks using the task state segment (TSS), as
shown in Figure 12-8. (Chapter 13 discusses the TSS in more detail.) Each task has its own
TSS. The TSS contains initial stack pointers for the inner protection rings. The operating
system is responsible for creating each TSS and initializing its stack pointers. (If the
operating system does not use TSSs for multitasking, it still must allocate at least one TSS
for this stack-related purpose.) An initial stack pointer consists of a segment selector and an
initial value for the ESP register (an initial offset into the segment). The initial stack pointers
are strictly read-only values. The processor does not change them while the task runs. These
stack pointers are used only to create new stacks when calls are made to more privileged
levels. These stacks disappear when the called procedure returns. The next time the
procedure is called, a new stack is created using the initial stack pointer.
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When a call gate is used to change privilege levels, a new stack is created by loading an
address from the TSS. The processor uses the DPL of the destination code segment (the new
CPL) to select the initial stack pointer for privilege level 0, 1, or 2.
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The DPL of the new stack segment must equal the new CPL; if not, a TSS fault is generated.
It is the responsibility of the operating system to create stacks and stack-segment descriptors
for all privilege levels which are used. The stacks must be read/write as specified in the Type
fields of their segment descriptors. They must contain enough space, as specified in the Limit
fields, to hold the contents of the SS and ESP registers, the return address, and the parameters
and temporary variables required by the called procedure.

As with calls within a privilege level, parameters for the procedure are placed on the stack.
The parameters are copied to the new stack. The parameters can be accessed within the
called procedure using the same relative addresses which would have been used if no stack
switching had occurred. The count field of a call gate tells the processor how many
doublewords (up to 31) to copy from the caller's stack to the stack of the called procedure. If
the count is 0, no parameters are copied.

If more than 31 doublewords of data need to be passed to the called procedure, one of the
parameters can be a pointer to a data structure, or the saved contents of the SS and ESP
registers may be used to access parameters in the old stack space.

The processor performs the following stack-related steps in executing a procedure call
between privilege levels.

1. The stack of the called procedure is checked to make certain it is large enough to hold
the parameters and the saved contents of registers; if not, a stack exception is generated.

2. The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the
zero-extended upper word is Intel reserved; do not use).

3. The parameters are copied from the stack of the caller to the stack of the called
procedure.

4. A pointer to the instruction after the CALL instruction (the old contents of the CS and
EIP registers) is pushed onto the new stack. The contents of the SS and ESP registers
after the call point to this return pointer on the stack.

Figure 12-9 illustrates the stack frame before, during, and after a successful interlevel
procedure call and return.
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Figure 12-9.  Stack Frame during Interlevel Call

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure at
privilege level 3 cannot be called by a less privileged procedure. The stack for privilege level
3 is preserved by the contents of the SS and EIP registers which have been saved on the stack
of the privilege level called from level 3.

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses how
the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check pointer values.

12.5.2. Returning from a Procedure
The near forms of the RET instruction only transfer control within the current code segment,
therefore are subject only to limit checking. The offset to the instruction following the CALL
instruction is popped from the stack into the EIP register. The processor checks that this
offset does not exceed the limit of the current code segment.

The far form of the RET instruction pops the return address which was pushed onto the stack
by an earlier far CALL instruction. Under normal conditions, the return pointer is valid,
because it was generated by a CALL or INT instruction. Nevertheless, the processor
performs privilege checking because of the possibility that the current procedure altered the
pointer or failed to maintain the stack properly. The RPL of the code-segment selector
popped off the stack by the return instruction should have the privilege level of the calling
procedure.

A return to another segment can change privilege levels, but only toward less privileged
levels. When a RET instruction encounters a saved CS value whose RPL is numerically
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greater (less privileged) than the CPL, a return across privilege levels occurs. A return of this
kind performs these steps:

1. The checks shown in Table 12-2 are made, and the CS, EIP, SS, and ESP registers are
loaded with their former values, which were saved on the stack.

2. The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP
value is not checked against the limit of the stack segment. If the ESP value is beyond
the limit, that fact is not recognized until the next stack operation. (The contents of the
SS and ESP registers for the returning procedure are not preserved; normally, their
values are the same as those contained in the TSS.)

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of these
registers refer to segments whose DPL is less than the new CPL (excluding conforming
code segments), the segment register is loaded with the null selector (Index = 0, TI = 0).
The RET instruction itself does not signal exceptions in these cases; however, any
subsequent memory reference using a segment register containing the null selector will
cause a general-protection exception. This prevents less privileged code from accessing
more privileged segments using selectors left in the segment registers by a more
privileged procedure.
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Table 12-2.  Interlevel Return Checks

Type of Check Exception Type Error Code

Top-of-stack + 7 must be within stack segment limit Stack 0

RPL of return code segment must be greater than the CPL Protection Return CS

Return code segment selector must be non-null Protection Return CS

Return code segment descriptor must be within descriptor table
limit

Protection Return CS

Return segment descriptor must be a code segment Protection Return CS

Return code segment is present Segment not present Return CS

DPL of return non-conforming code segment must equal RPL of
return code segment selector, or DPL of return conforming code
segment must be less than or equal to RPL of return code
segment selector

Protection Return CS

ESP + N + 15* must be within the stack segment limit Stack fault 0

Segment selector at ESP + N + 12* must be non-null Protection Return SS

Segment descriptor at ESP + N + 12* must be within descriptor
table limit

Protection Return SS

Stack segment descriptor must be read/write Protection Return SS

Stack segment must be present Stack fault Return SS

Old stack segment DPL must be equal to RPL of old code
segment

Protection Return SS

Old stack segment selector must have an RPL equal to the DPL
of the old stack segment

Protection Return SS

* N is the value of the immediate operand supplied with the RET instruction.

12.6. INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM
Instructions which can affect the protection mechanism or influence general system
performance can only be executed by trusted procedures. The processor has two classes of
such instructions:

1. Privileged instructions—those used for system control.

2. Sensitive instructions—those used for I/O and I/O-related activities.

12.6.1. Privileged Instructions
The instructions which affect protected facilities can be executed only when the CPL is 0
(most privileged). If one of these instructions is executed when the CPL is not 0, a general-
protection exception is generated. These instructions include:
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CLTS —Clear Task-Switched Flag

HLT —Halt Processor

INVD —Invalidate Cache

INVLPG —Invalidate TLB Entry

LGDT —Load GDT Register

LIDT —Load IDT Register

LLDT —Load LDT Register

LMSW —Load Machine Status Word

LTR —Load Task Register

MOV to/from CRn —Move to Control Register n

MOV to/from DRn —Move to Debug Register n

WBINVD —Writeback and Invalidate Cache

12.6.2. Sensitive Instructions
Instructions which deal with I/O need to be protected, but they also need to be used by
procedures executing at privilege levels other than 0 (the most privileged level). The
mechanisms for protection of I/O operations are covered in detail in Chapter 15.

12.7. INSTRUCTIONS FOR POINTER VALIDATION
Pointer validation is necessary for maintaining isolation between privilege levels. It consists
of the following steps:

1. Check whether the supplier of the pointer is allowed to access the segment.

2. Check whether the segment type is compatible with its use.

3. Check whether the pointer offset exceeds the segment limit.

Although the processor automatically performs checks 2 and 3 during instruction execution,
software must assist in performing the first check. The ARPL instruction is provided for this
purpose. Software also can use steps 2 and 3 to check for potential violations, rather than
waiting for an exception to be generated. The LAR, LSL, VERR, and VERW instructions are
provided for this purpose.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a
compatible privilege level and type. The LAR instruction has one operand:  a segment
selector for the descriptor whose access rights are to be checked. Conforming code segments
may be accessed from any privilege level. Any other segment descriptor must be readable at
a privilege level which is numerically greater (less privileged) than the CPL and the
selector's RPL. If the descriptor is readable, the LAR instruction gets the second doubleword
of the descriptor, masks this value with 00FxFF00H, stores the result into the specified 32-bit
destination register, and sets the ZF flag. (The x indicates that the corresponding four bits of
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the stored value are undefined.) Once loaded, the access rights can be tested. All valid de-
scriptor types can be tested by the LAR instruction. If the RPL or CPL is greater than the
DPL, or if the segment selector would exceed the limit for the descriptor table, zero is
returned, and the ZF flag is cleared.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If the
descriptor referenced by the segment selector (in memory or a register) is readable at the
CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte granular limit
calculated from the concatenated limit fields and the G bit of the descriptor. This only can be
done for descriptors which describe segments (data, code, task state, and local descriptor
tables); gate descriptors are inaccessible. (Table 12-3 lists in detail which types are valid and
which are not.) Interpreting the limit is a function of the segment type. For example,
downward-expandable data segments (stack segments) treat the limit differently than other
kinds of segments. For both the LAR and LSL instructions, the ZF flag is set if the load was
successful; otherwise, the ZF flag is cleared.

Table 12-3.  Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?

0 Reserved No

1 Reserved No

2 LDT Yes

3 Reserved No

4 Reserved No

5 Task Gate No

6 Reserved No

7 Reserved No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit Call Gate No

D Reserved No

E 32-bit Interrupt Gate No

F 32-bit Trap Gate No

An additional check, the alignment check, can be applied at CPL = 3. When both the AM bit
in CR0 and the AC flag are set, unaligned memory references generate exceptions. This is
useful for programs which use the low two bits of pointers to identify the type of data
structure they address. For example, a subroutine in a math library may accept pointers to
numeric data structures. If the type of this structure is assigned a code of 10 (binary) in the
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lowest two bits of pointers to this type, math subroutines can correct for the type code by
adding a displacement of –10 (binary). If the subroutine should ever receive the wrong
pointer type, an unaligned reference would be produced, which would generate an exception.
Alignment checking accelerates the processing of programs written in symbolic-processing
(i.e., Artificial Intelligence) languages such as Lisp, Prolog, Smalltalk, and C++. It can be
used to speed up pointer tag type checking.

12.7.1. Descriptor Validation
The processor has two instructions, VERR and VERW, which determine whether a segment
selector points to a segment which can be read or written using the CPL. Neither instruction
causes a protection fault if the segment cannot be accessed.

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that
segment is readable using the CPL. The VERR instruction checks the following:

• The segment selector points to a segment descriptor within the bounds of the GDT or an
LDT.

• The segment selector indexes to a code or data segment descriptor.

• The segment is readable and has a compatible privilege level.

The privilege check for data segments and nonconforming code segments verifies that the
DPL must be a less privileged level than either the CPL or the selector's RPL. Conforming
segments are not checked for privilege level.

VERW (Verify for Writing)  provides the same capability as the VERR instruction for
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag if
the segment can be written. The instruction verifies the descriptor is within bounds, is a
segment descriptor, is writable, and has a DPL which is a less privileged level than either the
CPL or the selector's RPL. Code segments are never writable, whether conforming or not.

12.7.2. Pointer Integrity and RPL
The requestor’s privilege level (RPL) can prevent accidental use of pointers which crash
more privileged code from a less privileged level.

A common example is a file system procedure, FREAD (file_id, n_bytes, buffer_ptr). This
hypothetical procedure reads data from a disk file into a buffer, overwriting whatever is
already there. It services requests from programs operating at the application level, but it
must run in a privileged mode in order to read from the system I/O buffer. If the application
program passed this procedure a bad buffer pointer, one which pointed at critical code or data
in a privileged address space, the procedure could cause damage which would crash the
system.

Use of the RPL can avoid this problem. The RPL allows a privilege override to be assigned
to a selector. This privilege override is intended to be the privilege level of the code segment
which generated the segment selector. In the above example, the RPL would be the CPL of
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the application program which called the system level procedure. The processor
automatically checks any segment selector loaded into a segment register to determine
whether its RPL allows access.

To take advantage of the processor's checking of the RPL, the called procedure need only
check that all segment selectors passed to it have an RPL for the same or a less privileged
level as the original caller's CPL. This guarantees that the segment selectors are not more
privileged than their source. If a selector is used to access a segment which the source would
not be able to access directly, i.e. the RPL is less privileged than the segment's DPL, a
general-protection exception is generated when the selector is loaded into a segment register.

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to be
the larger (less privileged) of its original value and the value of the RPL field for a segment
selector stored in a general register. The RPL fields are the two least significant bits of the
segment selector and the register. The latter normally is a copy of the caller's CS register on
the stack. If the adjustment changes the selector's RPL, the ZF flag is set; otherwise, the ZF
flag is cleared.

12.8. PAGE-LEVEL PROTECTION
Protection applies to both segments and pages. When the flat model for memory
segmentation is used, page-level protection prevents programs from interfering with each
other.

Each memory reference is checked to verify that it satisfies the protection checks. All checks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address
translation, there is no performance penalty. There are two page-level protection checks:

1. Restriction of addressable domain.

2. Type checking.

A protection violation results in an exception. See Chapter 14 for an explanation of the
protected-mode exception mechanism. This chapter describes the protection violations which
lead to exceptions.

12.8.1. Page-Table Entries Hold Protection Parameters
Figure 12-10 highlights the fields of a page table entry which control access to pages. The
protection checks are applied for both first- and second-level page tables.



EE PROTECTION

12-25

APM77

P
C
D

P
W
T

U
/
S

R
/

W
PAGE FRAME ADDRESS 31:12 AVAIL 0 0 D A P

R/W
U/S

READ/WRITE
USER/SUPERVISOR

Figure 12-10.  Protection Fields of a Page Table Entry

12.8.1.1. RESTRICTING ADDRESSABLE DOMAIN

Privilege is interpreted differently for pages than for segments. With segments, there are four
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages, there
are two levels of privilege:

1. Supervisor level (U/S=0)—for the operating system, other system software (such as
device drivers), and protected system data (such as page tables).

2. User level (U/S=1)—for application code and data.

The privilege levels used for segmentation are mapped into the privilege levels used for
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is 3,
the processor is running at user level.When the processor is running at supervisor level, all
pages are accessible. When the processor is running at user level, only pages from the user
level are accessible.

12.8.1.2. TYPE CHECKING

Only two types of pages are recognized by the protection mechanism:

1. Read-only access (R/W=0).

2. Read/write access (R/W=1).

When the processor is running at supervisor level with the WP bit in the CR0 register clear
(its state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is running at user level, only pages which belong
to user level and are marked for read/write access are writable. User-level pages which are
read/write or read-only are readable. Pages from the supervisor level are neither readable nor
writable from user level. A general-protection exception is generated on any attempt to
violate the protection rules.

Setting the WP bit in the CR0 register enables supervisor-mode sensitivity to write-protected
pages.
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The supervisor write-protect feature is also useful for implementing the copy-on-write
strategy used by some operating systems, such as UNIX, for task creation (also called forking
or spawning). When a new task is created, it is possible to copy the entire address space of
the parent task. This gives the child task a complete, duplicate set of the parent's segments
and pages. An alternative strategy, copy-on-write, saves memory space and time by mapping
the child's segments and pages to the same segments and pages used by the parent task. A
private copy of a page gets created only when one of the tasks writes to the page. By using
the WP bit, the supervisor can detect an attempt to write to a user- or supervisor-level page,
and can copy the page at that time.

12.8.2. Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page directory entry (first-level page table)
may differ from those of its second-level page table entry. The processor checks the
protection for a page by examining the protection specified in both the page directory (first-
level page table) and the second-level page table. Table 12-4 shows the protection provided
by the possible combinations of protection attributes when the WP bit is clear.

12.8.3. Overrides to Page Protection
Certain accesses are checked as if they are privilege-level 0 accesses, for any value of CPL:

• Access to segment descriptors (LDT, GDT, TSS and IDT).

• Access to inner stack during a CALL instruction, or exceptions and interrupts, when a
change of privilege level occurs.
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Table 12-4.  Combined Page Directory and Page Table Protection

Page Directory Entry Page Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

*If the WP bit of CR0 is set, the access type is determined by the R/W bits of the page directory and page
table entries

12.9. COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor first evaluates segment protection, then evaluates
page protection. If the processor detects a protection violation at either the segment level or
the page level, the operation does not go through; an exception occurs instead. If an
exception is generated by segmentation, no paging exception is generated for the operation.

For example, it is possible to define a large data segment which has some parts which are
read-only and other parts which are read-write. In this case, the page directory (or page table)
entries for the read-only parts would have the U/S and R/W bits specifying no write access
for all the pages described by that directory entry (or for individual pages specified in the
second-level page tables). This technique might be used, for example, to define a large data
segment, part of which is read-only (for shared data or ROMmed constants). This defines a
flat data space as one large segment, with flat pointers used to access this flat space, while
protecting shared data, shared files mapped into the virtual space, and supervisor areas.
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CHAPTER 13
PROTECTED-MODE MULTITASKING

The Pentium processor provides hardware support for multitasking. A task is a program
which is running, or waiting to run while another program is running. A task is invoked by an
interrupt, exception, jump, or call. When one of these forms of transferring execution is used
with a destination specified by an entry in one of the descriptor tables, this descriptor can be
a type which causes a new task to begin execution after saving the state of the current task.
There are two types of task-related descriptors which can occur in a descriptor table: task
state segment descriptors and task gates. When execution is passed to either kind of
descriptor, a task switch occurs.

A task switch is like a procedure call, but it saves more processor state information. A task
switch transfers execution to a completely new environment, the environment of a task. This
requires saving the contents of nearly all the processor registers, including the EFLAGS
register and the segment registers. Unlike procedures, tasks are not re-entrant. A task switch
does not push anything on the stack. The processor state information is saved in a data
structure in memory, called a task state segment.

The registers and data structures which support multitasking are:

• Task state segment.

• Task state segment descriptor.

• Task register.

• Task gate descriptor.

With these structures, the processor can switch execution from one task to another, saving the
context of the original task to allow the task to be restarted. The processor also offers two
other task-management features:

1. Interrupts and exceptions can cause task switches (if needed in the system design). The
processor can not only perform a task switch to handle the interrupt or exception, but it
can automatically switch back when the interrupt or exception returns. This mechanism
can handle interrupts that occur during interrupt tasks.

2. With each switch to another task, the processor also can switch to another LDT. This can
be used to give each task a different logical-to-physical address mapping. This is an
additional protection feature, because tasks can be isolated and prevented from
interfering with one another. The PDBR register also is reloaded. This allows the paging
mechanism to be used to enforce the isolation between tasks.
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Use of the multitasking mechanism is optional. In some applications, it may not be the best
way to manage program execution. Where extremely fast response to interrupts is needed,
the time required to save the processor state may be too great. A possible compromise in
these situations is to use the task-related data structures, but perform task switching in
software. This allows a smaller processor state to be saved. This technique can be one of the
optimizations used to enhance system performance after the basic functions of a system have
been implemented.

13.1. TASK STATE SEGMENT
The processor state information needed to restore a task is saved in a type of segment, called
a task state segment or TSS. Figure 13-1 shows the format of a TSS for tasks designed for 32-
bit CPUs (compatibility with 16-bit 80286 tasks is provided by a different kind of TSS; see
Chapter 23). The fields of a TSS are divided into two main categories:

1. Dynamic fields the processor updates with each task switch. These fields store:

 The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI).

 The segment registers (ES, CS, SS, DS, FS, and GS).

 The flags register (EFLAGS).

 The instruction pointer (EIP).

 The selector for the TSS of the previous task (updated only when a return is
expected).

2. Static fields the processor reads, but does not change. These fields are set up when a task
is created. These fields store:

 The selector for the task's LDT.

 The CR3 register.

 The logical address of the stacks for privilege levels 0, 1, and 2.

 The T-bit (debug trap bit) which, when set, causes the processor to raise a debug
exception when a task switch occurs. (See Chapter 17 for more information on
debugging.)

 The base address for the I/O permission bit map and interrupt redirection bitmap. If
present, these maps are stored in the TSS at higher addresses. The base address
points to the beginning of the I/O map and the end of the 32-byte interrupt map. (See
Chapter 15 for more information about the I/O permission bit map and Chapter 22
for more information about interrupt redirection.)
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Figure 13-1.  32-Bit Task State Segment
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If paging is used, it is important to avoid placing a page boundary within the part of the TSS
which is read by the processor during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time. In addition, if paging is used, the pages corresponding to the old task’s TSS,
the new task’s TSS, and the descriptor table entries for each should be marked as present and
read/write. It is an unrecoverable error to receive a page fault or general-protection exception
after the processor has started to read the TSS.

13.2. TSS DESCRIPTOR
The task state segment, like all other segments, is defined by a descriptor. Figure 13-2 shows
the format of a TSS descriptor.

APM61

BASE 31:24 G 0 0
A
V
L

BASE ADDRESS 15:00

LIMIT
19:16

P
D
P
L 0 1 0 B 1

TYPE BASE 23:16

SEGMENT LIMIT 15:00

AVL
B
BASE
DPL
G
LIMIT
P
TYPE

AVAILABLE FOR USE BY SYSTEM SOFTWARE
BUSY BIT
SEGMENT BASE ADDRESS
DESCRIPTOR PRIVILEGE LEVEL
GRANULARITY
SEGMENT LIMIT
SEGMENT PRESENT
SEGMENT TYPE

TSS DESCRIPTOR

Figure 13-2.  TSS Descriptor

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a value of
11 (decimal) indicates a busy task. Tasks are not recursive. The processor uses the Busy bit
to detect an attempt to call a task whose execution has been interrupted.

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions
similar to their use in data-segment descriptors. The Limit field must have a value equal to or
greater than 67H, one byte less than the minimum size of a task state. An attempt to switch to
a task whose TSS descriptor has a limit less than 67H generates an exception. A larger limit
is required if an I/O permission map is used. A larger limit also may be required for the
operating system, if the system stores additional data in the TSS.
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A procedure with access to a TSS descriptor can cause a task switch. In most systems, the
DPL fields of TSS descriptors should be less than 3, so only privileged software can perform
task switching.

Access to a TSS descriptor does not give a procedure the ability to read or modify the
descriptor. Reading and modification only can be done using a data descriptor mapped to the
same location in memory. Loading a TSS descriptor into a segment register generates an
exception. TSS descriptors only may reside in the GDT. An attempt to access a TSS using a
selector with a set TI bit (which indicates the current LDT) generates an exception.

13.3. TASK REGISTER
The task register (TR) is used to find the current TSS. Figure 13-3 shows the path by which
the processor accesses the TSS.

The task register has both a visible part (i.e., a part which can be read and changed by
software) and an invisible part (i.e., a part maintained by the processor and inaccessible to
software). The selector in the visible portion indexes to a TSS descriptor in the GDT. The
processor uses the invisible portion of the TR register to retain the base and limit values from
the TSS descriptor. Keeping these values in a register makes execution of the task more
efficient, because the processor does not need to fetch these values from memory to reference
the TSS of the current task.

The LTR and STR instructions are used to modify and read the visible portion of the task
register. Both instructions take one operand, a 16-bit segment selector located in memory or
a general register.

LTR (Load task register) loads the visible portion of the task register with the operand,
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the
invisible portion with information from the TSS descriptor. The LTR instruction is a
privileged instruction; it may be executed only when the CPL is 0. The LTR instruction
generally is used during system initialization to put an initial value in the task register;
afterwards, the contents of the TR register are changed by events which cause a task switch.

STR (Store task register) stores the visible portion of the task register in a general register
or memory.
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TASK STATE SEGMENT
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DESCRIPTOR TABLE

N

TSS DESCRIPTOR

0

Figure 13-3.  Task Register

13.4. TASK GATE DESCRIPTOR
A task gate descriptor provides an indirect, protected reference to a task. Figure 13-4
illustrates the format of a task gate.
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Figure 13-4.  Task Gate Descriptor

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is not
used.

The DPL of a task gate controls access to the descriptor for a task switch. A procedure may
not select a task gate descriptor unless the selector's RPL and the CPL of the procedure are
numerically less than or equal to the DPL of the descriptor. This prevents less privileged
procedures from causing a task switch. (Note that when a task gate is used, the DPL of the
destination TSS descriptor is not used.)

A procedure with access to a task gate can cause a task switch, as can a procedure with
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy three
needs:

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the TSS
descriptor, each task should have only one such descriptor. There may, however, be
several task gates which select a single TSS descriptor.

2. The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL which is different from the TSS descriptor's DPL.
A procedure which does not have sufficient privilege to use the TSS descriptor in the
GDT (which usually has a DPL of 0) can still call another task if it has access to a task
gate in its LDT. With task gates, the operating system can limit task switching to
specific tasks.

3. The need for an interrupt or exception to cause a task switch. Task gates also may reside
in the IDT, which allows interrupts and exceptions to cause task switching. When an
interrupt or exception supplies a vector to a task gate, the processor switches to the
indicated task.

Figure 13-5 illustrates how both a task gate in an LDT and a task gate in the IDT can identify
the same task.
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Figure 13-5.  Task Gates Reference Tasks

13.5. TASK SWITCHING
The processor transfers execution to another task in any of four cases:

1. The current task executes a JMP or CALL to a TSS descriptor.

2. The current task executes a JMP or CALL to a task gate.

3. An interrupt or exception indexes to a task gate in the IDT.

4. The current task executes an IRET when the NT flag is set.
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The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all ordinary
mechanisms of the processor which can be used in circumstances in which no task switch
occurs. The descriptor type (when a task is called) or the NT flag (when the task returns)
make the difference between the standard mechanism and the form which causes a task
switch.

To cause a task switch, a JMP or CALL instruction can transfer execution to either a TSS
descriptor or a task gate. The effect is the same in either case: the processor transfers
execution to the specified task.

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT. If it
indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See Chapter 14
for more information on the interrupt mechanism.

An interrupt service routine always returns execution to the interrupted procedure, which
may be in another task. If the NT flag is clear, a normal return occurs. If the NT flag is set, a
task switch occurs. The task receiving the task switch is specified by the TSS selector in the
TSS of the interrupt service routine.

A task switch has these steps:

1. Check that the current task is allowed to switch to the new task. Data-access privilege
rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and the task
gate must be numerically greater (e.g., lower privilege level) than or equal to both the
CPL and the RPL of the gate selector. Exceptions, interrupts, and IRET instructions are
permitted to switch tasks regardless of the DPL of the destination task gate or TSS
descriptor.

2. Check that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H). Errors restore any changes made in the processor state
when an attempt is made to execute the error-generating instruction. This lets the return
address for the exception handler point to the error-generating instruction, rather than the
instruction following the error-generating instruction. The exception handler can fix the
condition which caused the error, and restart the task. The intervention of the exception
handler can be completely transparent to the application program.

3. Save the state of the current task. The processor finds the base address of the current TSS
in the task register. The processor registers are copied into the current TSS (the EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, and EFLAGS registers,
and the instruction pointer).

4. Load the TR register with the selector to the new task's TSS descriptor, set the new task's
Busy bit, and set the TS bit in the CR0 register. The selector is either the operand of a
JMP or CALL instruction, or it is taken from a task gate.

5. Load the new task's state from its TSS and continue execution. The registers loaded are
the LDTR register; the PDBR (CR3); the EFLAGS register; the general registers EIP,
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS,
FS, and GS. Any errors detected in this step occur in the context of the new task. To an
exception handler, the first instruction of the new task appears not to have executed.
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Note that the state of the old task is always saved when a task switch occurs. If the task is
resumed, execution starts with the instruction which normally would have been next. The
registers are restored to the values they held when the task stopped running.

Every task switch sets the TS (task switched) bit in the CR0 register. The TS bit is useful to
system software for coordinating the operations of the integer unit with the floating-point
unit. The TS bit indicates that the context of the floating-point unit may be different from
that of the current task. Chapter 6 discusses the TS bit and the FPU in more detail.

Exception service routines for exceptions caused by task switching (exceptions resulting
from steps 5 through 17 shown in Table 13-1 may be subject to recursive calls if they attempt
to reload the segment selector which generated the exception. The cause of the exception (or
the first of multiple causes) should be fixed before reloading the selector.

The privilege level at which the old task was running has no relation to the privilege level of
the new task. Because the tasks are isolated by their separate address spaces and task state
segments, and because privilege rules control access to a TSS, no privilege checks are
needed to perform a task switch. The new task begins executing at the privilege level
indicated by the RPL of the new contents of the CS register, which are loaded from the TSS.
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Table 13-1.  Checks Made during a Task Switch

Step Condition Checked Exception 1 Error Code Reference

 1 TSS descriptor is present in memory NP New Task’s TSS

 2 TSS descriptor is not busy TS (for IRET); GP (for
JMP, CALL, INT)

Task’s backlink TSS

 3 TSS segment limit greater than or equal to
108

TS New Task’s TSS

 4 Registers are loaded from the values in the TSS

 5 LDT selector of new task is valid2 TS New Task’s LDT

 6 Code segment DPL matches selector RPL TS New Code Segment

 7 SS selector is valid2 TS New Stack Segment

 8 Stack segment is present in memory SF New Stack Segment

 9 Stack segment DPL matches CPL TS New stack segment

10 LDT of new task is present in memory TS New Task’s LDT

11 CS selector is valid2 TS New Code Segment

12 Code segment is present in memory NP New Code Segment

13 Stack segment DPL matches selector RPL TS New Stack Segment

14 DS, ES, FS, and GS selectors are valid2 TS New Data Segment

15 DS, ES, FS, and GS segments are readable TS New Data Segment

16 DS, ES, FS, and GS segments are present in
memory

NP New Data Segment

17 DS, ES, FS, and GS segment DPL greater
than or equal to CPL (unless these are
conforming segments)

TS New Data Segment

NOTES: Future Intel processors may use a different order of checks.

1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exception,
SF = Stack exception.

2. A selector is valid if it is in a compatible type of table (e.g., an LDT selector may not be in any table except
the GDT), occupies an address within the table's segment limit, and refers to a compatible type of
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a code
segment; the descriptor type is specified in its Type field).

13.6. TASK LINKING
The Link field of the TSS and the NT flag are used to return execution to the previous task.
The NT flag indicates whether the currently executing task is nested within the execution of
another task, and the Link field of the current task's TSS holds the TSS selector for the
higher-level task, if there is one (see Figure 13-6).
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Figure 13-6.  Nested Tasks

When an interrupt, exception, jump, or call causes a task switch, the processor copies the
segment selector for the current task state segment into the TSS for the new task and sets the
NT flag. The NT flag indicates the Link field of the TSS has been loaded with a saved TSS
selector. The new task releases control by executing an IRET instruction. When an IRET
instruction is executed, the NT flag is checked. If it is set, the processor does a task switch to
the previous task. Table 13-Error! Bookmark not defined.  summarizes the uses of the fields
in a TSS which are affected by task switching.
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Table 13-2.  Effect of a Task Switch on Busy, NT and Link Fields

Field Effect of Jump

Effect of CALL
Instruction or

Interrupt
Effect of IRET

Instruction

Busy bit of new task Bit is set. Must have been
clear before.

Bit is set. Must have been
clear before.

No change. Must be set.

Busy bit of old task Bit is cleared. No change. Bit is
currently set.

Bit is cleared.

NT flag of new task No change. Flag is set. No change.

NT flag of old task No change. No change. Flag is cleared.

Link field of new task. No change. Loaded with selector
for old task’s TSS.

No change.

Link field of old task. No change. No change. No change.

Note that the NT flag may be modified by software executing at any privilege level. It is
possible for a program to set its NT bit and execute an IRET instruction, which would have
the effect of invoking the task specified in the Link field of the current task's TSS. To keep
spurious task switches from succeeding, the operating system should initialize the Link field
of every TSS it creates.

13.6.1. Busy Bit Prevents Loops
The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one
saved task context, the context saved in the TSS, therefore a task only may be called once
before it terminates. The chain of suspended tasks may grow to any length, due to multiple
interrupts, exceptions, jumps, and calls. The Busy bit prevents a task from being called if it is
in this chain. A re-entrant task switch would overwrite the old TSS for the task, which would
break the chain.

The processor manages the Busy bit as follows:

1. When switching to a task, the processor sets the Busy bit of the new task.

2. When switching from a task, the processor clears the Busy bit of the old task if that task
is not to be placed in the chain (i.e., the instruction causing the task switch is a JMP or
IRET instruction). If the task is placed in the chain, its Busy bit remains set.

3. When switching to a task, the processor generates a general-protection exception if the
Busy bit of the new task already is set.

In this way, the processor prevents a task from switching to itself or to any task in the chain,
which prevents re-entrant task switching.

The Busy bit may be used in multiprocessor configurations, because the processor asserts a
bus lock when it sets or clears the Busy bit. This keeps two processors from invoking the
same task at the same time. (See Chapter 19 for more information on multiprocessing.)
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13.6.2. Modifying Task Linkages
Modification of the chain of suspended tasks may be needed to resume an interrupted task
before the task which interrupted it. A reliable way to do this is:

1. Disable interrupts.

2. First change the Link field in the TSS of the interrupting task, then clear the Busy bit in
the TSS descriptor of the task being removed from the chain.

3. Re-enable interrupts.

13.7. TASK ADDRESS SPACE
The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its own
LDT and page tables. Because segment descriptors in the LDTs are the connections between
tasks and segments, separate LDTs for each task can be used to set up individual control over
these connections. Access to any particular segment can be given to any particular task by
placing a segment descriptor for that segment in the LDT for that task. If paging is enabled,
each task can have its own set of page tables for mapping linear addresses to physical
addresses.

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient way
to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments
accessed through segment descriptors in this table.

13.7.1. Task Linear-to-Physical Space Mapping
The choices for arranging the linear-to-physical mappings of tasks fall into two general
classes:

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled, this
is the only choice. Without paging, all linear addresses map to the same physical
addresses. When paging is enabled, this form of linear-to-physical mapping is obtained
by using one page directory for all tasks. The linear space may exceed the available
physical space if demand-paged virtual memory is supported.

2. Independent linear-to-physical mappings for each task. This form of mapping comes
from using a different page directory for each task. Because the PDBR (page directory
base register) is loaded from the TSS with each task switch, each task may have a
different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables and the
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page tables point to different pages of physical memory, then the tasks do not share any
physical addresses.

The task state segments must lie in a space accessible to all tasks so that the mapping of TSS
addresses does not change while the processor is reading and updating the TSSs during a task
switch. The linear space mapped by the GDT also should be mapped to a shared physical
space; otherwise, the purpose of the GDT is defeated. Figure 13-7 shows how the linear
spaces of two tasks can overlap in the physical space by sharing page tables.

13.7.2. Task Logical Address Space
By itself, an overlapping linear-to-physical space mapping does not allow sharing of data
among tasks. To share data, tasks must also have a common logical-to-linear space mapping;
i.e., they also must have access to descriptors which point into a shared linear address space.
There are three ways to create shared logical-to-physical address-space mappings:

1. Through the segment descriptors in the GDT. All tasks have access to the descriptors in
the GDT. If those descriptors point into a linear-address space which is mapped to a
common physical-address space for all tasks, then the tasks can share data and
instructions.

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selectors in
their TSSs select the same LDT for use in address translation. Segment descriptors in the
LDT addressing linear space mapped to overlapping physical space provide shared
physical memory. This method of sharing is more selective than sharing by the GDT; the
sharing can be limited to specific tasks. Other tasks in the system may have different
LDTs which do not give them access to the shared areas.

3. Through segment descriptors in the LDTs which map to the same linear address space. If
the linear address space is mapped to the same physical space by the page mapping of
the tasks involved, these descriptors permit the tasks to share space. Such descriptors are
commonly called aliases. This method of sharing is even more selective than those listed
above; other descriptors in the LDTs may point to independent linear addresses which
are not shared.
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CHAPTER 14
PROTECTED-MODE EXCEPTIONS AND

INTERRUPTS

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The task
or procedure is called a handler. Interrupts occur at random times during the execution of a
program, in response to signals from hardware. Exceptions occur when instructions are
executed which provoke exceptions. Usually, the servicing of interrupts and exceptions is
performed in a manner transparent to application programs. Interrupts are used to handle
events external to the processor, such as requests to service peripheral devices. Exceptions
handle conditions detected by the processor in the course of executing instructions, such as
division by zero.

There are two sources for interrupts and two sources for exceptions:

1. Interrupts

 Maskable interrupts, which are received on the CPU's INTR input pin. Maskable
interrupts do not occur unless the interrupt-enable flag (IF) is set.

 Nonmaskable interrupts, which are received on the NMI (Non-Maskable Interrupt)
input of the processor. The processor does not provide a mechanism to prevent
nonmaskable interrupts.

2. Exceptions

 Processor-detected exceptions. These are further classified as faults, traps, and
aborts.

 Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may
trigger exceptions. These instructions often are called "software interrupts," but the
processor handles them as exceptions.

This chapter explains the features of the processor which control and respond to interrupts.

14.1. EXCEPTION AND INTERRUPT VECTORS
The processor associates an identifying number with each different type of interrupt or
exception. This number is called a vector.

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31. Not all
of these vectors are currently used by the processor; unassigned vectors in this range are
reserved for possible future uses. Do not use unassigned vectors.

The vectors for maskable interrupts are determined by hardware. External interrupt
controllers (such as Intel's 8259A Programmable Interrupt Controller) put the vector on the
processor's bus during its interrupt-acknowledge cycle. Any vectors in the range 32 through
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255 can be used. Table 14-Error! Bookmark not defined.  shows the assignment of
exception and interrupt vectors.

Table 14-1.  Exception and Interrupt Vectors

Vector Number Description

 0 Divide Error

 1 Debug Exception

 2 NMI Interrupt

 3 Breakpoint

 4 INTO-detected Overflow

 5 BOUND Range Exceeded

 6 Invalid Opcode

 7 Device Not Available

 8 Double Fault

 9 CoProcessor Segment Overrun (reserved)

10 Invalid Task State Segment

11 Segment Not Present

12 Stack Fault

13 General Protection

14 Page Fault

15 (Intel reserved. Do not use.)

16 Floating-Point Error

17 Alignment Check

18 Machine Check*

19-31 (Intel reserved. Do not use.)

32-255 Maskable Interrupts

*Machine check is a model-specific exception, available on the Pentium® microprocessor only. It may not be
continued or may not be continued with a compatible implementation in future processor generations.

Exceptions are classified as faults, traps, or aborts depending on the way they are reported
and whether restart of the instruction which caused the exception is supported.

Faults—A fault is an exception which is reported at the instruction boundary prior to the
instruction in which the exception was detected. The fault is reported with the machine
restored to a state which permits the instruction to be restarted. The return address for the
fault handler points to the instruction which generated the fault, rather than the instruction
following the faulting instruction.
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Traps—A trap is an exception which is reported at the instruction boundary immediately
after the instruction in which the exception was detected.

Aborts—An abort is an exception which does not always report the location of the instruction
causing the exception and does not allow restart of the program which caused the exception.
Aborts are used to report severe errors, such as hardware errors and inconsistent or illegal
values in system tables.

14.2. INSTRUCTION RESTART
For most exceptions and interrupts, transfer of execution does not take place until the end of
the current instruction. This leaves the EIP register pointing at the instruction which comes
after the instruction which was being executed when the exception or interrupt occurred. If
the instruction has a repeat prefix, transfer takes place at the end of the current iteration with
the registers set to execute the next iteration. But if the exception is a fault, the processor
registers are restored to the state they held before execution of the instruction began. This
permits instruction restart.

Instruction restart is used to handle exceptions which block access to operands. For example,
an application program could make reference to data in a segment which is not present in
memory. When the exception occurs, the exception handler must load the segment (probably
from a hard disk) and resume execution beginning with the instruction which caused the
exception. At the time the exception occurs, the instruction may have altered the contents of
some of the processor registers. If the instruction read an operand from the stack, it is
necessary to restore the stack pointer to its previous value. All of these restoring operations
are performed by the processor in a manner completely transparent to the application
program.

When a fault occurs, the EIP register is restored to point to the instruction which received the
exception. When the exception handler returns, execution resumes with this instruction.

14.3. ENABLING AND DISABLING INTERRUPTS
Certain conditions and flag settings cause the processor to inhibit certain kinds of interrupts
and exceptions.

14.3.1. NMI Masks Further NMIs
While an NMI interrupt handler is executing, the processor disables additional calls to the
procedure or task which handles the interrupt until the next IRET instruction is executed.
This prevents stacking up calls to the interrupt handler. It is recommended that interrupt
gates be used for NMI's in order to disable nested maskable interrupts, since an IRET
instruction from the maskable-interrupt handler would re-enable NMI.
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14.3.2. IF Masks INTR
The IF flag can turn off servicing of interrupts received on the INTR pin of the processor.
When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set, INTR
interrupts are serviced. As with the other flag bits, the processor clears the IF flag in response
to a RESET signal. The STI and CLI instructions set and clear the IF flag.

CLI (Clear Interrupt-Enable Flag)  and STI (Set Interrupt-Enable Flag) put the IF flag
(bit 9 in the EFLAGS register) in a known state. These instructions may be executed only if
the CPL is an equal or more privileged level than the IOPL. A general-protection exception
is generated if they are executed with a lesser privileged level.

The IF flag also is affected by the following operations:

• The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified form back into the
EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

• Interrupts through interrupt gates automatically clear the IF flag, which disables
interrupts. (Interrupt gates are explained later in this chapter).

14.3.3. RF Masks Debug Faults
The RF flag in the EFLAGS register is used to prevent servicing an instruction breakpoint
fault multiple times. RF works as follows:

• The processor does not set the RF bit in the EFLAGS image that it pushes onto the stack
of the handler. Normally the RF image on the stack does not need to be changed by
software.

• RF itself is set by the fault handler when it executes the IRETD instruction to return to
the faulting instruction. IRETD transfers the EFLAGS image from the stack into the
EFLAGS register. (POPF and POPFD do not transfer the RF image into the EFLAGS
register.)

• RF is cleared by the processor at successful termination of every instruction, except after
the IRET instruction and after JMP, CALL, or INT instructions that cause a task switch.
Therefore, RF remains set for no more than one instruction — the one executed
immediately after the IRET.

• When set, RF causes the processor to suppress reporting of instruction breakpoint faults.

Because instruction breakpoint faults are the highest priority faults, they are always reported
before any other faults for the same instruction. RF is zero for the first attempt to execute the
instruction and one for all attempts to restart the instruction after an instruction breakpoint or
any other fault. This ensures that an instruction breakpoint fault is reported only once. (See
Chapter 17 for more information on debugging.)
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14.3.4. MOV or POP to SS Masks Some Exceptions and Interrupts
Software which needs to change stack segments often uses a pair of instructions; for
example:

MOV            SS, AX
MOV            ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded but before the
ESP register has been loaded, these two parts of the logical address into the stack space are
inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step
trap exceptions after either a MOV to SS instruction or a POP to SS instruction, until the
instruction boundary following the next instruction is reached. General-protection faults may
still be generated. If the LSS instruction is used to modify the contents of the SS register, the
problem does not occur.

14.4. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. The priority among classes of exception and interrupt
sources is shown in Table 14-2. While priority among these classes is consistent throughout
the architecture, exceptions within each class are implementation-dependent and may vary
from processor to processor. The processor first services a pending exception or interrupt
from the class which has the highest priority, transferring execution to the first instruction of
the handler. Lower priority exceptions are discarded; lower priority interrupts are held
pending. Discarded exceptions are re-issued when the interrupt handler returns execution to
the point of interruption.
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Table 14-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Class Descriptions

Highest Class 1 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set, T bit in TSS set, or data/IO
breakpoint)

Class 2 External Interrupts
- NMI Interrupts
- Maskable Interrupts

Class 3 Faults from fetching next instruction
- Code Breakpoint Fault

Class 4 Faults from fetching or decoding the next instruction
- Code Segment Limit Violation
- Page Fault on Prefetch
- Illegal Opcode
- Instruction length > 15 bytes
- Coprocessor Not Available

Lowest Class 5 Faults on Executing an Instruction
- General Detection
- FP error (from previous FP instruction)
- Interrupt on Overflow
- Bound
- Invalid TSS
- Segment Not Present
- Stack Exception
- General Protection
- Data Page Fault
- Alignment Check

14.5. INTERRUPT DESCRIPTOR TABLE
The interrupt descriptor table (IDT) associates each exception or interrupt vector with a
descriptor for the procedure or task which services the associated event. Like the GDT and
LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of the IDT
may contain a descriptor. To form an index into the IDT, the processor scales the exception
or interrupt vector by eight, the number of bytes in a descriptor. Because there are only 256
vectors, the IDT need not contain more than 256 descriptors. It can contain fewer than 256
descriptors; descriptors are required only for the interrupt vectors which may occur.

The IDT may reside anywhere in physical memory. As Figure 14-1 shows, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and
16-bit limit for the IDT. The LIDT and SIDT instructions load and store the contents of the
IDTR register. Both instructions have one operand, which is the address of six bytes in
memory.
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Figure 14-1.  IDTR Locates IDT in Memory

If a vector references a descriptor beyond the limit, the processor enters shutdown mode. In
this mode, the processor stops executing instructions until an NMI interrupt is received or
reset initialization is invoked. The processor generates a special bus cycle to indicate it has
entered shutdown mode. Software designers may need to be aware of the response of
hardware to receiving this signal. For example, hardware may turn on an indicator light on
the front panel, generate an NMI interrupt to record diagnostic information, or invoke reset
initialization.

LIDT (Load IDT register)  loads the IDTR register with the base address and limit held in
the memory operand. This instruction can be executed only when the CPL is 0. It normally is
used by the initialization code of an operating system when creating an IDT. An operating
system also may use it to change from one IDT to another.

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory. This
instruction can be executed at any privilege level.
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14.6. IDT DESCRIPTORS
The IDT may contain any of three kinds of descriptors:

• Task gates

• Interrupt gates

• Trap gates

Figure 14-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate in
an IDT is the same as the task gate in the GDT or an LDT already discussed in Chapter 13.)
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Figure 14-2.  IDT Gate Descriptors

14.7. INTERRUPT TASKS AND INTERRUPT PROCEDURES
Just as a CALL instruction can call either a procedure or a task, so an exception or interrupt
can "call" an interrupt handler as either a procedure or a task. When responding to an
exception or interrupt, the processor uses the exception or interrupt vector to index to a
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descriptor in the IDT. If the processor indexes to an interrupt gate or trap gate, it calls the
handler in a manner similar to a CALL to a call gate. If the processor finds a task gate, it
causes a task switch in a manner similar to a CALL to a task gate.

14.7.1. Interrupt Procedures
An interrupt gate or trap gate indirectly references a procedure which runs in the context of
the currently executing task, as shown in Figure 14-3. The selector of the gate points to an
executable-segment descriptor in either the GDT or the current LDT. The offset field of the
gate descriptor points to the beginning of the exception or interrupt handling procedure.
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PROCEDUREOFFSET
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SEGMENT
DESCRIPTOR
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Figure 14-3.  Interrupt Procedure Call

The processor calls an exception or interrupt handling procedure in much the same manner as
a procedure call; the differences are explained in the following sections.
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14.7.1.1. STACK OF INTERRUPT PROCEDURE

Just as with a transfer of execution using a CALL instruction, a transfer to an exception or
interrupt handling procedure uses the stack to store the processor state. As Figure 14-4
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before pushing
the address of the interrupted instruction.
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Figure 14-4.  Stack Frame after Exception or Interrupt

Certain types of exceptions also push an error code on the stack. An exception handler can
use the error code to help diagnose the exception.

14.7.1.2. RETURNING FROM AN INTERRUPT PROCEDURE

An interrupt procedure differs from a normal procedure in the method of leaving the
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET
instruction is similar to the RET instruction except that it increments the contents of the ESP
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register by an extra four bytes and restores the saved flags into the EFLAGS register. The
IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed
only if CPL ≤ IOPL.

14.7.1.3. FLAG USAGE BY INTERRUPT PROCEDURE

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after its
current value is saved on the stack as part of the saved contents of the EFLAGS register. In
so doing, the processor prevents instruction tracing from affecting interrupt response. A
subsequent IRET instruction restores the TF flag to the value in the saved contents of the
EFLAGS register on the stack.

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the IF
flag to the value in the saved contents of the EFLAGS register on the stack. An interrupt
through a trap gate does not change the IF flag.

14.7.1.4. PROTECTION IN INTERRUPT PROCEDURES

The privilege rule which governs interrupt procedures is similar to that for procedure calls:
the processor does not permit an interrupt to transfer execution to a procedure in a less
privileged segment (numerically greater privilege level). An attempt to violate this rule
results in a general-protection exception.

Because interrupts generally do not occur at predictable times, this privilege rule effectively
imposes restrictions on the privilege levels at which exception and interrupt handling
procedures can run. Either of the following techniques can be used to keep the privilege rule
from being violated.

• The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used by handlers for certain exceptions (divide error, for example).
These handlers must use only the data available on the stack. If the handler needs data
from a data segment, the data segment would have to have privilege level 3, which
would make it unprotected.

• The handler can be placed in a code segment with privilege level 0. This handler would
always run, no matter what CPL the program has.

14.7.2. Interrupt Tasks
A task gate in the IDT indirectly references a task, as Figure 14-5 illustrates. The segment
selector in the task gate addresses a TSS descriptor in the GDT.
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Figure 14-5.  Interrupt Task Switch

When an exception or interrupt calls a task gate in the IDT, a task switch results. Handling an
interrupt with a separate task offers two advantages:

• The entire context is saved automatically.

• The interrupt handler can be isolated from other tasks by giving it a separate address
space. This is done by giving it a separate LDT.

A task switch caused by an interrupt operates in the same manner as the other task switches
described in Chapter 13. The interrupt task returns to the interrupted task by executing an
IRET instruction.

Some exceptions return an error code. If the task switch is caused by one of these, the
processor pushes the code onto the stack corresponding to the privilege level of the interrupt
handler.

When interrupt tasks are used in an operating system, there are actually two mechanisms
which can dispatch tasks: the software scheduler (part of the operating system) and the
hardware scheduler (part of the processor's interrupt mechanism). The software scheduler
needs to accommodate interrupt tasks which may be dispatched when interrupts are enabled.
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14.8. ERROR CODE
With exceptions related to a specific segment, the processor pushes an error code onto the
stack of the exception handler (whether it is a procedure or task). The error code has the
format shown in Figure 14-6. The error code resembles a segment selector; however instead
of an RPL field, the error code contains two one-bit fields:

1. The processor sets the EXT bit if an event external to the program caused the exception.

2. The processor sets the IDT bit if the index portion of the error code refers to a gate
descriptor in the IDT.

RESERVED SELECTOR INDEX T
I

I
D
T

E
X
T

APM121

Figure 14-6.  Error Code

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT (TI bit
clear) or to the LDT (TI bit set). The remaining 13 bits are the upper bits of the selector for
the segment. In some cases the error code is null (i.e., all bits in the lower word are clear).

The error code is pushed on the stack as a doubleword or word, according to current default
size. This is done to keep the stack aligned on addresses which are multiples of four. The
upper half of the doubleword is reserved.

14.9. EXCEPTION CONDITIONS
The following sections describe conditions which generate exceptions. Each description
classifies the exception as a fault, trap, or abort. This classification provides information
needed by system programmers for restarting the procedure in which the exception occurred:

• Faults—The saved contents of the CS and EIP registers point to the instruction which
generated the fault.

• Traps—The saved contents of the CS and EIP registers stored when the trap occurs point
to the instruction to be executed after the instruction which generated the trap. If a trap is
detected during an instruction which transfers execution, the saved contents of the CS
and EIP registers reflect the transfer. For example, if a trap is detected in a JMP
instruction, the saved contents of the CS and EIP registers point to the destination of the
JMP instruction, not to the instruction at the next address above the JMP instruction.
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• Aborts—An abort is an exception which permits neither precise location of the
instruction causing the exception nor restart of the program which caused the exception.
Aborts are used to report severe errors, such as hardware errors and inconsistent or
illegal values in system tables.

14.9.1. Interrupt 0—Divide Error
The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is zero.

14.9.2. Interrupt 1—Debug Exceptions
The processor generates a debug exception for a number of conditions; whether the exception
is a fault or a trap depends on the condition, as shown below:

Instruction address breakpoint fault

Data address breakpoint trap

General detect fault

Single-step trap

Task-switch breakpoint trap

The processor does not push an error code for this exception. An exception handler can
examine the debug registers to determine which condition caused the exception. See
Chapter 17 for more detailed information about debugging and the debug registers.

14.9.3. Interrupt 3—Breakpoint
The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode. The operating system or a debugging tool can use a data segment mapped to the
same physical address space as the code segment to place an INT 3 instruction in places
where it is desired to call the debugger. Debuggers use breakpoints as a way to suspend
program execution in order to examine registers, variables, etc.

The saved contents of the CS and EIP registers point to the byte following the breakpoint. If
a debugger allows the suspended program to resume execution, it replaces the INT 3
instruction with the original opcode at the location of the breakpoint, and it decrements the
saved contents of the EIP register before returning. See Chapter 17 for more information on
debugging.
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14.9.4. Interrupt 4—Overflow
The overflow trap occurs when the processor executes an INTO instruction with the OF flag
set. Because signed and unsigned arithmetic both use some of the same instructions, the
processor cannot determine when overflow actually occurs. Instead, it sets the OF flag when
the results, if interpreted as signed numbers, would be out of range. When doing arithmetic
on signed operands, the OF flag can be tested directly or the INTO instruction can be used.

14.9.5. Interrupt 5—Bounds Check
The bounds-check fault is generated when the processor, while executing a BOUND
instruction, finds that the operand exceeds the specified limits. A program can use the
BOUND instruction to check a signed array index against signed limits defined in a block of
memory.

14.9.6. Interrupt 6—Invalid Opcode
The invalid-opcode fault is generated when an invalid opcode is detected by the execution
unit. (The exception is not detected until an attempt is made to execute the invalid opcode;
i.e., prefetching an invalid opcode does not cause this exception.) No error code is pushed on
the stack. The exception can be handled within the same task.

This exception also occurs when the type of operand is invalid for the given opcode.
Examples include an intersegment JMP instruction using a register operand, or an LES
instruction with a register source operand.

A third condition which generates this exception is the use of the LOCK prefix with an
instruction which may not be locked. Only certain instructions may be used with bus locking,
and only forms of these instructions which write to a destination in memory may be used. All
other uses of the LOCK prefix generate an invalid-opcode exception.

Following is a list of undefined opcodes that are reserved by Intel. These opcodes, even
though undefined, do not generate interrupt 6.

• D6

• F1

14.9.7. Interrupt 7—Device Not Available
The device-not-available fault is generated by either of two conditions:

• The processor executes an ESC instruction, and the EM bit of the CR0 register is set.

• The processor executes a WAIT instruction (with MP=1) or ESC instruction, and the TS
bit of the CR0 register is set.
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Interrupt 7 thus occurs when the programmer wants ESC instructions to be handled by
software (EM set), or when a WAIT or ESC instruction is encountered and the context of the
floating-point unit is different from that of the current task.

On the Intel 286 and Intel386 processors, the MP bit in the CR0 register is used with the TS
bit to determine if WAIT instructions should generate exceptions. For programs running on
the Pentium and Intel486 DX processors, and Intel487 SX coprocessors, the MP bit should
always be set. For programs running on the Intel486 SX processor, MP should be clear.

14.9.8. Interrupt 8—Double Fault
Normally, when the processor detects an exception while trying to call the handler for a prior
exception, the two exceptions can be handled serially. If, however, the processor cannot
handle them serially, it signals the double-fault exception instead. To determine when two
faults are to be signaled as a double fault, the processor divides the exceptions into three
classes: benign exceptions, contributory exceptions, and page faults. Table 14-3 shows this
classification. Then, comparing the classes of the first and second exception, the processor
signals a double-fault in the cases indicated by Table 14-Error! Bookmark not defined. .

Table 14-3.  Interrupt and Exception Classes

Class Vector Number Description

Benign
Exceptions
and Interrupts

  1
  2
  3
  4
  5
  6
  7
16

Debug Exceptions
NMI Interrupt
Breakpoint
Overflow
Bounds Check
Invalid Opcode
Device Not Available
Floating-Point Error

Contributory
Exceptions

  0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14 Page Fault

Table 14-4.  Double Fault Conditions

Second Exception

First Exception Benign Contributory Page Fault

Benign OK OK OK

Contributory OK Double Fault OK

Page Fault OK Double Fault Double Fault
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An initial segment or page fault encountered while prefetching instructions is outside the
domain of Table 14-Error! Bookmark not defined. . Any further faults generated while the
processor is attempting to transfer control to the appropriate fault handler could still lead to a
double-fault sequence.

The processor always pushes an error code onto the stack of the double-fault handler;
however, the error code is always 0. The faulting instruction may not be restarted. If any
other exception occurs while attempting to call the double-fault handler, the processor enters
shutdown mode. This mode is similar to the state following execution of an HLT instruction.
No instructions are executed until an NMI interrupt or a RESET signal is received. If the
shutdown occurs while the processor is executing an NMI interrupt handler, then only a
RESET can restart the processor. The processor generates a special bus cycle to indicate it
has entered shutdown mode.

14.9.9. Interrupt 9—(Intel reserved. Do not use.)
Interrupt 9, the coprocessor-segment overrun abort, is generated in Intel386 CPU-based
systems with an Intel387 math coprocessor when the Intel386 CPU detects a page or segment
violation while transferring the middle portion of an Intel387 math coprocessor operand. This
interrupt is generated neither by the Pentium processor nor by the Intel486 processor;
interrupt 13 occurs instead.

14.9.10. Interrupt 10—Invalid TSS
An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is
attempted. A TSS is invalid in the cases shown in Table 14-5. An error code is pushed onto
the stack of the exception handler to help identify the cause of the fault. The EXT bit
indicates whether the exception was caused by a condition outside the control of the program
(e.g., if an external interrupt using a task gate attempted a task switch to an invalid TSS).
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Table 14-5.  Invalid TSS Conditions

Error Code Index Description

TSS segment TSS segment limit less than 67H

LDT segment Invalid LDT or LDT not present

Stack segment Stack segment selector exceeds descriptor table limit

Stack segment Stack segment is not writable

Stack segment Stack segment DPL not compatible with CPL

Stack segment Stack segment selector RPL not compatible with CPL

Code segment Code segment selector exceeds descriptor table limit

Code segment Code segment is not executable

Code segment Non-conforming code segment DPL not equal to CPL

Code segment Conforming code segment DPL greater than CPL

Data segment Data segment selector exceeds descriptor table limit

Data segment Data segment not readable

This fault can occur either in the context of the original task or in the context of the new task.
Until the processor has completely verified the presence of the new TSS, the exception
occurs in the context of the original task. Once the existence of the new TSS is verified, the
task switch is considered complete; i.e., the TR register is loaded with a selector for the new
TSS and, if the switch is due to a CALL or interrupt, the Link field of the new TSS
references the old TSS. Any errors discovered by the processor after this point are handled in
the context of the new task.

To ensure a TSS is available to process the exception, the handler for an invalid-TSS
exception must be a task called using a task gate.

14.9.11. Interrupt 11—Segment Not Present
The segment-not-present fault is generated when the processor detects that the present bit of
a descriptor is clear. The processor can generate this fault in any of these cases:

• While attempting to load the CS, DS, ES, FS, or GS registers; loading the SS register,
however, causes a stack fault.

• While attempting to load the LDT register using an LLDT instruction; loading the LDT
register during a task switch operation, however, causes an invalid-TSS exception.

• While attempting to use a gate descriptor which is marked segment-not-present.

This fault is restartable. If the exception handler loads the segment and returns, the
interrupted program resumes execution.
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If a segment-not-present exception occurs during a task switch, not all the steps of the task
switch are complete. During a task switch, the processor first loads all the segment registers,
then checks their contents for validity. If a segment-not-present exception is discovered, the
remaining segment registers have not been checked and therefore may not be usable for
referencing memory. The segment-not-present handler should not rely on being able to use
the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should check all segment registers before trying to
resume the new task; otherwise, general protection faults may result later under conditions
which make diagnosis more difficult. There are three ways to handle this case:

1. Handle the segment-not-present fault with a task. The task switch back to the interrupted
task causes the processor to check the registers as it loads them from the TSS.

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction
causes the processor to check the new contents of the segment register.

3. Check the saved contents of each segment register in the TSS, simulating the test which
the processor makes when it loads a segment register.

This exception pushes an error code onto the stack. The EXT bit of the error code is set if an
event external to the program caused an interrupt which subsequently referenced a not-
present segment. The IDT bit is set if the error code refers to an IDT entry (e.g., an INT
instruction referencing a not-present gate).

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. A not-present indication in a gate descriptor, however, usually
does not indicate that a segment is not present (because gates do not necessarily correspond
to segments). Not-present gates may be used by an operating system to trigger exceptions of
special significance to the operating system.

14.9.12. Interrupt 12—Stack Exception
A stack fault is generated under two conditions:

• As a result of a limit violation in any operation which refers to the SS register. This
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as well
as other memory references which implicitly or explicitly use the SS register (for
example, MOV AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction
generates this exception when there is too little space for allocating local variables.

• When attempting to load the SS register with a descriptor which is marked segment-not-
present but is otherwise valid. This can occur in a task switch, a CALL instruction to a
different privilege level, a return to a different privilege level, an LSS instruction, or a
MOV or POP instruction to the SS register.

When the processor detects a stack exception, it pushes an error code onto the stack of the
exception handler. If the exception is due to a not-present stack segment or to overflow of the
new stack during an interlevel CALL, the error code contains a selector to the segment which
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caused the exception (the exception handler can test the present bit in the descriptor to
determine which exception occurred); otherwise, the error code is 0.

An instruction generating this fault is restartable in all cases. The return address pushed onto
the exception handler's stack points to the instruction which needs to be restarted. This
instruction usually is the one which caused the exception; however, in the case of a stack
exception from loading a not-present stack-segment descriptor during a task switch, the
indicated instruction is the first instruction of the new task.

When a stack exception occurs during a task switch, the segment registers may not be usable
for addressing memory. During a task switch, the selector values are loaded before the
descriptors are checked. If a stack exception is generated, the remaining segment registers
have not been checked and may cause exceptions if they are used. The stack fault handler
should not expect to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. The exception handler should check all segment
registers before trying to resume the new task; otherwise, general protection faults may result
later under conditions where diagnosis is more difficult.

14.9.13. Interrupt 13—General Protection
All protection violations which do not cause another exception cause a general-protection
exception. This includes (but is not limited to):

• Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments.

• Exceeding the segment limit when referencing a descriptor table.

• Transferring execution to a segment which is not executable.

• Writing to a read-only data segment or a code segment.

• Reading from an execute-only code segment.

• Loading the SS register with a selector for a read-only segment (unless the selector
comes from a TSS during a task switch, in which case an invalid-TSS exception occurs).

• Loading the SS, DS, ES, FS, or GS register with a selector for a system segment.

• Loading the DS, ES, FS, or GS register with a selector for an execute-only code
segment.

• Loading the SS register with the selector of an executable segment.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null selector.

• Switching to a busy task.

• Violating privilege rules.

• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).

• Loading the CR0 register with a set PG bit (paging enabled) and a clear PE bit
(protection disabled).
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• Interrupt or exception through an interrupt or trap gate from virtual-8086 mode to a
handler at a privilege level other than 0.

• Attempting to write a one into a reserved bit of CR4.

The general-protection exception is a fault. In response to a general-protection exception, the
processor pushes an error code onto the exception handler's stack. If loading a descriptor
causes the exception, the error code contains a selector to the descriptor; otherwise, the error
code is null. The source of the selector in an error code may be any of the following:

• An operand of the instruction.

• A selector from a gate which is the operand of the instruction.

• A selector from a TSS involved in a task switch.

14.9.14. Interrupt 14—Page Fault
A page fault occurs when paging is enabled (the PG bit in the CR0 register is set) and the
processor detects one of the following conditions while translating a linear address to a
physical address:

• The page-directory or page-table entry needed for the address translation has a clear
Present bit, which indicates that a page table or the page containing the operand is not
present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page.

If a page fault is caused by a page level protection violation, the access bits in the page-
directory are set when the faults occur.  The access bit in the page table is only set if there
are no page level protection violations.

The processor provides the page fault handler two items of information which aid in
diagnosing the exception and recovering from it:

• An error code on the stack. The error code for a page fault has a format different from
that for other exceptions (see Figure 14-7). The error code tells the exception handler
three things:

a. Whether the exception was due to a not-present page, to an access rights violation,
or to use of a reserved bit.

b. Whether the processor was executing at user or supervisor level at the time of the
exception.

c. Whether the memory access which caused the exception was a read or write.

• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear address which generated the exception. The exception handler can use this address
to locate the corresponding page directory and page table entries. If another page fault
occurs during execution of the page fault handler, the handler will push the contents of
the CR2 register onto the stack.
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P 0 THE FAULT WAS CAUSED BY A NOT-PRESENT PAGE.
1 THE FAULT WAS CAUSED BY A PAGE-LEVEL PROTECTION VIOLATION.

W/R 0
1

THE ACCESS CAUSING THE FAULT WAS A READ.
THE ACCESS CAUSING THE FAULT WAS A WRITE.

U/S 0

1

THE ACCESS CAUSING THE FAULT ORIGINATED WHEN THE
PROCESSOR WAS EXECUTING IN SUPERVISOR MODE.
THE ACCESS CAUSING THE FAULT ORIGINATED WHEN THE 
PROCESSOR WAS EXECUTING IN USER MODE.

Figure 14-7.  Page Fault Error Code

14.9.14.1. PAGE FAULT DURING TASK SWITCH

These operations during a task switch cause access to memory:

1. Write the state of the original task in the TSS of that task.

2. Read the GDT to locate the TSS descriptor of the new task.

3. Read the TSS of the new task to check the types of segment descriptors from the TSS.

4. May read the LDT of the new task in order to verify the segment registers stored in the
new TSS.

A page fault can result from accessing any of these operations. In the last two cases the
exception occurs in the context of the new task. The instruction pointer refers to the next
instruction of the new task, not to the instruction which caused the task switch (or the last
instruction to be executed, in the case of an interrupt). If the design of the operating system
permits page faults to occur during task-switches, the page-fault handler should be called
through a task gate.

14.9.14.2. PAGE FAULT WITH INCONSISTENT STACK POINTER

Special care should be taken to ensure that a page fault does not cause the processor to use an
invalid stack pointer (SS:ESP). Software written for Intel 16-bit processors often uses a pair
of instructions to change to a new stack; for example:

MOV SS, AX
MOV SP, StackTop

With the 32-bit processors, because the second instruction accesses memory, it is possible to
get a page fault after the selector in the SS segment register has been changed but before the
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contents of the SP register have received the corresponding change. At this point, the two
parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are inconsistent. The new
stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the handling of the page fault
causes a stack switch to a well defined stack (i.e., the handler is a task or a more privileged
procedure). However, if the page fault occurs at the same privilege level and in the same task
as the page fault handler, the processor will attempt to use the stack indicated by the
inconsistent stack pointer.

In systems which use paging and handle page faults within the faulting task (with trap or
interrupt gates), software executing at the same privilege level as the page fault handler
should initialize a new stack by using the LSS instruction rather than an instruction pair
shown above. When the page fault handler is running at privilege level 0 (the normal case),
the problem is limited to programs which run at privilege level 0, typically the kernel of the
operating system.

14.9.15. Interrupt 16—Floating-Point Error
A floating-point-error fault signals an error generated by a floating-point arithmetic
instruction. Interrupt 16 can occur only if the NE bit in the CR0 register is set. Numeric
processing exceptions have already been introduced previously in Chapter 7.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately before
the execution of the next non-control floating-point or WAIT instruction. Interrupt 16 is an
operating-system call that invokes the exception handler. Chapter 14 contains a general
discussion of exceptions and interrupts.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception causes
the processor to freeze immediately before executing the next non-control floating-point or
WAIT instruction. The frozen processor waits for an external interrupt, which must be
supplied by external hardware in response to the FERR# output of the Intel486 or Pentium
processors (the FERR# is similar to the ERROR# pin of the Intel387 math coprocessor).
Regardless of the value of NE, an unmasked numerical exception causes the FERR# output
of the Intel486 and Pentium processors to be activated. In this case, the external interrupt
invokes the exception-handling routine. If NE = 0 but the IGNNE# input is active, the
processor disregards the exception and continues. Error reporting via external interrupt is
supported for DOS compatibility. Chapter 23 contains further discussion of compatibility
issues.

When handling numeric errors, the processor has two responsibilities:

• It must not disturb the numeric context when an error is detected.

• It must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one
implementation to the next, most exception handlers will include these basic steps:
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• Store the FPU environment (control, status, and tag words, operand and instruction
pointers) as it existed at the time of the exception.

• Clear the exception bits in the status word.

• Enable interrupts if disabled due to an INTR, NMI, or SMI exception.

• Identify the exception by examining the status and control words in the saved
environment.

• Take some system-dependent action to rectify the exception.

• Return to the interrupted program and resume normal execution.

14.9.15.1. NUMERICS EXCEPTION HANDLING

Recovery routines for numeric exceptions can take a variety of forms. They can change the
arithmetic and programming rules of the FPU. These changes may redefine the default fix-up
for an error, change the appearance of the FPU to the programmer, or change how arithmetic
is defined on the FPU.

A change to an exception response might be to perform denormal arithmetic on denormals
loaded from memory. A change in appearance might be extending the register stack into
memory to provide an "infinite" number of numeric registers. The arithmetic of the FPU can
be changed to automatically extend the precision and range of variables when exceeded. All
these functions can be implemented on the processor via numeric exceptions and associated
recovery routines in a manner transparent to the application programmer.

Some other possible application-dependent actions might include:

• Incrementing an exception counter for later display or printing

• Printing or displaying diagnostic information (e.g., the FPU environment and registers)

• Aborting further execution

• Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception may or may not constitute an error, depending on the application.
Once the exception handler corrects the condition causing the exception, the floating-point
instruction that caused the exception can be restarted, if appropriate. This cannot be
accomplished using the IRET instruction, however, because the trap occurs at the ESC or
WAIT instruction following the offending ESC instruction. The exception handler must
obtain (using FSAVE or FSTENV) the address of the offending instruction in the task that
initiated it, make a copy of it, execute the copy in the context of the offending task, and then
return via IRET to the current instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must
recognize the precise state of the FPU at the time the exception handler was invoked, and be
able to reconstruct the state of the FPU when the exception initially occurred. To reconstruct
the state of the FPU, programmers must understand that different classes of exceptions are
recognized at different times (before or after)  execution of a numeric instruction.
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Invalid operation, zero divide, and denormal operand exceptions are detected before an
operation begins, whereas overflow, underflow, and precision exceptions are not raised until
a true result has been computed. When a before exception is detected, the FPU register stack
and memory have not yet been updated, and appear as if the offending instructions has not
been executed.

When an after exception is detected, the register stack and memory appear as if the
instruction has run to completion; i.e., they may be updated. (However, in a store or store-
and-pop operation, unmasked over/underflow is handled like a before exception; memory is
not updated and the stack is not popped.) The following programming examples include an
outline of several exception handlers to process numeric exceptions.

14.9.15.2. SIMULTANEOUS EXCEPTION RESPONSE

In cases where multiple exceptions arise simultaneously, the FPU signals one exception
according to the precedence list below. This means, for example, that an SNaN divided by
zero results in an invalid operation, not in a zero-divide exception; the masked result is the
QNaN real indefinite, not ∞. A denormal or inexact (precision) exception, however, can
accompany a numeric underflow or overflow exception.

The precedence among numeric exceptions is as follows:

1. Invalid operation exception, subdivided as follows:

 Stack underflow.

 Stack overflow.

 Operand of unsupported format.

 SNaN operand.

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing with
it has precedence over lower-priority exceptions. For example, a QNaN divided by zero
results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower-priority
exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.

6. Inexact result (precision).
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14.9.16. Interrupt 17—Alignment Check
An alignment-check fault can be generated for access to unaligned operands. For example, a
word stored at an odd byte address, or a doubleword stored at an address which is not an
integer multiple of four. Table 14-6 lists the alignment requirements by data type. To enable
alignment checking, the following conditions must be true:

• AM bit in the CR0 register is set

• AC flag is set

• CPL is 3 (user mode)

Table 14-6.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

WORD 2

DWORD 4

Short REAL 4

Long REAL 8

TEMPREAL 8

Selector 2

48-bit Segmented Pointer 4

32-bit Flat Pointer 4

32-bit Segmented Pointer 2

48-bit “Pseudo-Descriptor” 4

FSTENV/FLDENV save area 4 or 2, depending on operand size

FSAVE/FRSTOR save area 4 or 2, depending on operand size

Bit String 4

Alignment checking is useful for programs which use the low two bits of pointers to identify
the type of data structure they address. For example, a subroutine in a math library may
accept pointers to numeric data structures. If the type of this structure is assigned a code of
10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct for the
type code by adding a displacement of –10 (binary). If the subroutine should ever receive the
wrong pointer type, an unaligned reference would be produced, which would generate an
exception.

Alignment-check faults are generated only in user mode (privilege level 3). Memory
references which default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check faults, even when caused by a memory reference made in user
mode.
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Storing a 48-bit pseudo-descriptor (the memory image of the contents of a descriptor table
base register) in user mode can generate an alignment-check fault. Although user-mode
programs do not normally store pseudo-descriptors, the fault can be avoided by aligning the
pseudo-descriptor to an odd word address (i.e., an address which is 2 MOD 4).

FSAVE and FRSTOR instructions generate unaligned references which can cause alignment-
check faults. These instructions are rarely needed by application programs.

14.9.17. Interrupt 18—Machine Check
Machine check is a model-specific exception, available only on the Pentium microprocessor.
It may or may not be continued with a compatible implementation on future processor
generations. Use the CPUID instruction feature flag register to determine the presence of this
feature.

14.10. EXCEPTION SUMMARY
Table 14-7 summarizes the exceptions recognized by the Pentium processor.
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Table 14-7.  Exception Summary

Description
Vector

Number

Return Address
Points to Faulting

Instruction?
Exception

Type
Source of the

Exception

Division by Zero  0 Yes FAULT DIV and IDIV instructions

Debug Exceptions  1 1 1 Any code or data
reference

Breakpoint  3 No TRAP INT 3 instruction

Overflow  4 No TRAP INTO instruction

Bounds Check  5 Yes FAULT BOUND instruction

Invalid Opcode  6 Yes FAULT Reserved Opcodes

Device Not
Available

 7 Yes FAULT ESC and WAIT
instructions

Double Fault  8 Yes ABORT Any instruction

Invalid TSS 10 Yes2 FAULT JMP, CALL, IRET
instructions, interrupts,
and exceptions

Segment Not
Present

11 Yes2 FAULT Any instruction which
changes segments

Stack Fault 12 Yes FAULT Stack operations

General Protection 13 Yes FAULT/TRAP3 Any code or data
reference

Page Fault 14 Yes FAULT Any code or data
reference

Floating-Point Error 16 Yes FAULT4 ESC and WAIT
instructions

Alignment Check 17 Yes FAULT Any data reference

Machine Check 18 – – (model dependent)

Software Interrupt 0 to 255 No TRAP INT n instructions

NOTES:

1. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and
faults by examining the contents of the DR6 register.

2. Restartability is conditional during task switches as documented in section 7.5.

3. All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the
interrupted program is restartable, but the interrupt may be lost.

4. Floating-point errors are not reported until the first ESC or WAIT instruction following the ESC instruction
which generated the error.
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14.11. ERROR CODE SUMMARY
Table 14-8 summarizes the error information that is available with each exception.

Table 14-8.  Error Code Summary

Description
Vector

Number
Is an Error

Code Generated?

Divide Error  0 No

Debug Exceptions  1 No

Breakpoint  3 No

Overflow  4 No

Bounds Check  5 No

Invalid Opcode  6 No

Device Not Available  7 No

Double Fault  8 Yes (always zero)

Invalid TSS 10 Yes

Segment Not Present 11 Yes

Stack Fault 12 Yes

General Protection 13 Yes

Page Fault 14 Yes (special format)

Floating-Point Error 16 No

Alignment Check 17 Yes (always zero)

Machine Check 18 (model dependent)

Software Interrupt 0–255 No
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CHAPTER 15
INPUT/OUTPUT

Input/output is accomplished through I/O ports, which are registers connected to peripheral
devices. An I/O port can be an input port, an output port, or a bidirectional port. Some I/O
ports are used for carrying data, such as the transmit and receive registers of a serial
interface. Other I/O ports are used to control peripheral devices, such as the control registers
of a disk controller.

The input/output architecture is the programmer's model of how these ports are accessed. The
discussion of this model includes:

• Methods of addressing I/O ports.

• Instructions which perform I/O operations.

• The I/O protection mechanism.

15.1. I/O ADDRESSING
The processor allows I/O ports to be addressed in either of two ways:

• Through a separate I/O address space accessed using I/O instructions.

• Through memory-mapped I/O, where I/O ports appear in the address space of physical
memory.

The use of a separate I/O address space is supported by special instructions and a hardware
protection mechanism. When memory-mapped I/O is used, the general-purpose instruction
set can be used to access I/O ports, and protection is provided using segmentation or paging.
Some system designers may prefer to use the I/O facilities built into the processor, while
others may prefer the simplicity of a single physical address space.

Hardware designers use these ways of mapping I/O ports into the address space when they
design the address decoding circuits of a system. I/O ports can be mapped so that they appear
in the I/O address space or the address space of physical memory (or both).

15.1.1. I/O Address Space
The processor provides a separate I/O address space, distinct from the address space for
physical memory, where I/O ports can be placed. The I/O address space consists of 216 (64K)
individually addressable 8-bit ports; any two consecutive 8-bit ports can be treated as a 16-bit
port, and any four consecutive ports can be a 32-bit port. Extra bus cycles are required if a
port crosses the boundary between two doublewords in physical memory.
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The M/IO# pin of the processor indicates when a bus cycle to the I/O address space occurs.
When a separate I/O address space is used, it is the responsibility of the hardware designer to
make use of this signal to select I/O ports rather than memory. In fact, the use of the separate
I/O address space simplifies the hardware design because these ports can be selected by a
single signal; unlike other processors, it is not necessary to decode a number of upper address
lines in order to set up a separate I/O address space.

A program can specify the address of a port in two ways. With an immediate byte constant,
the program can specify:

• 256 8-bit ports numbered 0 through 255.

• 128 16-bit ports numbered 0, 2, 4, . . . , 252, 254.

• 64 32-bit ports numbered 0, 4, 8, . . . , 248, 252.

Using a value in the DX register, the program can specify:

• 8-bit ports numbered 0 through 65535.

• 16-bit ports numbered 0, 2, 4, . . . , 65532, 65534.

• 32-bit ports numbered 0, 4, 8, . . . , 65528, 65532.

The processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like words in
memory, 16-bit ports should be aligned to even addresses so that all 16 bits can be
transferred in a single bus cycle. Like doublewords in memory, 32-bit ports should be aligned
to addresses which are multiples of four. The processor supports data transfers to unaligned
ports, but there is a performance penalty because an extra bus cycle must be used.

The IN and OUT instructions move data between a register and a port in the I/O address
space. The instructions INS and OUTS move strings of data between the memory address
space and ports in the I/O address space.

I/O port addresses 0F8H through 0FFH are reserved for use by Intel Corporation. Do not
assign I/O ports to these addresses.

The exact order of bus cycles used to access ports which require more than one bus cycle is
undefined and is not guaranteed to remain the same in future Intel products. If software needs
to produce a particular order of bus cycles, this order must be specified explicitly. For
example, to load a word-length port at 4H followed by loading a word port at 2H, two word-
length instructions must be used, rather than a single doubleword instruction at 2H.

Note that, although the processor automatically masks parity errors for certain types of bus
cycles, such as interrupt acknowledge cycles, it does not mask parity for bus cycles to the I/O
address space. Programmers may need to be aware of this behavior as a possible source of
parity errors.
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15.1.2. Memory-Mapped I/O
I/O devices may be placed in the address space for physical memory. This is called memory-
mapped I/O. As long as the devices respond like memory components, they can be used with
memory-mapped I/O.

Memory-mapped I/O provides additional programming flexibility. Any instruction which
references memory may be used to access an I/O port located in the memory space. For
example, the MOV instruction can transfer data between any register and a port. The AND,
OR, and TEST instructions may be used to manipulate bits in the control and status registers
of peripheral devices (see Figure 15-1). Memory-mapped I/O can use the full instruction set
and the full complement of addressing modes to address I/O ports.

APM109

PHYSICAL MEMORY

ROM

RAM

INPUT/OUTPUT PORT

0

N

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

Figure 15-1.  Memory-Mapped I/O

Using an I/O instruction for an I/O write can also be advantageous because it guarantees that
the write will be completed before the next instruction begins execution. If I/O writes are
used to control system hardware, then this sequence of events is desirable, since it guarantees
that the next instruction will be executed in the new system hardware state. Refer to Section
15.4 for more information on serialization of I/O operations.
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If caching is enabled in real-address mode, designers should consider if it is advantageous to
prevent caching of I/O data, whether by using the PCD bit of page table entries or by using
the KEN# signal.

15.2. I/O INSTRUCTIONS
The I/O instructions provide access to the processor's I/O ports for the transfer of data. These
instructions have the address of a port in the I/O address space as an operand. There are two
kinds of I/O instructions:

1. Those which transfer a single item (byte, word, or doubleword) to or from a register.

2. Those which transfer strings of items (strings of bytes, words, or doublewords) located in
memory. These are known as "string I/O instructions" or "block I/O instructions."

These instructions cause the M/IO# signal to be driven low (logic 0) during a bus cycle,
which indicates to external hardware that access to the I/O address space is taking place.

15.2.1. Register I/O Instructions
The I/O instructions IN and OUT move data between I/O ports and the EAX register (32-bit
I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The IN and OUT instructions
address I/O ports either directly, with the address of one of 256 port addresses coded in the
instruction, or indirectly using an address in the DX register to select one of 64K port
addresses.

IN (Input from Port)  transfers a byte, word, or doubleword from an input port to the AL,
AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port to the AL
register. A word IN instruction transfers 16 bits from the port to the AX register. A
doubleword IN instruction transfers 32 bits from the port to the EAX register.

OUT (Output from Port)  transfers a byte, word, or doubleword from the AL, AX, or EAX
registers to an output port. A byte OUT instruction transfers 8 bits from the AL register to the
selected port. A word OUT instruction transfers 16 bits from the AX register to the port. A
doubleword OUT instruction transfers 32 bits from the EAX register to the port.

15.2.2. Block I/O Instructions
The INS and OUTS instructions move blocks of data between I/O ports and memory. Block
I/O instructions use an address in the DX register to address a port in the I/O address space.
These instructions use the DX register to specify:

• 8-bit ports numbered 0 through 65535.

• 16-bit ports numbered 0, 2, 4, . . . , 65532, 65534.

• 32-bit ports numbered 0, 4, 8, . . . , 65528, 65532.
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Block I/O instructions use either the (E)SI or (E)DI register to address memory. For each
transfer, the (E)SI or (E)DI register is incremented or decremented, as specified by the DF
flag.

The INS and OUTS instructions, when used with repeat prefixes, perform block input or
output operations. The repeat prefix REP modifies the INS and OUTS instructions to transfer
blocks of data between an I/O port and memory. These block I/O instructions are string
instructions (see Chapter 3 for more on string instructions). They simplify programming and
increase the speed of data transfer by eliminating the need to use a separate LOOP instruction
or an intermediate register to hold the data.

The string I/O instructions operate on byte strings, word strings, or doubleword strings. After
each transfer, the memory address in the ESI or EDI registers is incremented or decremented
by 1 for byte operands, by 2 for word operands, or by 4 for doubleword operands. The DF
flag controls whether the register is incremented (the DF flag is clear) or decremented (the
DF flag is set).

INS (Input String from Port)  transfers a byte, word, or doubleword string element from an
input port to memory. The INSB instruction transfers a byte from the selected port to the
memory location addressed by the ES and EDI registers. The INSW instruction transfers a
word. The INSD instruction transfers a doubleword. A segment override prefix cannot be
used to specify an alternate destination segment. Combined with a REP prefix, an INS
instruction makes repeated read cycles to the port, and puts the data into consecutive
locations in memory.

OUTS (Output String from Port)  transfers a byte, word, or doubleword string element from
memory to an output port. The OUTSB instruction transfers a byte from the memory location
addressed by the DS and ESI registers to the selected port. The OUTSW instruction transfers
a word. The OUTSD instruction transfers a doubleword. A segment override prefix can be
used to specify an alternate source segment. Combined with a REP prefix, an OUTS
instruction reads consecutive locations in memory, and writes the data to an output port.

15.3. PROTECTED-MODE I/O
When the processor is running in protected mode, I/O operates as in real-address mode, but
with additional protection features:

• References to memory-mapped I/O ports, like any other memory reference, are subject
to access protection and control by both the segmentation and the paging mechanism.
Refer to Chapter 12 for a complete discussion of memory protection.

• The execution of I/O instructions is also subject to two protection mechanisms:

a. The IOPL field in the EFLAGS register controls access to the I/O instructions.

b. The I/O permission bit map of a TSS segment controls access to individual ports in
the I/O address space.

These protection mechanisms are available only when a separate I/O address space is used.
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15.3.1. I/O Privilege Level
In systems where I/O protection is used, access to I/O instructions is controlled by the IOPL
field in the EFLAGS register. This permits the operating system to adjust the privilege level
needed to perform I/O. In a typical protection ring model, privilege levels 0 and 1 have
access to the I/O instructions. This lets the operating system and the device drivers perform
I/O, but keeps applications and less privileged device drivers from accessing the I/O address
space. Applications access I/O through the operating system.

The following instructions can be executed only if CPL ≤ IOPL:

IN — Input

INS — Input String

OUT — Output

OUTS — Output String

CLI — Clear Interrupt-Enable Flag

STI — Set Interrupt-Enable Flag

These instructions are called "sensitive" instructions, because they are sensitive to the IOPL
field. In virtual-8086 mode, the I/O permission bit map further limits access to I/O ports (see
Chapter 23).

To use sensitive instructions, a procedure must run at a privilege level at least as privileged
as that specified by the IOPL field. Any attempt by a less privileged procedure to use a
sensitive instruction results in a general-protection exception. Because each task has its own
copy of the EFLAGS register, each task can have a different IOPL.

A task can change IOPL only with the POPF and IRET instructions; however, such changes
are privileged. No procedure may change its IOPL unless it is running at privilege level 0.
An attempt by a less privileged procedure to change the IOPL does not result in an
exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and
STI instructions); however, changes to the IF flag using the POPF instruction are IOPL-
sensitive. A procedure may change the setting of the IF flag with a POPF instruction only if it
runs with a CPL at least as privileged as the IOPL. An attempt by a less privileged procedure
to change the IF flag does not result in an exception; the IF flag simply remains unchanged.

15.3.2. I/O Permission Bit Map
The processor can generate exceptions for references to specific I/O addresses. These
addresses are specified in the I/O permission bit map in the TSS (see Figure 15-2). The size
of the map and its location in the TSS are variable. The processor finds the I/O permission bit
map with the I/O map base address in the TSS. The base address is a 16-bit offset into the
TSS. This is an offset to the beginning of the bit map. The limit of the TSS is the limit on the
size of the I/O permission bit map.
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TASK STATE SEGMENT
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BY A BYTE WITH ALL BITS SET.

NOTE:

0

64H

Figure 15-2.  I/O Permission Bit Map

Because each task has its own TSS, each task has its own I/O permission bit map. Access to
individual I/O ports can be granted to individual tasks.

If CPL ≤ IOPL in protected mode, then the processor allows I/O operations to proceed. If
CPL > IOPL, or if the processor is operating in virtual 8086 mode, then the processor checks
the I/O permission map. Each bit in the map corresponds to an I/O port byte address; for
example, the control bit for address 41 (decimal) in the I/O address space is found at bit
position 1 of the sixth byte in the bit map. The processor tests all the bits corresponding to
the I/O port being addressed; for example, a doubleword operation tests four bits
corresponding to four adjacent byte addresses. If any tested bit is set, a general-protection
exception is generated. If all tested bits are clear, the I/O operation proceeds.

Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, it
is possible that the processor may need to access two bytes in the bit map when I/O
permission is checked. For maximum speed, the processor has been designed to read two
bytes for every access to an I/O port. To prevent exceptions from being generated when the
ports with the highest addresses are accessed, an extra byte needs to come after the table.
This byte must have all of its bits set, and it must be within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O
addresses not spanned by the map are treated as if they had set bits in the map. For example,
if the TSS segment limit is 10 bytes past the bit map base address, the map has 11 bytes and
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the first 80 I/O ports are mapped. Higher addresses in the I/O address space generate
exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no
I/O permission map, and all I/O instructions generate exceptions. The base address must be
less than or equal to 0DFFFH.

15.3.3. Paging and Caching
In protected mode, the paging mechanism can also help control cacheability of I/O buffers
and memory-mapped I/O addresses. If caching is enabled, either external hardware or the
paging mechanism (the PCD bit in the page table entry) must be used to prevent caching of
I/O data.

The operating system can also use the segmentation or paging mechanism to manage the data
space used by the operands of I/O instructions. The AVL (available) fields in segment
descriptors or page table entries can be used by the operating system to mark pages
containing I/O buffers as unrelocatable and unswappable.

15.4. ORDERING OF I/O
When controlling I/O devices it is often important that memory and I/O operations be carried
out in precisely the order programmed. For example, a program may write a command to an
I/O port, then read the status of the I/O device from another I/O port. It is important that the
status returned be the status of the device after it receives the command, not before.
Programmers should take care, because there are situations in which the programmed order is
not preserved by the processor.

To optimize performance, the Pentium CPU allows memory reads to be reordered ahead of
buffered writes in most situations. Internally, CPU reads (cache hits) can be reordered around
buffered writes. Memory reordering does not occur externally at the pins, reads (cache miss)
and writes appear in-order. The Intel486 CPU allows memory reads to be reordered ahead of
buffered writes in certain precisely-defined circumstances. (See the Intel486™
Microprocessor Hardware Reference Manual for further details about the operation of the
write buffer.) Using memory-mapped I/O, therefore, creates the possibility that an I/O read
might be performed before the memory write of a previous instruction. To eliminate this
possibility on the Intel486 CPU, use an I/O instruction for the read. To eliminate this
possibility on the Pentium processor, insert one of the serializing instructions, such as
CPUID, between operations.

When I/O instructions are used instead of memory-mapped I/O, the situation is different in
two respects:

1. Some I/O writes are never buffered. The only I/O writes that the Intel486 CPU buffers
are those from the OUTS instruction. The Pentium processor does not buffer any I/O
writes. Therefore, strict ordering of I/O operations is enforced by the processor.
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2. The processor synchronizes I/O instruction execution with external bus activity. Refer to
Table 15-1.

Table 15-1.  I/O Serialization

Processor Holds Execution of …… Awaiting for Completion of ……

Current
Instruction

Current
Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes

Refer to Chapter 13 for more general information on memory access ordering and to
Chapter 18 for information about other serializing instructions.
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CHAPTER 16
INITIALIZATION AND MODE SWITCHING

The processor is initialized to a known state following hardware reset in order for software
execution to begin. When initialized, the processor provides model and stepping information
to determine what features are available to software. For feature determination by
applications at run-time, a code example and discussion is provided in Chapter 5. This
chapter provides processor initialization state information and configuration requirements for
both real-address and protected mode. This chapter also discusses the process of switching
between real-address and protected modes which is normally part of the initialization
process.  A program example for switching to protected mode is provided.

The floating-point units (FPU's) of the Intel architectures (except the Intel287 math
coprocessor NPX) operate the same regardless of whether the processor is operating in real-
address mode, in protected mode, or in virtual 8086 mode.

To the numerics programmer, the operating mode affects only the manner in which the FPU
instruction and data pointers are represented in memory following an FSAVE or FSTENV
instruction. Each of these instructions produces one of four formats depending on both the
operating mode and on the operand-size attribute in effect for the instruction. The differences
are detailed in the discussion of the FSAVE and FSTENV instructions in Chapter 25.

16.1. PROCESSOR INITIALIZATION
The processor has an input, called the RESET pin, which invokes reset initialization. After
RESET is asserted, some registers of the processor are set to known states. These known
states, such as the contents of the EIP register, are sufficient to allow software to begin
execution. Software then can build the data structures in memory, such as the GDT and IDT
tables, which are used by system and application software.  The internal caches, translation
lookaside buffers (TLB's) and the branch target buffers (BTB's) are invalidated when RESET
is asserted.

Hardware asserts the RESET signal at power-up. Hardware may assert this signal at other
times. For example, a button may be provided for manually invoking reset initialization.
Reset also may be the response of hardware to receiving a halt or shutdown indication.

The Pentium processor also has an INIT input, which is similar to RESET except it does not
disturb the internal caches, model specific registers, or floating point state. INIT provides a
method for switching from protected to real-address mode while maintaining the contents of
the internal caches. The TLB's and BTB are invalidated by INIT being asserted.
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16.1.1. Processor State after Reset
A self test may be requested at power-up. It is the responsibility of the hardware designer to
provide the request for self test, if desired. If the self test is selected, it takes about 219 clock
periods to complete. (This clock count is model-specific and Intel reserves the right to
change the exact number of periods without notification.)

The EAX register is clear (zero) if the processor passed the test. A non-zero value in the
EAX register after self test indicates the processor is faulty. If the self test is not requested,
the contents of the EAX register after reset initialization is zero.

The EDX register holds a component identifier and revision number after reset initialization,
as shown in Figure 16-1. The DH register contains the value 3, 4, or 5 to indicate an Intel386
CPU, Intel486 CPU, or Pentium processor, respectively. Different values may be returned for
the various proliferations of these families, for example the Intel386 SX CPU contains 23H.
Binary object code can be made compatible with other Intel processors by using this number
to select the correct initialization software. The DL register contains a unique identifier of
the revision level.  The upper word of EDX is reserved following reset.

APM111

RESERVED DEVICE ID (5) STEPPING ID

DX REGISTER

EDX REGISTER

Figure 16-1.  Contents of the EDX Register after Reset

The state of the CR0 register for the Pentium processor following power-up is shown in
Figure 16-2 (60000010H). This state puts the processor into real-address mode with paging
disabled. The state of the flags and other registers following power-up is shown in
Table 16-1.
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0 WAIT INSTRUCTIONS NOT TRAPPED
0 ESC INSTRUCTIONS NOT TRAPPED
0 NO TASK SWITCH
1 (NOT USED)
0 EXTERNAL FLOATING-POINT ERROR REPORTING

0 PAGING DISABLED
1 CACHING DISABLED
1 NOT WRITE-THROUGH

 DISABLED
0 ALIGNMENT CHECK DISABLED
0 WRITE-PROTECT DISABLED

RESERVED RESERVED

Figure 16-2.  Contents of CR0 Register after Reset
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Table 16-1.  Processor State Following Reset

Register
RESET

Without BIST INIT

EFLAGS1 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H

CR0 60000010H Note 2

CR2/CR3/CR4 00000000H 00000000H

CS selector=0F000H
base=0FFFF0000H
limit=0FFFFH
AR=Present,
Read/Write,Accessed

selector=0F000H
base=0FFFF000H
limit=0FFFFH
AR=Present, Read/Write,
Accessed

SS, DS, ES, FS, GS selector=0000
base=0000H
limit=0FFFFH
AR=Present, Read/Write,
Accessed

selector=0000
base=0000H
limit=0FFFFH
AR=Present, Read/Write,
Accessed

EDX 000005xxH 000005xxH

EAX 03 0

EBX, ECX, ESI, EDI, EBP, ESP 00000000H 00000000H

LDTR selector=0000H
base=00000000H
limit=0FFFFH
AR=Present,Read/Write

selector=0000H
base=00000000H
limit=0FFFFH
AR=Present,Read/Write

GDTR,IDTR base=00000000H
limit=0FFFFH
AR=Present,Read/Write

base=00000000H
limit=0FFFFH
AR=Present,Read/Write

DR0, DR1, DR2, DR3 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H

Time Stamp Counter 0 Unchanged

Control and Event Select 0 Unchanged

TR12 0 Unchanged

All Other Model Specific Registers
(MSR's)

Undefined Unchanged

Data and Code Cache, TLB's Invalid Invalid
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NOTES:
1. The high ten bits of the EFLAGS register are undefined following power-up. Undefined bits are reserved.

Software should not depend on the states of any of these bits.

2. CD and NW are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self Test is invoked, EAX is 0 only if all tests passed.

16.1.2. First Instruction Executed
To generate an address, the base part of a segment register is added to the effective address to
form the linear address. This is true for all modes of operation, although the base address is
calculated differently in protected and real-address modes. To fetch an instruction, the base
portion of the CS register is added to EIP to form a linear address (see Chapter 9 and
Chapter 11 for details on calculating addresses).

In real-address mode, when the value of the segment register selector is changed, the base
portion will automatically be changed to this value multiplied by 16. However, immediately
after reset, the base portion of the CS register behaves differently: It is not 16 times the
selector value. Instead, the CS selector is 0F000H and the CS base is 0FFFF0000H. The first
time the CS selector value is changed after reset, it will follow the above rule (base = selector 
∗ 16).  As a result, after reset, the first instruction that is being fetched and executed is at
physical address: CS.base + EIP = 0FFFFFFF0H.  This is the address to locate the EPROM
with the initialization code. This address is located 16 bytes below the uppermost address of
the physical memory of the Pentium processor.

Ensure that no far jump or far call is executed until the initialization is completed. If the first
far jump/call is made during real mode, a new value enters the CS selector (16 bits) and sets
the value of the CS base to 20 bits only, i.e., the destination address would be in the address
space 0 to 1M. You might want to be sure that you have valid memory and code in this area.

The base address for the data segments are set to the bottom of the physical address space
(address 0), where RAM is expected to be.

16.2. FPU INITIALIZATION
During system initialization, systems software can determine the absence or presence of a
numeric processor extension.  Systems software must then initialize the FPU or NPX and set
flags in CR0 to reflect the state of the numeric environment. These activities can be quickly
and easily performed as part of the overall system initialization. See Chapter 5 for
determining the processor type and feature recognition.

A hardware reset leaves the Pentium processor FPU  in a state that is different from the state
that is obtained by executing the FNINIT instruction as shown in Table 16-Error!
Bookmark not defined.. See Chapter 23 for a complete list of initialization differences
between these processors following RESET.

The state of the FPU registers following RESET or INIT is shown in Table 16-Error!
Bookmark not defined.. Following RESET, the Pentium processor FPU contains 0 in ST0-
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ST7 stack registers with the tags set to zero (01). However, the tags are only visible to the
programmer by using the FSAVE/FSTENV instructions. When these instructions are used,
they interpret the stack locations as zero, returning tag values of 01. The Pentium processor,
in addition, has an INIT pin which, when asserted, causes the processor to reset without
altering the FPU state. An FNINIT instruction should be executed after reset.

Initializing the FPU simply means placing the FPU in a known state unaffected by any
activity performed earlier. A single FNINIT instruction performs this initialization. All the
error masks are set, all registers are tagged empty, TOP is set to zero, and default rounding
and precision controls are set. Table 16-Error! Bookmark not defined.  shows the state of
the FPU following FINIT or FNINIT.

Table 16-2.  FPU State Following FINIT or FNINIT

Field Value Interpretation

Control Word
   (Infinity Control)*
   Rounding Control
   Precision Control
   Exception Masks

037FH
0
00
00
111111

Affine
Round to nearest
Extended
Exceptions masked

Status Word
   (Busy)
   Condition Code
   Stack Top
   Exception Summary
   Stack Flag
   Exception Flags

0000H
0
0000
000
0
0
000000

—
—
Register 0 is stack top
No exceptions
—
No exceptions

Tag Word
    Tags

FFFFH
11 Empty

Registers Not changed Not changed

Exception Pointers
   Instruction Code
   Instruction Address
   Operand Address

0
0
0

Cleared
Cleared
Cleared

*The Pentium®, Intel486 and Intel386 processors do not have infinity control. This value is listed to
emphasize that programs written for the Intel287 math coprocessor may not behave the same on the 32-bit
processors if they depend on this bit.

16.2.1. Configuring the Numerics Environment
System software must load the appropriate values into the MP, EM, and NE bits of the
control register 0 (CR0) to control emulation of floating-point instructions by software,
synchronization between the FPU and CPU context, and software or external interrupt
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handling of floating-point exceptions.  These bits are clear on hardware reset of the Pentium
processor.

The MP (Monitor coProcessor) bit determines whether WAIT instructions trap when the
context of the FPU is different from that of the currently executing task. If MP = 1 and TS =
1, then a WAIT instruction will cause a Device Not Available fault (interrupt vector 7). The
MP bit is used on the Intel 286, Intel386 DX, Intel386 SX and Intel486 SX microprocessors
to support the use of a WAIT instruction to wait on a device other than a numeric
coprocessor. The device reports its status through the BUSY# pin. Generally, the MP bit
should be set for processors with integrated FPU and clear in  processors without an
integrated FPU or numeric processor extension.  However, an operating system can choose to
save the floating-point context at every context switch, in which case there would be no need
to set the MP bit.

The EM (EMulate coprocessor) bit determines whether ESC instructions are executed by the
FPU (EM = 0) or trap via interrupt vector 7 to be handled by software (EM = 1). The EM bit
is used on CPU/NPX systems so that numeric applications can be run in the absence of an
NPX with a software emulator. For normal operation of Intel processors with an integrated
FPU, the EM bit should be cleared to 0. The EM bit must be set in the Intel386 DX,
Intel386 SX, or Intel486 SX CPUs if there is no NPX present. If the EM bit is set and no
coprocessor or emulator is present, the system will hang.

The interpretation of different combinations of the EM and MP bits are shown in  Table 16-3.
Recommendations for the different processors  is shown in Table 16-4.

Table 16-3.  EM and MP Bits Interpretations

EM MP Interpretation

0 0 Numeric instructions are passed to FPU; WAIT ignores TS

0 1 Numeric instructions are passed to FPU; WAIT tests TS

1 0 Numeric instructions trap to emulator; WAIT ignores TS

1 1 Numeric instructions trap to emulator, WAIT tests TS

Table 16-4.  Recommended Values by Processor

EM MP Interpretation

1 0 Intel386 DX, Intel386 SX, and Intel486 SX CPUs

0 1 Intel387™ DX, Intel387 SX, and Intel487 SX math
coprocessors, and Intel386 DX, Intel386 SX, Intel486 DX and
Pentium® processors

The action taken for floating-point and wait instructions based on the value of these bits is
shown in Table 16-5.
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Table 16-5.  Action Taken for Different Combinations of EM, MP and TS

CR0 Bits Instruction Type

EM TS MP Floating Point Wait

0 0 0 Execute Execute

0 0 1 Execute Execute

0 1 0 Exception 7 Execute

0 1 1 Exception 7 Exception 7

1 0 0 Exception 7 Execute

1 0 1 Exception 7 Execute

1 1 0 Exception 7 Execute

1 1 1 Exception 7 Exception 7

The NE (Numeric Exception) bit determines whether unmasked floating-point exceptions are
handled through interrupt vector 16 (NE = 1) or through external interrupt (NE = 0). In
systems using an external interrupt controller to invoke numeric exception handlers, the NE
bit should be cleared to 0. This option is used for compatibility with the error reporting
scheme used in DOS-based systems.  Other systems can make use of the automatic error
reporting through interrupt 16, and should set the NE bit to 1. Numeric  exception handling
is discussed in a later section.

16.2.2. FPU Software Emulation
Setting the EM bit to 1 causes the processor to trap via interrupt vector 7 (Device Not
Available) to a software exception handler whenever it encounters an ESC instruction.
Setting this bit has two uses:

1. The EM bit is used to run numeric applications on an Intel processor without an
integrated FPU or NPX using a software Intel387 math coprocessor emulator.

2. Numeric applications designed to be run with a non-standard Intel387 math coprocessor
emulator may not run successfully without the emulator. Setting the EM bit to 1 makes it
possible to run such applications, or programs which use non-standard floating-point
arithmetic.

If a math coprocessor is not present in the system, floating-point instructions can be
emulated. The system is set up for software emulation as Table 16-6:
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Table 16-6.  Software Emulation Settings

CR0 Bit Value

EM 1

MP 0

NE 1

The EM bit must be set in order for software emulation to function properly. Setting the EM
bit to 1 will cause the processor to trap via interrupt vector 7 (Device Not Available) to a
software exception handler whenever it encounters an ESC instruction. If the EM bit is set
and no coprocessor or emulator is present, the system will hang.

The MP bit can be used during a task switch in protected-mode in conjunction with the TS
bit to determine if WAIT instructions should trap when the context of the FPU is different
from that of the currently executing task. When no FPU is present, this information may be
irrelevent and therefore the bit should be set to 0.

Regardless of the value of the NE bit, the Intel486 SX processor generates an interrupt vector
7 (Device Not Available) upon encountering any floating point instruction. It is
recommended that NE be set to 1 for normal operation. If a Floating-Point Unit is present,
this bit follows the description described in Table 16-3.

16.3. CACHE ENABLING
The cache is enabled by clearing the CD and NW bits in the CR0 register (they are set upon
hardware reset as indicated above). This enables caching (writethrough for the Intel486
processor and writeback for the Pentium processor) and cache invalidation cycles. Because
all cache lines are invalid following reset initialization, it is unnecessary to invalidate the
cache before enabling caching. See Chapter 18 for complete details of cache handling,
including implementation of a writethrough cache on the Pentium processor using the PWT
bit in the page table entry.

Under circumstances where cache lines may be marked as valid, the cache may need to be
flushed or invalidated before the cache is enabled. This may occur as a result of using the test
registers to run test patterns through the cache memory as part of confidence testing during
software initialization. See the Pentium® Processor Data Book for model-specific details on
cache testing.

16.4. SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE
Note that the processor has several processing modes. It begins execution in a mode
compatible with an 8086 processor, called real-address mode.  After reset initialization,
software must set up data structures needed for the processor to perform basic system
functions, such as handling interrupts. If the processor remains in real-address mode,
software must set up data structures in the form used by the 8086 processor. If the processor
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is going to operate in protected mode, software must set up data structures in the form used
by protected mode and then switch modes (see Section 16.6.).

16.4.1. System Tables
In real-address mode, no descriptor tables are used. The interrupt descriptor table (IDT),
which starts at address 0 (unless the IDTR is changed), needs to be loaded with pointers to
exception and interrupt handlers before interrupts can be enabled.

16.4.2. NMI Interrupt
The NMI interrupt is always enabled (except on nested NMI's). If the interrupt vector table
and the NMI interrupt handler need to be loaded into RAM, there will be a period of time
following reset initialization when an NMI interrupt cannot be handled. Hardware must
provide a mechanism to prevent an NMI interrupt from being generated while software is
unable to handle it.   For example, the IDT and NMI interrupt handler can be provided in
ROM. This allows an NMI interrupt to be handled immediately after reset initialization. Most
systems enable/disable NMI by passing the NMI signal through an AND gate controlled by a
bit in an I/O port. Hardware can clear the bit when the processor is reset, and software can set
the bit when it is ready to handle NMI interrupts. System software designers should be aware
of the mechanism used by hardware to protect software from NMI interrupts following reset.

16.5. SOFTWARE INITIALIZATION IN PROTECTED MODE
The data structures needed in protected mode are determined by the memory management
features which are used. The processor supports segmentation models which range from a
single, uniform address space (flat model) to a highly structured model with several
independent, protected address spaces for each task (multisegmented model). Paging can be
enabled for allowing access to large data structures which are partly in memory and partly on
disk. Both of these forms of address translation require data structures which are set up by the
operating system and used by the memory management hardware.

16.5.1. System Tables
A flat model without paging minimally requires a GDT with one code and one data segment
descriptor. A null descriptor in the first GDT entry is also required. A flat model with paging
may provide code and data descriptors for supervisor mode and another set of code and data
descriptors for user mode. In addition, it requires a page directory and at least one second-
level page table.  (Note: the second-level page table can be eliminated if the page directory
contains a directory entry pointing to itself, in which case the page directory and page table
reside in the same page.)  The stack can be placed in a normal read/write data segment, so no



EE INITIALIZATION AND MODE SWITCHING

16-11

descriptor for the stack is required.  Before the GDT can be used, the base address and limit
for the GDT must be loaded into the GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well
as segments and LDTs for each application program. LDTs require segment descriptors in
the GDT. Some operating systems allocate new segments and LDTs as they are needed. This
provides maximum flexibility for handling a dynamic programming environment, such as an
engineering workstation.  However, many operating systems use a single LDT for all
processes, allocating GDT entries in advance. An embedded system, such as a process
controller, might pre-allocate a fixed number of segments and LDTs for a fixed number of
application programs. This would be a simple and efficient way to structure the software
environment of a system which requires real-time performance.

16.5.2. Interrupts
If hardware allows interrupts to be generated, the IDT and a gate for the interrupt handler
need to be created.  Before the IDT can be used, the base address and limit for the IDT must
be loaded into the IDTR register using an LIDT instruction.  See Chapter 14 for detailed
information on this topic.

16.5.3. Paging
Unlike segmentation, paging is controlled by a mode bit. If the PG bit in the CR0 register is
clear (its state following reset initialization), the paging mechanism is completely absent
from the processor architecture seen by programmers.

If the PG bit is set, paging is enabled. The bit may be set using a MOV CR0 instruction.
Before setting the PG bit, the following conditions must be true:

• Software has created at least two page tables, the page directory and at least one second-
level page table if 4K pages are used.   For information on 4M pages, see Appendix H.

• The PDBR register (same as the CR3 register) is loaded with the physical base address of
the page directory.

• The processor is in protected mode (paging is not available in real-address mode). If all
other restrictions are met, the PG and PE bits can be set at the same time.

The following guidelines for setting the PG bit (as with the PE bit) should be adhered to
maintain both upwards and downwards compatibility:

1. The instruction setting the PG bit should be followed immediately with a JMP
instruction. A JMP instruction immediately after the MOV CR0 instruction changes the
flow of execution, so it has the effect of emptying the Intel386 and Intel486 processor of
instructions which have been fetched or decoded. The Pentium processor, however, uses
a branch target buffer (BTB) for branch prediction, eliminating the need for branch
instructions to flush the prefetch queue. For more information on the BTB, see the
Pentium® Processor Family Developer’s Manual, Volume 1, order number 241428.



INITIALIZATION AND MODE SWITCHING EE

16-12

2. The code from the instruction which sets the PG bit through the JMP instruction must
come from a page which is identity mapped (i.e., the linear address before the jump is
the same as the physical address after paging is enabled).

The 32-bit Intel architectures have different requirements for enabling paging and switching
to protected mode. The Intel386 processor requires following steps 1 or 2 above. The
Intel486 processor requires following both steps 1 and 2 above. The Pentium processor
requires only step 2 but for upwards and downwards code compatibility with the Intel386 and
Intel486 processors, it is recommended both steps 1 and 2 be taken.

See Chapter 11 for complete information on the paging mechanism.

16.5.4. Tasks
If the multitasking mechanism is not used and changes to more privileged segments are not
allowed, it is unnecessary to initialize the TR register.

If the multitasking mechanism is used or changes to more privileged segments are allowed
(values for more privileged SS and ESP are obtained from the TSS), a TSS and a TSS
descriptor for the initialization software must be created. TSS descriptors must not be marked
as busy when they are created; TSS descriptors should be marked as busy by the CPU only as
a side-effect of performing a task switch. As with descriptors for LDTs, TSS descriptors
reside in the GDT. The LTR instruction is used to load a selector for the TSS descriptor of
the initialization software into the TR register. This instruction marks the TSS descriptor as
busy, but does not perform a task switch. The selector must be loaded before the software
performs the first task switch, because a task switch copies the current task state into the
TSS. After the LTR instruction has been used, further operations on the TR register are
performed by task switching. As with segments and LDTs, TSSs and TSS descriptors can be
either pre-allocated or allocated as needed.

If changes to more privileged segments are allowed, a TSS and TSS descriptor need to be
created.  The processor uses the TSS to obtain the values for the more privileged stack
segment selector and stack pointer values when transferring control to more privileged
segments.

16.5.5. TLB, BTB and Cache Testing
As part of the process of switching into protected mode, system programmers may wish to
perform TLB, BTB, and cache testing. For more information on testing, see the Pentium®

Processor Family Developer’s Manual, Volume 1, Chapter 33.
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16.6. MODE SWITCHING
In order to take full advantage of the 32-bit address space and instruction set, the processor
must switch from its native real-address mode to protected mode.  A system may also find it
necessary to switch back into real-address mode for system operations. This section identifies
the steps necessary for software to switch the processor from real-address mode to protected
mode and from protected mode back into real-address mode.

16.6.1. Switching to Protected Mode
Before switching to protected mode, a minimum set of system data structures must be
created, and the GDT, IDT, and TR registers must be initialized, as discussed in the previous
section.  Once these tables are created, system software can perform the steps to switch into
protected mode.

Protected mode is entered by setting the PE bit in the CR0 register. The MOV CR0
instruction may be used to set this bit. The same two guidelines for setting the PG bit to
enable paging in Section 16.5.3. apply for setting the PE bit to enable protected mode.

After entering protected mode, the segment registers continue to hold the contents they had
in real address mode. Software should reload all the segment registers. Execution in
protected mode begins with a CPL of 0.

16.6.2. Switching Back to Real-Address Mode
The processor re-enters real-address mode if software clears the PE bit in the CR0 register
with a MOV CR0 instruction. A procedure which re-enters real-address mode should proceed
as follows:

1. If paging is enabled, perform the following sequence:

 Transfer control to linear addresses which have an identity mapping (i.e., linear
addresses equal physical addresses). Ensure the GDT and IDT are identity mapped.

 Clear the PG bit in the CR0 register.

 Move zero into the CR3 register to flush the TLB.

2. Transfer control to a segment which has a limit of 64K (0FFFFH). This loads the CS
register with the segment limit it needs to have in real mode. Ensure the GDT and IDT
are in real-address memory (0-1Meg).

3. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor
containing the following values, which are appropriate for real mode:

 Limit = 64K (0FFFFH)

 Byte granular (G =0)

 Expand up (E = 0)

 Writable (W = 1)
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 Present (P =1)

 Base = any value

Note that if the segment registers are not reloaded, execution continues using the
descriptors loaded during protected mode.

4. Disable interrupts. A CLI instruction disables INTR interrupts. NMI interrupts can be
disabled with external circuitry.

5. Clear the PE bit in the CR0 register.

6. Jump to the real mode program using a far JMP instruction. This flushes the instruction
queue (of the Intel386 and Intel486 processors) and puts appropriate values in the access
rights of the CS register.  This step is not required on the Pentium processor, however,
for downwards compatibility, a far JMP should be included as part of the switching back
to real-address mode process.

7. Use the LIDT instruction to load the base and limit of the real-mode interrupt vector
table.

8. Enable interrupts.

9. Load the segment registers as needed by the real-mode code.

16.7. INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incorporated
into your application. Also provided are some assumptions about the Intel development tools
that are used which include the ASM386/486 assembler and BLD386 builder.

16.7.1. Goal of this Example
The goal of this example is to move the CPU into protected mode right after reset using
initialization code that resides in EPROM/Flash and run a simple application.

16.7.2. Memory Layout Following Reset
Based on the discussion in Section 16.1. and the values shown in Table 16-1, Figure 16-3
shows the memory layout following processor reset and the starting point of this example.
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APM112

0FFFF FFFFH

0FFFF FFF0H

0FFFF 0000H

0

64K EPROM

[CS.BASE+EIP]

[SP, DS, SS, ES]

EIP= 0000 FFF0
CSBASE = FFFF 0000
DSBASE = 0
ESBASE = 0
SSBASE = 0
SP = 0

AFTER RESET

~~~~

Figure 16-3.  Processor State after Reset

16.7.3. The Algorithm
The main steps of this example are shown in Table 16-7 along with the line numbers from
the source listing of STARTUP.ASM given in Example 16-1.
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Table 16-7.  The Algorithm and Related Listing Line Numbers

ASM Lines

From To Description

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, Base=0 limit = 4GB

171 172 Load the GDTR to point to the temp GDT

174 177 Load CR0 with protected mode bit - move to PM

179 181 Jump near to clear real mode queue

184 186 Load DS, ES registers with GDT[1] descriptor; now both point to the entire physical
memory space.

188 195 Perform specific board initialization that is imposed by the new protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)

277 277 Load the TR register (without task switch  using LTR instruction)

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code
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NOTES:

If a switch into protected mode is made the CS selector is not changed (by far jump or far call) the original
base value is retained (if there is no far jump after reset the base will stay 0FFFF0000H; which is the location
space of the EPROM).

Interrupts are disabled after reset and should stay that way, otherwise may impose far jump. NMI is not
disabled and must not be active until the initialization is done.

The use of TEMP_GDT allows simple transfer of tables from the EPROM to anywhere in the RAM area. A
GDT entry is constructed with its base pointing to address 0 and a limit of 4GB. When the DS and ES
registers are loaded with this descriptor, the TEMP_GDT is no longer needed and can be replaced by the
application GDT.

The assumption for this code is one TSS no LDTs. If more TSSs exist in the application, they must be copied
into RAM. If there are LDTs they may be copied as well.

In some implementations, decoding of the address lines A20 - A31 is not done after reset to simulate the early
8086 chip behavior. In the process of moving into protected mode it may be desirable to set these decoders to
decode the complete address lines.

16.7.4. Tool Usage
In this example, Intel software tools (ASM386 and BLD386) are used.

The following are assumptions that are used when using the Intel ASM386 and BLD386 to
generate the initialization code.

• The ASM386 will generate the right operand size opcodes according to the code segment
attribute. The attribute is assigned either by the ASM386 invocation controls or in the
code segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be set to a
USE 16 attribute.  If 32-bit operands (MOV EAX, EBX) are used in the segment, an
operand prefix will automatically be generated which will force the CPU to execute a
32-bit operation for this instruction although its default code segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
example, LGDTW, LGDTD, IRETD. If you are using the generic instruction (LGDT)
the default segment attribute will be used to generate the right opcode.
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Table 16-8.  Relationship Between BLD Item and ASM Source File

Item
ASM386 and
Startup.A58

BLD386 Controls and
BLD file Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at
0FFFFFFF0H to start

GDT location public GDT_EPROM
GDT_EPROM
TABLE_REG  <>

TABLE
GDT(location =
GDT_EPROM)

The location of the GDT
will be programmed into
the GDT_EPROM
location

IDT location public IDT_EPROM
IDT_EPROM
TABLE_REG  <>

TABLE
IDT(location =
IDT_EPROM

The location of the IDT
will be programmed into
the IDT_EPROM location

RAM start RAM_START equ 400H memory( reserve =
(0..3FFFH))

RAM_START is used as
the ram destination for
moving the tables. It must
be excluded from the
application's segment
area.

Location of the application
TSS in the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY=( 10:
PROTECTED_MODE_T
ASK))

Put the descriptor of the
application TSS in GDT
entry 10

EPROM size and location size and location of the
initialization code

SEGMENT startup.code
(base= 0FFFF0000H)
...memory (RANGE(
ROM_AREA =
ROM(x..y))

Initialization code size
must be less than 64K
and resides at upper most
64K of the 4GB memory
space.

16.7.5. STARTUP.ASM Listing
The source code listing to move the CPU into protected mode is provided in Example 16-1.
This listing does not include any opcode and offset information.

Example 16-1.  STARTUP.ASM

DOS 5.0 (045-N) 386(TM) MACRO ASSEMBLER STARTUP
09:44:51    08/19/92   PAGE   1

DOS 5.0 (045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE 
STARTUP

OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )
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LINE     SOURCE

   1      NAME    STARTUP
   2
   3  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
   4  ;
   5  ;   ASSUMPTIONS:
   6  ;
   7  ;     1.  The bottom 64K of memory is ram, and can be used for
   8  ;         scratch space by this module.
   9  ;
  10  ;     2.  The system has sufficient free usable ram to copy the
  11  ;         initial GDT, IDT, and TSS
  12  ;
  13  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  14
  15  ; configuration data - must match with build definition
  16
  17  CS_BASE       EQU     0FFFF0000H
  18
  19   ; CS_BASE is the linear address of the segment STARTUP_CODE
  20   ; - this is specified in the build language file
  21
  22  RAM_START     EQU     400H
  23
  24  ; RAM_START  is the start of free, usable ram in the linear
  25  ; memory  space.   The GDT,  IDT, and  initial TSS  will be
  26  ; copied above this space, and a small data segment will be
  27  ; discarded at  this linear  address.   The 32-bit  word at
  28  ; RAM_START will contain  the linear  address of  the first
  29  ; free byte above the copied tables - this may be useful if
  30  ; a memory manager is used.
  31
  32  TSS_INDEX    EQU     10
  33
  34  ; TSS_INDEX is the  index of the  TSS of the  first task to
  35  ; run after startup
  36
  37
  38   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  39
  40  ; ------------------------- STRUCTURES and EQU ---------------
  41  ; structures for system data
  42
  43  ; TSS structure
  44  TASK_STATE  STRUC
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  45      link DW ?
  46      link_h DW ?
  47      ESP0 DD ?
  48      SS0 DW ?
  49      SS0_h DW ?
  50      ESP1 DD ?
  51      SS1 DW ?
  52      SS1_h DW ?
  53      ESP2 DD ?
  54      SS2 DW ?
  55      SS2_h DW ?
  56      CR3_reg DD ?
  57      EIP_reg DD ?
  58      EFLAGS_reg DD ?
  59      EAX_reg DD ?
  60      ECX_reg DD ?
  61      EDX_reg DD ?
  62      EBX_reg DD ?
  63      ESP_reg DD ?
  64      EBP_reg DD ?
  65      ESI_reg DD ?
  66      EDI_reg DD ?
  67      ES_reg DW ?
  68      ES_h DW ?
  69      CS_reg DW ?
  70      CS_h DW ?
  71      SS_reg DW ?
  72      SS_h   DW ?
  73      DS_reg DW ?
  74      DS_h DW ?
  75      FS_reg DW ?
  76      FS_h DW ?
  77      GS_reg DW ?
  78      GS_h DW ?
  79      LDT_reg DW ?
  80      LDT_h DW ?
  81      TRAP_reg DW ?
  82      IO_map_base DW ?
  83  TASK_STATE  ENDS
  84
  85  ; basic structure of a descriptor
  86  DESC    STRUC
  87      lim_0_15 DW ?
  88      bas_0_15 DW ?
  89      bas_16_23 DB ?
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  90      access DB ?
  91      gran DB ?
  92      bas_24_31 DB ?
  93  DESC    ENDS
  94
  95  ; structure for use with LGDT and LIDT instructions
  96  TABLE_REG   STRUC
  97      table_lim DW ?
  98      table_linear DD ?
  99  TABLE_REG   ENDS
 100
 101  ; offset of GDT and IDT descriptors in builder generated GDT
 102  GDT_DESC_OFF    EQU 1*SIZE(DESC)
 103  IDT_DESC_OFF    EQU 2*SIZE(DESC)
 104
 105  ; equates for building temp GDT in ram
 106  LINEAR_SEL          EQU     1*SIZE (DESC)
 107  LINEAR_PROTO_LO     EQU     00000FFFFH  ; LINEAR_ALIAS
 108  LINEAR_PROTO_HI     EQU     000CF9200H
 109
 110  ; Protection Enable Bit in CR0
 111  PE_BIT  EQU 1B
 112
 113  ; ------------------------------------------------------------
 114
 115  ; ------------------------- DATA SEGMENT----------------------
 116
 117  ; Initially, this  data segment starts at  linear 0, due to
 118  ; CPU powerup state.
 119
 120  STARTUP_DATA    SEGMENT RW
 121
 122  free_mem_linear_base    LABEL   DWORD
 123  TEMP_GDT                LABEL   BYTE    ; must be first in
segment
 124  TEMP_GDT_NULL_DESC   DESC    <>
 125  TEMP_GDT_LINEAR_DESC DESC    <>
 126
 127  ; scratch areas for LGDT and LIDT instructions
 128  TEMP_GDT_SCRATCH TABLE_REG   <>
 129  APP_GDT_RAM     TABLE_REG    <>
 130  APP_IDT_RAM     TABLE_REG    <>
 131          ; align end_data
 132  fill    DW      ?
 133
 134  ; last thing in this segment - should be on a dword boundary
 135  end_data    LABEL   BYTE
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 136
 137  STARTUP_DATA    ENDS
 138  ; ------------------------------------------------------------
 139
 140
 141  ; ------------------------- CODE SEGMENT----------------------
 142  STARTUP_CODE SEGMENT ER PUBLIC USE16
 143
 144  ; filled in by builder
 145      PUBLIC  GDT_EPROM
 146  GDT_EPROM   TABLE_REG   <>
 147
 148  ; filled in by builder
 149      PUBLIC  IDT_EPROM
 150  IDT_EPROM   TABLE_REG   <>
 151
 152  ; entry point into startup code - the bootstrap will vector
 153  ; here  with a  near JMP  generated by  the builder.   This
 154  ; label must be in the top 64K of linear memory.
 155
 156      PUBLIC  STARTUP
 157  STARTUP:
 158
 159  ; DS,ES address the bottom 64K of flat linear memory
 160      ASSUME  DS:STARTUP_DATA, ES:STARTUP_DATA
 161  ; See Figure 16-4
 162  ; load GDTR with temporary GDT
 163          LEA     EBX,TEMP_GDT  ; build the TEMP_GDT in low ram,
 164          MOV     DWORD PTR [EBX],0   ; where we can address
 165          MOV     DWORD PTR [EBX]+4,0
 166          MOV     DWORD PTR [EBX]+8, LINEAR_PROTO_LO
 167          MOV     DWORD PTR [EBX]+12, LINEAR_PROTO_HI
 168          MOV     TEMP_GDT_scratch.table_linear,EBX
 169          MOV     TEMP_GDT_scratch.table_lim,15
 170
 171                  DB      66H         ; execute a 32 bit LGDT
 172          LGDT    TEMP_GDT_scratch
 173
 174  ; enter protected mode
 175          MOV     EBX,CR0
 176          OR      EBX,PE_BIT
 177          MOV     CR0,EBX
 178
 179   ; clear prefetch queue
 180          JMP     CLEAR_LABEL
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 181  CLEAR_LABEL:
 182
 183   ; make DS and ES address 4G of linear memory
 184          MOV     CX,LINEAR_SEL
 185          MOV     DS,CX
 186          MOV     ES,CX
 187
 188    ; do board specific initialization
 189    ;
 190                  ;
 191                  ; ......
 192                  ;
 193
 194
 195          ; See Figure 16-5
 196          ; copy EPROM GDT to ram at:
 197          ;                RAM_START + size (STARTUP_DATA)
 198          MOV     EAX,RAM_START
 199          ADD     EAX,OFFSET (end_data)
 200          MOV     EBX,RAM_START
 201          MOV     ECX, CS_BASE
 202          ADD     ECX, OFFSET (GDT_EPROM)
 203          MOV     ESI, [ECX].table_linear
 204          MOV     EDI,EAX
 205          MOVZX   ECX, [ECX].table_lim
 206          MOV     APP_GDT_ram[EBX].table_lim,CX
 207          INC     ECX
 208          MOV     EDX,EAX
 209          MOV     APP_GDT_ram[EBX].table_linear,EAX
 210          ADD     EAX,ECX
 211      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 212
 213          ; fixup GDT base in descriptor
 214          MOV     ECX,EDX
 215          MOV     [EDX].bas_0_15+GDT_DESC_OFF,CX
 216          ROR     ECX,16
 217          MOV     [EDX].bas_16_23+GDT_DESC_OFF,CL
 218          MOV     [EDX].bas_24_31+GDT_DESC_OFF,CH
 219
 220          ; copy EPROM IDT to ram at:
 221          ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)
 222          MOV     ECX, CS_BASE
 223          ADD     ECX, OFFSET (IDT_EPROM)
 224          MOV     ESI, [ECX].table_linear
 225          MOV     EDI,EAX
 226          MOVZX   ECX, [ECX].table_lim
 227          MOV     APP_IDT_ram[EBX].table_lim,CX
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 228          INC     ECX
 229          MOV     APP_IDT_ram[EBX].table_linear,EAX
 230          MOV     EBX,EAX
 231          ADD     EAX,ECX
 232      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 233
 234                  ; fixup IDT pointer in GDT
 235          MOV     [EDX].bas_0_15+IDT_DESC_OFF,BX
 236          ROR     EBX,16
 237          MOV     [EDX].bas_16_23+IDT_DESC_OFF,BL
 238          MOV     [EDX].bas_24_31+IDT_DESC_OFF,BH
 239
 240                  ; load GDTR and IDTR
 241          MOV     EBX,RAM_START
 242                  DB      66H         ; execute a 32 bit LGDT
 243          LGDT    APP_GDT_ram[EBX]
 244                  DB      66H         ; execute a 32 bit LIDT
 245          LIDT    APP_IDT_ram[EBX]
 246
 247                  ; move the TSS
 248          MOV     EDI,EAX
 249          MOV     EBX,TSS_INDEX*SIZE(DESC)
 250          MOV     ECX,GDT_DESC_OFF ;build linear address for TSS
 251          MOV     GS,CX
 252          MOV     DH,GS:[EBX].bas_24_31
 253          MOV     DL,GS:[EBX].bas_16_23
 254          ROL     EDX,16
 255          MOV     DX,GS:[EBX].bas_0_15
 256          MOV     ESI,EDX
 257          LSL     ECX,EBX
 258          INC     ECX
 259          MOV     EDX,EAX
 260          ADD     EAX,ECX
 261      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 262
 263                  ; fixup TSS pointer
 264          MOV     GS:[EBX].bas_0_15,DX
 265          ROL     EDX,16
 266          MOV     GS:[EBX].bas_24_31,DH
 267          MOV     GS:[EBX].bas_16_23,DL
 268          ROL     EDX,16
 269      ;save start of free ram at linear location RAMSTART
 270          MOV     free_mem_linear_base+RAM_START,EAX
 271
 272      ;assume no  LDT used in  the initial task  - if necessary,
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 273      ;code  to move the LDT could be added, and should resemble
 274      ;that used to move the TSS
 275
 276      ; load TR
 277          LTR     BX   ; No task switch, only descriptor loading
 278      ; See Figure 16-6
 279      ; load minimal set of registers necessary to simulate task
 280      ; switch
 281
 282
 283          MOV     AX,[EDX].SS_reg     ; start loading registers
 284          MOV     EDI,[EDX].ESP_reg
 285          MOV     SS,AX
 286          MOV     ESP,EDI             ; stack now valid
 287          PUSH    DWORD PTR [EDX].EFLAGS_reg
 288          PUSH    DWORD PTR [EDX].CS_reg
 289          PUSH    DWORD PTR [EDX].EIP_reg
 290          MOV     AX,[EDX].DS_reg
 291          MOV     BX,[EDX].ES_reg
 292          MOV     DS,AX     ; DS and ES no longer linear memory
 293          MOV     ES,BX
 294
 295          ; simulate far jump to initial task
 296          IRETD
 297
 298  STARTUP_CODE  ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED
INSTRUCTION(S)
 299
 300  END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA
 301
 302

ASSEMBLY COMPLETE,   1 WARNING,   NO ERRORS.
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16.7.6. MAIN.ASM Source Code
The file MAIN.ASM shown in Example 16-2 defines the data and stack segments for this
application and can be substituted with the main module task written in a high-level language
that is invoked by the IRET instruction executed by STARTUP.ASM.

Example 16-2.  MAIN.ASM

    NAME    main_module
data    SEGMENT RW

dw 1000 dup(?)
DATA    ENDS

stack stackseg 800

CODE SEGMENT ER  use32 PUBLIC
main_start:

nop
nop
nop

CODE  ENDS

END main_start, ds:data, ss:stack
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APM115

BASE
LIMIT GDT_ SCRATCH

TEMP _GDT
GDT [1]
GDT [0]

BASE=0, LIMIT=4G
0

0FFFF 0000H

0FFFF FFFFH

START:  [CSBASE + EIP]

-  JUMP NEAR START
-  CONSTRUCT TEMP_GDT
-  LGDT
-  MOVE TO PROTECTED MODE
    

    DS, ES = GDT[1] 4GB

Figure 16-4.  Constructing Temp_GDT and Switching to Protected Mode
(Lines 162-172 of List File)
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0FFFF FFFFH

TSS

IDT

GDT

TSS  RAM

IDT RAM

GDT RAM
RAM_START

0

- MOVE THE GDT, IDT, TSS FROM
       ROM TO RAM

-  FIX ALIASES

- LTR ~~ ~~

Figure 16-5.  Moving the GDT, IDT and TSS from ROM to RAM
(Lines 196-261 of List File)
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TSS  RAM

IDT RAM

GDT  RAM
RAM_START

EFLAGS
EIP

ESP

ES
CS
SS

GDT

IDT ALIAS
GDT ALIAS

0

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES = TSS.ES
DS = TSS.DS
IRET

.

.

.

.

.

.

.

.

.

DS

~~ ~~

Figure 16-6.  Task Switching
(Lines 282-296 of List File)

16.7.7. Supporting Files
The batch file shown in Example 16-3 can be used to assemble the source code files
STARTUP.ASM and MAIN.ASM and build the final application.

Example 16-3.  Batch File to Assemble, Compile and Build the Application

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
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BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP)
Bootload

The BLD386 has several functions in this example:

• It allocates physical memory location to segments and tables.

• It generates tables using the build file and the input files.

• It links object files and resolves references.

• It generates bootloadable file to be programmed into the EPROM.

Example 16-4 shows the build file used as input to BLD386 to perform the above functions.

Example 16-4.  Build File

INIT_BLD_EXAMPLE;

SEGMENT
        *SEGMENTS (DPL = 0)
    ,   startup.startup_code (BASE = 0FFFF0000H)
    ;

TASK
        BOOT_TASK (OBJECT = startup, INITIAL,DPL = 0,

NOT INTENABLED)
,       PROTECTED_MODE_TASK (OBJECT = main_module,DPL = 0,

NOT INTENABLED)
    ;

TABLE
    GDT (
        LOCATION = GDT_EPROM
    ,   ENTRY = (
            10:    PROTECTED_MODE_TASK
    , startup.startup_code
    ,       startup.startup_data
    ,       main_module.data
    ,       main_module.code
    ,       main_module.stack

          )
        ),

    IDT (
        LOCATION = IDT_EPROM
        );
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MEMORY
    (
        RESERVE = (0..3FFFH

-- Area for the GDT, IDT, TSS copied from
ROM
    ,              60000H..0FFFEFFFFH)
    ,   RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH))

-- Eprom size 64K
    ,   RANGE = (RAM_AREA = RAM (4000H..05FFFFH))
    );

END
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CHAPTER 17
DEBUGGING

The Pentium processor has advanced debugging facilities which are particularly important
for sophisticated software systems, such as multitasking operating systems. The failure
conditions for these software systems can be very complex and time-dependent. The
debugging features of the Pentium processor give the system programmer valuable tools for
looking at the dynamic state of the processor.

The debugging support is accessed through the debug registers. The debug registers of the
Pentium processor hold the addresses of memory and I/O locations, called breakpoints, which
invoke debugging software (unlike the Intel386 and Intel486 processors which allowed
debugging of memory accesses only). An exception is generated when a memory or I/O
operation is made to one of these addresses. A breakpoint is specified for a particular form of
memory or I/O access, such as an instruction fetch, doubleword memory write operation or a
word I/O read operation. The debug registers support both instruction breakpoints and data
breakpoints.

With other processors, instruction breakpoints are set by replacing normal instructions with
breakpoint instructions. When the breakpoint instruction is executed, the debugger is called.
But with the debug registers of the Pentium processor, this is not necessary. By eliminating
the need to write into the code space, the debugging process is simplified (there is no need
shadow the ROM code space in RAM) and breakpoints can be set in ROM-based software. In
addition, breakpoints can be set on reads and writes to data which allows real-time
monitoring of variables.

17.1. DEBUGGING SUPPORT
The features of the architecture which support debugging include:

•• Reserved debug interrupt vector—Specifies a procedure or task to be called when an
event for the debugger occurs.

• Debug address registers—Specifies the addresses of up to four breakpoints.

•• Debug control register—Specifies the forms of memory or I/O access for the
breakpoints.

•• Debug status register—Reports conditions which were in effect at the time of the
exception.

•• Trap bit of TSS (T-bit)—Generates a debug exception when an attempt is made to
perform a task switch to a task with this bit set in its TSS.

•• Resume flag (RF)— Suppresses multiple exceptions to the same instruction.

•• Trap flag (TF)—Generates a debug exception after every execution of an instruction.
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•• Breakpoint instruction—Calls the debugger (generates a debug exception). This
instruction is an alternative way to set code breakpoints. It is especially useful when
more than four breakpoints are desired, or when breakpoints are being placed in the
source code.

• Reserved interrupt vector for breakpoint exception—Calls a procedure or task when
a breakpoint instruction is executed.

These features allow a debugger to be called either as a separate task or as a procedure in the
context of the current task. The following conditions can be used to call the debugger:

• Task switch to a specific task.

• Execution of the breakpoint instruction.

• Execution of any instruction.

• Execution of an instruction at a specified address.

• Read or write of a byte, word, or doubleword at a specified memory address.

• Write to a byte, word, or doubleword at a specified memory address.

• Input of a byte or word at a specified I/O address.

• Output  of a byte, word, or doubleword at a specified I/O address.

• Attempt to change the contents of a debug register.

17.2. DEBUG REGISTERS
Six registers control debugging. These registers are accessed by forms of the MOV
instruction. A debug register may be the source or destination operand for one of these
instructions. The debug registers are privileged resources; the MOV instructions which
access them may be executed only at privilege level 0. An attempt to read or write the debug
registers from any other privilege level generates a general-protection exception.  Figure 17-1
shows the format of the debug registers.
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Figure 17-1.  Debug Registers

17.2.1. Debug Address Registers (DR0-DR3)
Each of these registers holds the linear address for one of the four breakpoints. That is,
breakpoint comparisons are made before physical address translation occurs. Each breakpoint
condition is specified further by the contents of the DR7 register.

17.2.2. Debug Control Register (DR7)
The debug control register shown in Figure 17-1 specifies the type of memory or I/O access
associated with each breakpoint. Each address in registers DR0 to DR3 corresponds to a field
R/W0 to R/W3 in the DR7 register.  The DE (Debug Extensions) bit in the CR4 register
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determines how the R/W bits are interpreted.  When the DE bit is set, the processor interprets
these bits as follows:

00 — Break on instruction execution only

01 — Break on data writes only

10 — Break on I/O reads or writes

11 — Break on data reads or writes but not instruction fetches

When the DE bit is clear, the Pentium processor interprets the R/W bits the same as the
Intel486 and Intel386 processors, which is as follows:

00 — Break on instruction execution only

01 — Break on data writes only

10 — undefined

11 — Break on data reads or writes but not instruction fetches

The LEN0 to LEN3 fields in the DR7 register specify the size of the breakpointed location.
A size of 1, 2, or 4 bytes may be specified. The length fields are interpreted as follows:

00 — one-byte length

01 — two-byte length

10 — undefined

11 — four-byte length

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using any
other length is undefined.

The GD bit enables the debug register protection condition that is flagged by BD of DR6.
Note that GD is cleared at entry to the debug exception handler by the processor.  This
allows the handler free access to the debug registers.

The low eight bits of the DR7 register (fields L0 to L3 and G0 to G3) individually enable the
four address breakpoint conditions. There are two levels of enabling: the local (L0 through
L3) and global (G0 through G3) levels. The local enable bits are automatically cleared by the
processor with every task switch to avoid unwanted breakpoint conditions in the new task.
They are used to set breakpoint conditions in a single task. The global enable bits are not
cleared by a task switch. They are used to enable breakpoint conditions which apply to all
tasks.

17.2.3. Debug Status Register (DR6)
The debug status register shown in Figure 11-1 reports conditions sampled at the time the
debug exception was generated. Among other information, it reports which breakpoint
triggered the exception. Update only occurs if the exception is taken, then all bits are
updated.
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When an enabled breakpoint generates a debug exception, it loads the low four bits of this
register (B0 through B3) before entering the debug exception handler. The B bit is set if the
condition described by the DR, LEN, and R/W bits is true, even if the breakpoint is not
enabled by the L and G bits. The processor sets the B bits for all breakpoints which match the
conditions present at the time the debug exception is generated, whether or not they are
enabled.

The BT bit is associated with the T bit (debug trap bit) of the TSS (see Chapter 10 for the
format of a TSS). The processor sets the BT bit before entering the debug handler if a task
switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7 register to
enable or disable this exception; the T bit of the TSS is the only enabling bit.

The BS bit is associated with the TF flag. The BS bit is set if the debug exception was
triggered by the single-step execution mode (TF flag set). The single-step mode is the
highest-priority debug exception; when the BS bit is set, any of the other debug status bits
also may be set.

The BD bit is set if the next instruction will read or write one of the eight debug registers
while they are being used by in-circuit emulation if the GD bit in DR7 is set to one.

Note that the contents of the DR6 register are never cleared by the processor. To avoid any
confusion in identifying debug exceptions, the debug handler should clear the register before
returning.

17.2.4. Debug Registers DR4 and DR5
Although debug registers 4 and 5 have been documented as reserved, previous generations of
processors aliased these registers to debug registers 6 and 7, respectively.  When debug
extensions are not enabled (CR4.DE=0), the Pentium processor remains compatible with
existing software by aliasing these references.  However, when debug extensions are enabled
(CR4.DE=1), attempts to reference debug registers 4 or 5 will result in an Undefined Opcode
Exception (#UD).

17.2.5. Breakpoint Field Recognition
The address and LEN bits for each of the four breakpoint conditions define a range of
sequential byte addresses for a data or I/O breakpoint. The LEN bits permit specification of a
one-, two-, or four-byte range. Two-byte ranges must be aligned on word boundaries
(addresses which are multiples of two) and four-byte ranges must be aligned on doubleword
boundaries (addresses which are multiples of four). I/O breakpoint addresses are zero
extended from 16 to 32 bits for purposes of comparison with the breakpoint address in the
selected debug register.  These requirements are enforced by the processor; it uses the LEN
bits to mask the lower address bits in the debug registers. Unaligned data or I/O breakpoint
addresses do not yield the expected results.

A data breakpoint for reading or writing is triggered if any of the bytes participating in an
access is within the range defined by a breakpoint address register and its LEN bits. Table
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17-1 gives some examples of combinations of addresses and fields with references which do
and do not cause traps.

Table 17-1.  Breakpointing Examples

Operation Address (hex) Length (in bytes)

Register Contents
Register Contents
Register Contents
Register Contents

DR0
DR1
DR2
DR3

A0001
A0002
B0002
C0000

1 (LEN0 = 00)
1 (LEN1 = 00)
2 (LEN2 = 01)
4 (LEN3 = 11)

Data Operations Which Trap

A0001
A0002
A0001
A0002
B0002
B0001
C0000
C0001
C0003

1
1
2
2
2
4
4
2
1

Data Operations Which Do Not Trap

A0000
A0003
B0000
C0004

1
4
2
4

A data breakpoint for an unaligned operand can be made from two sets of entries in the
breakpoint registers where each entry is byte-aligned, and the two entries together cover the
operand. This breakpoint generates exceptions only for the operand, not for any neighboring
bytes.

Instruction breakpoint addresses must have a length specification of one byte (LEN = 00); the
behavior of code breakpoints for other operand sizes is undefined. The processor recognizes
an instruction breakpoint address only when it points to the first byte of an instruction. If the
instruction has any prefixes, the breakpoint address must point to the first prefix.

It is recommended that debuggers execute the LGDT instruction before returning to the
program being debugged to ensure that breakpoints are detected.

17.3. DEBUG EXCEPTIONS
Two of the interrupt vectors of the Pentium processor are reserved for debug exceptions. The
debug exception is the usual way to invoke debuggers designed for the Pentium processor.

17.3.1. Interrupt 1—Debug Exceptions
The handler for this exception usually is a debugger or part of a debugging system. The
processor generates a debug exception for any of several conditions. The debugger can check
flags in the DR6 and DR7 registers to determine which condition caused the exception and
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which other conditions also might apply.   Table 17-2 shows the states of these bits for each
kind of breakpoint condition.

Instruction breakpoints are faults; other debug exceptions are traps. The debug exception
may report either or both at one time. The following sections present details for each class of
debug exception.

Table 17-2.  Debug Exception Conditions

Flags Tested Description

BS = 1 Single-step trap

B0 = 1 and (GE0 = 1 or LE0 = 1) Breakpoint defined by DR0, LEN0, and R/W0

B1 = 1 and (GE1 = 1 or LE1 = 1) Breakpoint defined by DR1, LEN1, and R/W1

B2 = 1 and (GE2 = 1 or LE2 = 1) Breakpoint defined by DR2, LEN2, and R/W2

B3 = 1 and (GE3 = 1 or LE3 = 1) Breakpoint defined by DR3, LEN3, and R/W3

BD = 1 Debug registers in use for in-circuit emulation

BT = 1 Task switch

17.3.1.1. INSTRUCTION-BREAKPOINT FAULT

The processor reports an instruction breakpoint before it executes the breakpointed
instruction (i.e., a debug exception caused by an instruction breakpoint is a fault).

The RF flag permits the debug exception handler to restart instructions which cause faults
other than debug faults. When a debug fault occurs, the system software must set the RF bit
in the copy of the EFLAGS register which is pushed on the stack in the debug exception
handler routine. This bit is set in preparation for resuming the program’s execution at the
breakpoint address without generating another breakpoint fault on the same instruction.
(Note: The RF bit does not cause breakpoint traps to be ignored, nor other kinds of faults.)
The RF flag is set by the IRETD instruction (but not by POPF or POPFD) to the value
specified by the saved copy of the EFLAGS register in order to disable the generation of a
code breakpoint exception on the instruction immediately following the IRETD.

The processor clears the RF flag at the successful completion of every instruction except
after the IRET instruction and JMP, CALL, or INT instructions which cause a task switch.

The processor does not set the RF flag in the copy of the EFLAGS register pushed on the
stack before entry into any fault handler. When the fault handler is entered for instruction
breakpoints, for example, the debug handler should set the RF flag in the copy of the
EFLAGS register pushed on the stack; so that when the IRET instruction is executed,
returning control from the exception handler, the RF flag in the EFLAGS register will be set,
and execution will resume at the breakpointed instruction without generating another
breakpoint for the same instruction.

Code breakpoints are the highest priority faults and are therefore guaranteed to be serviced
before any other faults which may be detected during the decoding or execution of an
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instruction.  If after a debug fault, the RF flag is set and the debug handler retries the faulting
instruction, it is possible that retrying the instruction will generate other faults. The restart of
the instruction after these faults also occurs with the RF flag set, so repeated debug faults
continue to be suppressed. The processor clears the RF flag only after successful completion
of the instruction.

17.3.1.2. DATA MEMORY AND I/O BREAKPOINTS

Data memory and I/O breakpoint exceptions are traps; i.e., the processor generates an
exception for a breakpoint after executing the instruction which accesses the breakpointed
memory or I/O location.

Because data breakpoints are traps, the original data is overwritten before the trap exception
is generated. If a debugger needs to save the contents of a write breakpoint location, it should
save the original contents before setting the breakpoint.  The handler can report the saved
value after the breakpoint is triggered. The data in the debug registers can be used to address
the new value stored by the instruction which triggered the breakpoint.

The Pentium processor, like the Intel486 processor, ignores the GE and LE bits in DR7. If
any of the Ln/Gn bits is set (or single stepping is enabled), instruction pairing is inhibited and
the Pentium processor slows execution so that most breakpoints are reported exactly on the
instruction that generated them.  In the Intel386 DX processor, exact data breakpoint
matching does not occur unless it is enabled by setting either the LE or the GE bit.

The Pentium processor, however, is unable to report data breakpoints exactly for the REP
MOVS and REP STOS instructions until the completion of the iteration after the one in
which the breakpoint occurs in order to be able to execute the load, store, updates to ESI,
EDI and ECX and the check for completion on each iteration of these REPeated instructions
in a single clock.

Repeated INS and OUTS instructions that generate an I/O breakpoint debug exception, trap
after the completion of the first iteration. Repeated INS and OUTS instructions that generate
a memory breakpoint debug exception trap after the iteration in which the memory address
breakpoint location is accessed.

17.3.1.3. GENERAL-DETECT FAULT

The general-detect fault occurs when an attempt is made to use the debug registers at the
same time they are being used by in-circuit emulation when the GD bit in DR7 is set to one.
This additional protection feature guarantees that emulators can have full control over the
debug registers when required. The exception handler can detect this condition by checking
the state of the BD bit of the DR6 register.
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17.3.1.4. SINGLE-STEP TRAP

This trap occurs if the TF flag was set before the instruction was executed. Note that the
exception does not occur after an instruction which sets the TF flag. For example, if the
POPF instruction is used to set the TF flag, a single-step trap does not occur until after the
instruction following the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set
in a TSS at the time of a task switch, the exception occurs after the first instruction is
executed in the new task.

The single-step flag normally is not cleared by privilege changes inside a task. The INT
instructions, however, do clear the TF flag. Therefore, software debuggers which single-step
code must recognize and emulate INT n or INTO instructions rather than executing them
directly. To maintain protection, the operating system should check the current execution
privilege level after any single-step trap to see if single stepping should continue at the
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops.
When both an external interrupt and a single step interrupt occur together, the single step
interrupt is processed first. This clears the TF flag. After saving the return address or
switching tasks, the external interrupt input is examined before the first instruction of the
single step handler executes. If the external interrupt is still pending, then it is serviced. The
external interrupt handler does not run in single-step mode. To single step an interrupt
handler, single step an INTn instruction which calls the interrupt handler.

17.3.1.5. TASK-SWITCH TRAP

The debug exception also occurs after a task switch if the T bit of the new task's TSS is set.
The exception occurs after control has passed to the new task, but before the first instruction
of that task is executed. The exception handler can detect this condition by examining the BT
bit of the DR6 register.

Note that, if the debug exception handler is a task, the T bit of its TSS should not be set.
Failure to observe this rule will put the processor in a loop.
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17.3.2. Interrupt 3—Breakpoint Instruction
The breakpoint trap is caused by execution of the INT 3 instruction. Typically, a debugger
prepares a breakpoint by replacing the first opcode byte of an instruction with the opcode for
the breakpoint instruction. When execution of the INT 3 instruction calls the exception
handler, the return address points to the first byte of the instruction following the INT 3
instruction.

With older processors, this feature is used extensively for setting instruction breakpoints.
With the Pentium, Intel486, and Intel386 processors, this use is more easily handled using
the debug registers. However, the breakpoint exception still is useful for breakpointing
debuggers, because the breakpoint exception can call another exception handler. The
breakpoint exception also can be useful when it is necessary to set a greater number of
breakpoints than permitted by the debug registers, or when breakpoints are being placed in
the source code of a program under development.
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CHAPTER 18
CACHING, PIPELINING AND BUFFERING

The Pentium processor has many features that work together to yield extremely high
performance — features such as caches, buffers, and pipelining. In general, these features
work behind the scenes; that is, programs automatically run faster without having to
explicitly take these performance features into account. In spite of this transparent
implementation, some programmers may wish to take maximum advantage of these features.
This chapter provides the information necessary to do so. It also documents the few cases in
which systems programmers must explicitly take these performance features into account.
The features discussed are:

• Internal instruction and data caches.

• Address translation caches.

• Prefetch queues.

• Write buffers.

• Execution pipelining.

18.1. INTERNAL INSTRUCTION AND DATA CACHES
The Pentium microprocessor has separate data and instruction caches on-chip. Caches raise
system performance by satisfying an internal read request more quickly than a bus cycle to
memory. They also reduce the processor's use of the external bus when the same locations
are accessed multiple times. Having separate caches for instructions and data allows
simultaneous cache look-up. Up to two data references and up to 32 bytes of raw opcodes can
be accessed in one clock. The caches are fully transparent to applications software.

Caching is available in all execution modes: real mode, protected mode, and virtual-8086
mode. For a properly designed, single-processor system, the caching does not require further
control once it is enabled during system initialization.

The data and instruction caches hold 8K bytes each. The cache line width of the Pentium
processor is 256 bits or 32 bytes. A line can be filled from memory with a four-transfer burst
cycle. External caches are not likely to use cache lines smaller than those of the internal
cache.

Cache lines can only be mapped to 32-byte aligned blocks of main memory. (A 32-byte
aligned block begins at an address which is clear in its low-order five bits.) The caches do
not support partially-filled cache lines, so caching even a single doubleword requires caching
an entire line.

The processor allows any area of memory to be cached, although both software and hardware
can disallow certain areas from being cached — software by setting the PCD bit in the



CACHING, PIPELINING AND BUFFERING EE

18-2

respective page table entries; hardware by deasserting the KEN# signal for bus cycles with
addresses that fall within those areas. When both software and hardware agree that a
requested datum is cacheable, the processor reads an entire 32-byte line into the appropriate
cache. This operation is called a cache line fill. Cache line fills are generated only for read
misses, not for write misses. A store that misses the cache does not copy the missed line into
cache from memory, but rather posts the datum in a write buffer, then sends it to the external
bus when the bus is available.

The CPU can use an external second-level cache outside of the processor chip. An external
cache can improve performance by providing a larger cache or wider line, or by allowing the
processor bus to run faster than the memory bus.

Caches require special consideration in multiprocessor systems. When one processor accesses
data cached in another processor, it must not receive incorrect data. If it modifies data, all
other processors which access that data must receive the modified data. This property is
called cache consistency. The CPU provides mechanisms which maintain cache consistency
in the presence of multiple processors and external caches.

The operation of internal and external caches is transparent to application software, but
knowledge of the behavior of these caches may be useful in optimizing software
performance. For example, knowledge of cache dimensions and replacement algorithms are
an indication of how large of a data structure can be operated on at once without causing
cache thrashing. In multiprocessor systems, maintenance of cache consistency may, in rare
circumstances, require intervention by system software. For these rare cases, the Pentium
microprocessor provides privileged cache control operations.

18.1.1. Data Cache
In the data cache, a cache protocol known as MESI maintains consistency with caches of
other processors and with an external cache. The data cache has two status bits per tag; so,
each line can be in one of the states defined in Table 18-Error! Bookmark not defined. .
The state of a cache line can change as the result of either internal or external activity related
to that line. In general, the operation of the MESI protocol is transparent to programs.

Table 18-1.  MESI Cache Line States

Cache Line State:
M

Modified
E

Exclusive
S

Shared
I

Invalid

This cache line is valid? Yes Yes Yes No

The memory copy is… …out of date …valid …valid —

Copies exist in caches of other
processors?

No No Maybe Maybe

A write to this line … …does not go
to bus

…does not go
to bus

…goes to bus and
updates cache

…goes directly
to bus
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18.1.2. Data Cache Update Policies
A cache adheres to an update policy to determine when a write operation must update main
memory. (The update policy does not affect read operations.) The update policies supported
by the Pentium microprocessor data cache are:

• Writethrough — a write request to a line in the cache triggers updates to both cache
memory and main memory. Writethrough is useful for applications such as a graphics
frame buffer, where writes must update memory so that they can be seen on the graphics
display.

• Writeback — a write request to a line in the cache updates only the cache memory. The
writeback policy reduces bus traffic by eliminating many unnecessary writes to memory.
Writes to a line in the cache are not immediately forwarded to main memory; instead,
they are accumulated in the cache. The modified cache line is written to main memory
later, when a writeback operation is performed. Writeback operations are triggered when
cache lines need to be deallocated, such as when new cache lines are being allocated in a
cache which is already full. Writeback operations also are triggered by the mechanisms
used to maintain cache consistency.

The processor allows any area of memory to be subject to either policy. Both software and
hardware have control over which policy is employed — software through the PWT bit of
page table entries; hardware through the WB/WT# signal.

The internal caches of the Pentium microprocessor can be used with external caches which
are writethrough, writeback, or a mixture of both.

18.1.3. Instruction Cache
The instruction cache implements only the "SI" part of the MESI protocol, because the
instruction cache is not writable.

The instruction cache monitors changes in the data cache to maintain consistency between
the caches when instructions are modified. For more information, refer to Section 18.2.3.

18.2. OPERATION OF THE INTERNAL CACHES
Software controls the operating mode of the caches by setting or clearing the CD and NW
bits of CR0. These bits after RESET are set to one (cache disabled). Software can leave
caching disabled, or software can enable caching by updating the CD bit and NW bits of
CR0.
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18.2.1. Cache Control Bits

Table 18-2 summarizes the modes controlled by the CD and NW bits of CR0.   For normal
operation and highest performance, these bits should be set to zero.   To completely disable
the cache, the following two steps must be performed:

1. CD and NW must be set to 1.

2. The caches must be flushed.

If the cache is not flushed, cache hits on reads will still occur and data will be read from the
cache. In addition, the cache must be flushed after being disabled to prevent any
inconsistencies with main memory.

Table 18-2.  Cache Operating Modes

CD NW Purpose/Description

0 0 Normal highest performance cache operation.

Read hits access the cache.
Read misses may cause replacement.
Write hits update the cache.
Only writes to shared lines and write misses appear externally.
Write hits can change shared lines to exclusive under control of WB/WT#.
Invalidation is allowed.

0 1 Invalid setting.

A general-protection exception with an error code of zero is generated.

1 0 Cache disabled.  Memory  consistency maintained.  Existing contents
locked in  cache.

Read hits access the cache.
Read misses do not cause replacement.
Write hits update cache.
Only write hits to shared lines and write misses update memory.
Write hits can change shared lines to exclusive under control of WB/WT#.
Invalidation is allowed.

1 1 Cache disabled.  Memory consistency not maintained.

Read hits access the cache.
Read misses do not cause replacement.
Write hits update cache but not memory.
Write hits change exclusive lines to modified.
Shared lines remain shared after write hit.
Write misses access memory.
Invalidation is inhibited.

18.2.2. Cache Management Instructions
The INVD and WBINVD instructions are used to invalidate the contents of the internal and
external caches. The INVD instruction invalidates all internal (data and instruction) cache
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entries and generates a special bus cycle which indicates that external caches also should be
invalidated. (The response of external hardware to receiving a cache invalidation bus cycle is
dependent on system implementation.) INVD should be used with care. It does not writeback
modified cache lines; therefore, it can cause the data cache to become inconsistent with other
memories in the system.  Unless there is a specific requirement or benefit to invalidate a
cache without writing back the modified lines (i.e., testing or fault recovery where cache
coherency with main memory is not a concern), software should use the WBINVD
instruction.

The WBINVD instruction first writes back any modified lines in the data cache, then
invalidates the contents of its instruction and data caches. It ensures that cache coherency
with main memory will be maintained regardless of system configuration (i.e., writethrough
or writeback).  Following this, it generates special bus cycles to indicate that external caches
should also writeback modified data and invalidate their contents.

18.2.3. Self-Modifying Code
Unlike the Intel486 microprocessor, the Pentium microprocessor has separate caches for data
and instructions. In spite of this difference in implementation, the Pentium microprocessor
supports updates to instructions in a manner that is completely compatible with the Intel486
microprocessor. See section 23.2.17.5 for further clarification.

A write to an instruction that is in the instruction cache causes the instruction to be
invalidated in the instruction cache. This check is based on the physical address of the
instruction. In addition, the Pentium microprocessor checks whether a write may modify an
instruction that has been prefetched for execution; if so, it invalidates the prefetch queue.
This check is based on the linear address of the instruction.

Because the linear address of the write is checked against the linear address of the
instructions that have been prefetched, special care must be taken for self-modifying code to
work correctly when the physical addresses of the instruction and the written data are the
same, but the linear addresses differ. In such cases, it is necessary to execute a serializing
operation after the write and before executing the modified instruction. See the section on
serializing operations below for more information. (Note that the check on linear addresses
described above is not in practice a concern for compatibility. Applications that include self-
modifying code use the same linear address for modifying and fetching the instruction.
Systems software, such as a debugger, that might possibly modify an instruction using a
different linear address than that used to fetch the instruction, will execute a serializing
operation, such as IRET, before the modified instruction is executed.)

18.3. PAGE-LEVEL CACHE MANAGEMENT
When paging is enabled, two bits in entries of the page directory and second-level page
tables are used to manage the caching of pages and to drive processor output pins. (These bits
are reserved on Intel386 processors.)
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The PCD and PWT bits control caching on a page-by-page basis. The PCD bit (page-level
cache disable) affects the operation of the internal cache. Both the PCD bit and the PWT bit
(page-level writethrough) drive processor output pins (called PCD and PWT) for controlling
external caches. The treatment of these signals by external hardware depends on system
design; for example, some hardware systems may control the caching of pages by decoding
some of the high address bits.

There are three potential sources of the bits used to drive the PCD and PWT outputs of the
processor: the CR3 register, the page directory, and the second-level page tables. The
processor outputs are driven by the CR3 register for bus cycles where paging is not used to
generate the address, such as the loading of an entry in the page directory. The outputs are
driven by a page directory entry when an entry from a second-level page table is accessed.
The outputs are driven by a second-level page table entry when instructions or data in
memory are accessed.  When paging is disabled, these bits are ignored (that is, the CPU
assumes PCD=1 and PWT=1).  See Chapter 9 for descriptions of the PCD and PWT bits in
CR3.

18.3.1. PCD Bit
When the PCD bit of a page table entry is set, caching of data from the page is disabled, even
if hardware requests caching by asserting the KEN# input. When the PCD bit is clear,
caching may be requested by hardware on a cycle-by-cycle basis.

The ability to disable caching is useful for pages which contain memory-mapped I/O ports
and for pages which do not provide a performance benefit when cached, such as initialization
software.

Regardless of the page-table entries, the processor ignores the PCD output (i.e., assumes
PCD=1) whenever the CD (Cache Disable) bit in CR0 is set.

18.3.2. PWT Bit
When a page table entry has a set PWT bit (bit position 3), a writethrough caching policy is
specified for data in the corresponding page. Clearing the PWT bit on the Pentium
microprocessor enables a writeback policy for the page. External caches can also use the
output signal driven by the PWT bit to control update policy on a page-by-page basis.

18.4. ADDRESS TRANSLATION CACHES
Refer to Chapter 11 for information on the address translation caches (TLBs).
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18.5. CACHE REPLACEMENT ALGORITHM
The data, instruction caches use a least-recently-used (LRU) algorithm to choose which line
of a set is overwritten when a miss causes a line fill and all lines in the set contain valid data.
The address-translation cache uses a psuedo-LRU algorithm.  These algorithms are
controlled by LRU bits in the tags of each cache. The states of the valid bits take precedence
over the LRU bits. If any of the lines in the set is invalid, an invalid line is used for the line
fill, and the LRU bits are not used. RESET initializes the valid bits so that two Pentium
processors executing the same code on identical boards have exactly the same series of cache
hits, misses, and replacements.

18.6. EXECUTION PIPELINING AND PAIRING
The Pentium processor achieves approximately two times the integer execution speed of the
Intel486 microprocessor through a superscalar architecture capable of executing two
instructions in parallel. Two pipelines operate in parallel allowing integer instructions to
execute in a single clock in each pipeline. The allocation of instructions to a pipeline is
performed automatically by the processor. The processor preserves the appearance of strict
sequential execution even in the presence of interrupts and exceptions.

18.7. WRITE BUFFERS
The Pentium processor utilizes write buffers for memory operands and for each pipeline.
Write buffers improve performance by allowing the processor to proceed with the next pair
of instructions even though one of the current instructions writes to memory when the bus is
busy. The write buffers can be filled in parallel when intructions in both pipes write to
memory during the same clock; however, they are always emptied in the same sequence in
which the write requests were generated by software.

In general, the existence of these buffers is transparent to programmers. The Pentium
processor ensures that memory read operations are never reordered ahead of prior pending
write operations; however, for compatibility with future processors, programmers should
follow the ordering guidelines presented in Chapter 19. Refer also to Chapter 15 for
information about the interaction of I/O instructions with the memory write buffers.

18.8. SERIALIZING INSTRUCTIONS
After executing certain instructions the Pentium processor serializes instruction execution.
This means that any modifications to flags, registers, and memory for previous instructions
are completed before the next instruction is fetched and executed. For example, when a new
value is loaded into CR0 to enable protected mode, the processor always fetches the next
instruction with protection enabled.

When the processor serializes instruction execution, it ensures that it has completed any
modifications to memory, including flushing any internally buffered stores; it then waits for
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the EWBE# pin to go active before fetching and executing the next instruction. Pentium
processor systems can use the EWBE# pin to indicate that a store is pending externally. In
this manner, a system designer can ensure that all externally pending stores are complete
before the processor begins to fetch and execute the next instruction.

The processor serializes instruction execution after executing any of the following
instructions:

CPUID

INVD

INVLPG

IRET

IRETD

LGDT

LIDT

LLDT

LTR

MOV to Debug Register

MOV to Control Register

RSM

WBINVD

WRMSR

The CPUID instruction can be executed at any privilege level to serialize instruction
execution.

With regard to serialization, note that:

1. The Pentium processor does not generally writeback the contents of modified data in its
data cache to external memory when it serializes instruction execution. Software can
force modified data to be written back by executing the instruction WBINVD.

2. Whenever an instruction is executed to enable/disable paging (that is, change the PG bit
of CR0), this instruction must be followed with a jump.  The instruction at the target of
the branch is fetched with the new value of PG (i.e., paging enabled/disabled), however,
the jump instruction itself is fetched with the previous value of PG. Intel386, Intel486
and Pentium processors have slightly different requirements in this regard. See
Chapter 23 for more information. In all other respects a MOV to CR0 that changes PG is
serializing. Any MOV to CR0 that does not change PG is completely serializing.

3. Whenever an instruction is executed to change the contents of CR3 while paging is
enabled, the next instruction is fetched using the translation tables that correspond to the
new value of CR3. Therefore the next instruction and the sequentially following
instructions should have a mapping based upon the new value of CR3.

4. The Pentium processor implements branch-prediction techniques to improve
performance by prefetching the destination of a branch instruction before the branch
instruction is executed. Consequently, instruction execution is not generally serialized
when a branch instruction is executed.

5. The I/O instructions are not completely serializing; the processor does not wait for these
instructions to complete before it prefetches the next instruction. However, they do have
some serializing properties that cause them to function in a manner that is compatible
with processor generations prior to the Pentium processor. Refer to Chapter 15 for more
information.
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CHAPTER 19
MULTIPROCESSING

The Pentium processor supports multiprocessing both on the processor bus and on a memory
bus via secondary cache units. Due to the high bandwidth demands of multiprocessor systems
Intel recommends the use of secondary cache.

Multiprocessors can increase particular aspects of system performance. For example, a
computer graphics system may use an i860 CPU for fast rendering of raster images, while a
Pentium processor is used to support a standard operating system, such as UNIX, IBM
OS/2*, or Microsoft Windows*. Or alternatively, multiple Pentium microprocessors can be
used in a symmetric system architecture with an operating system such as multiprocessor
UNIX. Multiprocessing systems are sensitive to the following design issues:

• Maintaining cache consistency—When one processor accesses data cached in another
processor, it must not receive incorrect data. If it modifies data, all other processors
which access that data must receive the modified data.

• Reliable communication—Processors need to be able to communicate with each other in
a way which eliminates interference when more than one processor simultaneously
accesses the same area in memory.

• Write ordering—In some circumstances, it is important that memory writes be observed
externally in precisely the same order as programmed.

Cache consistency is discussed in Chapter 18. Reliable communication and write ordering
are discussed in the following sections.

19.1. LOCKED BUS CYCLES
While the system architecture of multiprocessor systems varies greatly, they generally have a
need for reliable communication with memory. A processor in the act of updating the
Accessed bit of a segment descriptor, for example, should reject other attempts to update the
descriptor until the operation is complete.

It also is necessary to have reliable communication with other processors. Bus masters need
to exchange data in a reliable way. For example, a bit in memory may be shared by several
bus masters for use as a signal that some resource, such as a peripheral device, is idle. A bus
master may test this bit, see that the resource is free, and change the state of the bit. The state
would indicate to other potential bus masters that the resource is in use. A problem could
arise if another bus master reads the bit between the time the first bus master reads the bit
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and the time the state of the bit is changed. This condition would indicate to both potential
bus masters that the resource is free. They may interfere with each other as they both attempt
to use the resource. The processor prevents this problem through support of locked bus
cycles; requests for control of the bus are ignored during locked cycles.

The Pentium processor protects the integrity of certain critical memory operations by
asserting an output signal called LOCK#. It is the responsibility of the hardware designer to
use these signals to control memory access among processors.

The processor automatically asserts one of these signals during certain critical memory
operations. Software can specify which other memory operations need to have LOCK#
asserted.

The features of the general-purpose multiprocessing interface include:

• The LOCK# signal, which appears on a pin of the processor.

• The LOCK instruction prefix, which allows software to assert LOCK#.

• Automatic assertion of LOCK# for some kinds of memory operations.

19.1.1. LOCK Prefix and the LOCK# Signal
The LOCK prefix and its bus signal only should be used to prevent other bus masters from
interrupting a data movement operation. The LOCK prefix can be used with the following
Pentium processor instructions when they modify memory. An invalid-opcode exception
results from using the LOCK prefix before any other instruction, or with these instructions
when no write operation is made to memory (i.e., when the destination operand is in a
register).

• Bit test and change: the BTS, BTR, and BTC instructions.

• Exchange: the XCHG, XADD, CMPXCHG, and CMPXCHG8B instructions (no LOCK
prefix is needed for the XCHG instruction).

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and XOR
instructions.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may lock a larger memory area. For example, typical 8086 and
80286 configurations lock the entire physical memory space.

Semaphores (shared memory used for signalling between multiple processors) should be
accessed using identical address and length. For example, if one processor accesses a
semaphore using word access, other processors should not access the semaphore using byte
access.

The integrity of the lock is not affected by the alignment of the memory field. The LOCK#
signal is asserted for as many bus cycles as necessary to update the entire operand.
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19.1.2. Automatic Locking
There are some critical memory operations for which the processor automatically asserts the
LOCK# signal. These operations are:

• Acknowledging interrupts. After an interrupt request, the interrupt controller uses the
data bus to send the interrupt vector of the source of the interrupt to the processor. The
processor asserts LOCK# to ensure no other data appears on the data bus during this
time.

• Setting the Busy bit of a TSS descriptor. The processor tests and sets the Busy bit in the
Type field of the TSS descriptor when switching to a task. To ensure that two different
processors do not switch to the same task simultaneously, the processor asserts the
LOCK# signal while testing and setting this bit.

• Updating segment descriptors. When loading a segment descriptor, the processor will set
the Accessed bit if the bit is clear. During this operation, the processor asserts LOCK# so
the descriptor will not be modified by another processor while it is being updated. For
this action to be effective, operating-system procedures which update descriptors should
use the following steps:

 Use a locked operation when updating the access-rights byte to mark the descriptor
not-present, and specify a value for the Type field which indicates the descriptor is
being updated.

 Update the fields of the descriptor. (This may require several memory accesses;
therefore, LOCK cannot be used.)

 Use a locked operation when updating the access-rights byte to mark the descriptor
as valid and present.

Note that the Intel386 DX processor always updates the Accessed bit, whether it is clear
or not. The Intel486 and Pentium processors only update the Accessed bit if it is not
already set.

• Updating page-directory and page-table entries. When updating page-directory and page-
table entries, the processor uses locked cycles to set the Accessed and Dirty bits.

• Executing an XCHG instruction. The Pentium processor always asserts LOCK# during
an XCHG instruction which references memory (even if the LOCK prefix is not used).

19.2. MEMORY ACCESS ORDERING
The Pentium microprocessor is a strongly ordered machine. "Strongly ordered" means that, in
spite of parallel instruction execution, internal and external cache inquiry writebacks, and
write buffering, the order in which writes are programmed is the order in which they are
observed externally. In the case of I/O operations, both reads and writes always appear in
programmed order. However, to optimize performance, the Pentium processor allows
memory reads to be reordered ahead of buffered writes in most situations. Internally, CPU
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reads (cache hits) can be reordered around buffered writes. Memory reordering does not
occur externally at the pins, reads (cache miss) and writes appear in-order.

Strong ordering helps software designed for execution by a uniprocessor system work
correctly in a multiprocessor or multimaster environment. Such software does not necessarily
consider the possible effect of the reordering of memory writes. Strong ordering, however,
exacts a performance penalty and therefore may not be implemented in future processors.

Software intended to operate correctly in future, high-performance, weakly-ordered systems
should not depend on the strongly ordered properties of the Pentium microprocessor. Instead,
it should ensure that those accesses to shared variables which are intended to control
concurrent execution among processors are explicitly ordered through the use of appropriate
ordering operations. The ordering operations available on the Pentium microprocessor
include the locking operations discussed in section 19.1. and the serializing operations
discussed in Chapter 18.

19.3. PENTIUM PROCESSOR (735\90, 815\100, 1000\120,
1110\133) INTEGRATED APIC

APIC  IS SUPPORTED ONLY ON PENTIUM PROCESSOR (735\90, 815\100,
1000\120, 1110\133) AND  FUTURE PROLIFERATIONS AND UPGRADES.

This section describes the Pentium Processor (735\90, 815\100, 1000\120, 1110\133)
Advanced Programmable Interrupt Controller (APIC). Within the Pentium processor family,
the Pentium Processor (735\90, 815\100, 1000\120, 1110\133) is the first microprocessor to
provide an integrated APIC. The Pentium Processor (735\90, 815\100, 1000\120, 1110\133)
APIC is software backward compatible with 82489DX, except for the differences described
later in the chapter. The main features of the APIC architecture include:

• Multiprocessor interrupt management using static or dynamic distribution schemes.

• Dynamic distribution via interrupt routing to lowest priority processors.

• Inter-processor interrupts.

• Variety of addressing schemes.

• System-wide control functions such as NMI, INIT, System Management Interrupt (SMI)
and Startup-Interprocessor Interrupt.

• 8259A-compatible mode.

• 32-bit counter generating one-shot or periodic interrupts.

For multiprocessor (MP) systems, the APIC architecture would generally have a decen-
tralized implementation, consisting of two main components: a Local APIC and an I/O APIC.
See Figure 19-1. The I/O APIC is part of the system chipset. It is responsible for capturing
interrupts injected by I/O devices, and distributing them among Local APICs via the APIC
Bus. The Local APICs control dispatching of interrupts to their corresponding processors.
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Figure 19-1.  Local APIC Within a Pentium Processor (735\90, 815\100, 1000\120,
1110\133)-Based MP System

The I/O APIC enables individual interrupt pins to be programmed by specifying the
following information: a vector and its implied priority, the sensitivity to be recognized as an
edge or as a level trigger, and the set of processors (one or more) to service the interrupt.

The Local APIC contains the necessary intelligence to determine whether it should accept
interrupts broadcast on the APIC bus. The Local APIC provides functions such as queuing,
nesting and masking of interrupts. It handles interrupt delivery protocol with its local
processor and accesses to APIC registers, and also manages inter-processor interrupts and
remote APIC register reads. In addition, each Local APIC includes a built-in Timer and local
interrupt pins on which processor-specific interrupts can be injected. The local APIC can be
disabled in hardware, or in software, and used in conjunction with a standard 8259A-style
interrupt controller, as explained in Chapter 19 of Pentium® Processor Family User's
Manual, Volume I..

NOTE

The focus of this chapter is on the Local APIC, and its implementation in
the Pentium Processor (735\90, 815\100, 1000\120, 1110\133). Contact
your chip set vendor for the information on I/O APIC.

In the register descriptions throughout this chapter, fields containing r’s or <RESERVED> or
<reserved> are reserved by the architecture.  These bits are read as zeroes, unless specified
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otherwise. For compatibility with future APIC implementations, the software must assign the
last read values to all reserved bits when written.

19.3.1. Interrupt Control Mechanism
The following subsections  present the major Local APIC elements and their role in the
interrupt control mechanism. The description is built around APIC registers and functions
associated with them.

19.3.1.1. VALID INTERRUPTS

The APIC architecture supports 240 distinct vectors in the range of 16 to 255. Interrupt
priority is implied by its vector, i.e.

priority = [Vector / 16]

where 1 is the lowest priority and 15 is the highest. Vectors 16 through 31 are reserved for
exclusive use by the Pentium Processor (735\90, 815\100, 1000\120, 1110\133). The
remaining vectors are for general use. The Pentium Processor (735\90, 815\100, 1000\120,
1110\133) Local APIC includes a 2-deep interrupt FIFO for each priority level. For best
performance, the software is recommended to allocate up to two interrupt vectors belonging
to the same priority.

19.3.1.2. INTERRUPT SOURCES

Interrupts to the Local APIC arrive in one of the following manners:

• On local interrupt pins, from locally connected devices.

• As a bus message from the I/O APIC, originated by I/O devices, or

• As a bus message from another local APIC, originated as an interprocessor interrupt.

• Generated internally, by the local APIC programmable timer or the error register.

• As a software-generated self-interrupt.

The local APIC serves the I/O APIC and interprocessor interrupts according to the
information included in the bus message (such as vector, trigger type, interrupt destination,
etc.). The APIC Local pins and the timer interrupts interpretation is programmed via a
structure called Local Vector Table (LVT). To generate an interprocessor interrupt, the
source processor programs its Interrupt Command Register (ICR). The programming of the
ICR causes generation of a corresponding interrupt bus message. The LVT and the ICR
programming is explained in detail in sections 19.3.1.7 and 19.3.1.8, respectively.

19.3.1.3. BUS ARBITRATION

Being connected on a common bus, the local and the I/O APICs have to arbitrate to get a
grant for sending a message on the bus. Logically, the bus is a wired-OR connection,
enabling more than one APIC to start sending its message. Each APIC issues its arbitration
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priority at the beginning of each message, and one winner is collectively selected. At any
given time the arbitration priority (kept in a software-transparent 4-bit Arb ID register) is a
unique value for every APIC agent. It is initially set after Reset. The arbitration priority is
dynamically modified after each successfully transmitted message to preserve fairness.

Section 19.3.2 describes the existing arbitration protocols and bus message formats, while
Section 19.3.1.8 includes a definition of an INIT Level De-assert message, used to
resynchronize all APIC agents Arb IDs. Note that except for start-up and remote-read
interprocessor interrupts (defined below), all bus messages failing during delivery are
automatically retried. The software should be aware of situations in which interrupt messages
are being "ignored" by disabled or nonexistent target APIC agents, and messages are resent
again and again.

19.3.1.4. THE LOCAL APIC STRUCTURE

Figure 19-2 depicts the Local APIC block diagram. Software interacts with the Local APIC
by reading and writing its registers. The registers are memory-mapped, and for each
processor they have an identical address space of 4Kbytes starting at address 0FEE00000
(hex). The register address allocation scheme is shown in table 19-6. Register offsets are
aligned on 128-bit boundaries. All registers are accessed using 32-bit loads and stores. Wider
registers (64-bit or 256-bit) are defined and accessed as independent multiple 32-bit registers.
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Figure 19-2.  Local APIC Structure
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19.3.1.5. INTERRUPT DESTINATION AND APIC ID

The destination of an interrupt can be one, all or a subset of processors in the system. The
sender specifies the destination of an interrupt in one of two destination modes: physical or
logical.

Physical Destination Mode

In the physical mode, the destination processor is specified by its APIC ID. This ID is
matched against the APIC actual physical ID stored in the Local APIC ID register. See
Figure 19-3. A single destination (ID = 0 through 14) or a broadcast to all (ID = 15) can be
specified in the physical mode. Note that in this mode, the Pentium Processor (735\90,
815\100) APIC supports up to 15 agents. The APIC ID register is loaded at power up by
sampling the values of four input pins. The ID portion can be read and modified by software.

31 27 24 23 0

APIC
ID

r r r r <RESERVED>

PP0086

Address: 0FEE0_0020

Value after Reset: 0000_0000

Figure 19-3.  Local APIC ID Register

Logical Destination Mode

In the logical mode, message destinations are specified using an 8-bit message destination
address (MDA). See section 19.3.2.2 for description of bus message formats. The MDA is
compared against an 8-bit Logical APIC ID field of the APIC Logical Destination Register
(LDR). See Figure 19-4.
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31 24  23 0

Logical APIC ID <RESERVED>

PP0087

Address: 0FEE0_00D0

Value after Reset: 0000_0000

Figure 19-4.  Logical Destination Register (LDR)

Destination Format Register (DFR) defines the interpretation of the logical destination
information. See Figure 19-5. The DFR and the LDR can be programmed to achieve a Flat
Model or a Cluster Model interrupt delivery modes.

31 28 0

Model <RESERVED>    All 1's

PP0088

Address: FEE0_00E0

Value After Reset: 0FFFF_FFFF

Figure 19-5.  Destination Format Register (DFR)

Flat Model

For this model, bits 28 through 31 of the DFR must be programmed to 1111. The MDA is
interpreted as a decoded address. This scheme allows the specification of arbitrary groups of
APICs simply by setting the member’s bit to one in the corresponding LDR. In the Flat
Model, up to 8 local APIC units can coexist in the system. Broadcast to all units is achieved
by setting all 8 bits of the MDA to ones.

Cluster Model

For the Cluster Model, the DFR bits 28 through 31 should be programmed to 0000. There are
two basic connection schemes: flat cluster and hierarchical cluster.

Flat Cluster

In the Flat Cluster model, all clusters are connected on a single APIC bus. MDA[31-28]
contains the encoded address of the destination cluster. MDA[31-28] is compared against bits
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LDR[31-28] to determine if the Local APIC is part of the cluster. MDA[27-24] is compared
with LDR[27-24] to identify individual local APIC unit within the cluster. Arbitrary sets of
processors within a cluster can be specified by writing the target cluster address in MDA[31-
28] and setting selected bits in MDA[27-24], corresponding to the chosen members of the
cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4
processors can be specified in the message. The APIC Arb ID, however, supports only 15
agents, and hence the total number of processors supported in this mode is limited to 15.
Broadcast to all APICs is achieved by setting all destination bits to one. This guarantees a
match on all clusters, and selects all APICs in each cluster.

Hierarchical Network

An arbitrary hierarchical network can be created by connecting different flat clusters via
independent APIC buses. This scheme requires a cluster manager within each cluster,
responsible for handling message passing between APIC buses. One cluster contains up to 4
agents. Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC
agents. Note that hierarchical APIC networks requires a special cluster manager device,
which is not part of the local or the I/O APIC units.

19.3.1.6. INTERRUPT DISTRIBUTION MODES

The APIC supports two schemes for selecting the destination processor: Static and Dynamic.
The static scheme is used to access a specific processor in the network. The dynamic scheme
enables the incoming interrupts to be assigned each time to a different, generally a less busy
processor. The distribution scheme can be programmed in the LVT for local interrupt
delivery, or the ICR for bus messages.

Static Scheme

Under this scheme, the interrupt is unconditionally delivered to all local APICs that match
the destination information supplied with the interrupt. The following are delivery modes that
fall into the static distribution category: Fixed, SMI, NMI, ExtInt, Remote Read and StartUp.

Dynamic Scheme

Under the dynamic scheme category, there is only one delivery mode called Lowest Priority.
From all processors listed in the destination, the processor selected is the one whose current
arbitration priority is the lowest. The latter is specified in the Arbitration Priority Register
(APR), defined later in this chapter. If more than one processor share the lowest priority, the
processor with the highest Arb ID (a unique value) is selected.

In the lowest priority mode, if there exists a focus processor, it will accept the interrupt,
regardless of its priority. A processor is said to be a focus of an interrupt if it is currently
servicing that interrupt, or if it has a pending request for that interrupt.
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19.3.1.7. LOCAL VECTOR TABLE

The Local APIC contains a Local Vector Table (LVT), specifying interrupt delivery and
status information for the locally interrupts. The information includes: the interrupt
associated vector, delivery mode, status bits and other data as shown in Figure 19-6. The
LVT incorporates four 32-bit entries. Entry 0 corresponds to the timer, entries 1 and 2 belong
to the two local interrupt pins, and entry 3 is for the error interrupt.

Timer <Reserved>

Timer Mode
0: One-Shot
1: Periodic

Mask
0: Not Masked
1: Masked TM

0 Edge
1 Level

Vector

Vector

Vector

Vector

r

r

31

LINT0

LINT1

ERROR

16 15 13 12 11
Address: 0FEE0_0350
Address: 0FEE0_0360
Address: 0FEE0_0370
Value after Reset: 0001_0000

Address: 0FEEE0_0320
Value after Reset: 00010000

Delivery Mode
000 Fixed
100 NMI
111 ExtINT
All other combinations
are <Reserved>

10 8 7 0

Interrupt Input
Pin Polarity

Delivery
Status

Remote
IRR

0 Idle
1 Send
   Pending

31 18 17 16 15 12 7 0

PP0089

<Reserved> <Reserved>

<Reserved>

<Reserved>

<Reserved> <Reserved> <Reserved>

Figure 19-6.  Local Vector Table (LVT)
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• VECTOR

Interrupt vector number.

• DELIVERY MODE

This 3-bit field is defined only for the Local Interrupt entries 1 and 2. The timer and the
Error Status Register (ESR) generate only edge triggered maskable interrupts to the local
processor. The delivery Mode field does not exist for the timer and error interrupts. Note
that certain delivery modes will only operate as intended when used in conjunction with
a specific Trigger Mode.

000 (Fixed): deliver the interrupt, received on the local interrupt pin, to the processor as
specified in the corresponding LVT entry. The Trigger Mode can be edge or level. Note,
if the Pentium Processor (735\90, 815\100, 1000\120, 1110\133) is not used in
conjunction with an I/O APIC, the fixed delivery mode can be programmed for an edge-
triggered interrupt only. This restriction may be relaxed in future implementations.

100 (NMI):  deliver the interrupt, received on the local interrupt pin, to the processor as
an NMI interrupt. The vector information is ignored. The NMI interrupt is treated as
edge-triggered, even if programmed otherwise. Note that the NMI may be masked. It is
the software's responsibility to program the LVT mask bit according to the desired
behavior of NMI.

111 (ExtINT): deliver the interrupt, received on the local interrupt pin, to the processor
and respond as if the interrupt originated in an externally connected (8259A-compatible)
interrupt controller. A special INTA bus cycle corresponding to ExtINT, is routed to the
external controller. The latter is expected to supply the vector information. “ExtINT”
mode requires an edge-triggered interrupt. The APIC architecture supports only one
ExtINT source in a system.

• DELIVERY STATUS

This is a 1-bit read-only field holding the current status of interrupt delivery. Two states
are defined:

0 (Idle): There is currently no activity for this interrupt, or the previous
interrupt from this source has been accepted.

1 (Send Pending): Indicates that the interrupt has been injected, but the APIC has not
yet completely  accepted it.

• INTERRUPT INPUT PIN POLARITY

This bit specifies the polarity of the corresponding interrupt pin. A value of 0 means the
signal is active-high and a value of 1 means the signal is active-low.

• REMOTE Interrupt Request Register (IRR) Bit

This bit is used for level triggered interrupts only, and its meaning is undefined for edge
triggered interrupts. For level triggered interrupts, the bit is set when the  logic of the
Local APIC accepts the interrupt. The remote IRR bit is reset when an EOI command is
received from the processor.
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• TRIGGER MODE

0: edge sensitive,

1: level sensitive.

Only the local interrupt pins can be programmed as edge or level triggered. The timer
and error interrupts are always treated as edge triggered.

• MASK

0: enables injection of the interrupt,

1: inhibits injection of the interrupt.

• TIMER MODE

0: one-shot, 1: periodic. The timer is described in section 19.3.4.

19.3.1.8. INTER-PROCESSOR AND SELF INTERRUPTS

A processor generates inter-processor interrupts by writing into the Interrupt Command
Register (ICR) of its local APIC. See Figure 19-7.
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<Reserved> Vector

Dest. Shorthand
00: Dest Field
01: Self
10: All Incl. Self
11: All Excl. Self

Delivery Mode
000 Fixed
001 Lowest Priority
010 SMI
011 Remote Read
100 NMI
101 INIT
110 Start Up
111 <Reserved>

Destination Mode
0 Physical
1 Logical

Delivery Status
0 Idle
1 Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0 Edge
1 Level

Remote Read Status
00 Invalid
01 In Progress
10 Valid
11 <Reserved>

32

<Reserved>

5663

Destination Field

Address: FEE0_0310
Value after Reset: 0

PP0090

r

Figure 19-7.  Interrupt Command Register (ICR)
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The processor may use the ICR for self interrupts or for interrupting other processors (e.g., to
forward device interrupts originally accepted by it to other processors for service). In
addition, special inter-processor interrupts (IPI) such as the Start-Up message, can be
delivered using the ICR mechanism. ICR-based interrupts are treated as edge triggered even
if programmed otherwise.

All fields of the ICR are read-write by software with the exception of the Delivery Status and
Remote Read Status fields which are read-only. Writing to the 32-bit word that contains the
interrupt vector causes the interrupt message to be sent. The ICR consists of the following
fields.

• VECTOR

The vector identifying the interrupt being sent. If the Delivery Mode is “Remote Read”,
then the Vector field contains bits 11 through 4 (8 bits) of the register address to be read
from the remote Local APIC unit. The Local APIC register addresses are summarized in
Table 19-6.

• DELIVERY MODE

The Delivery Mode is a 3-bit field that specifies how the APICs listed in the destination
field should act upon reception of the interrupt. Note that all interprocessor interrupts
behave as edge triggered interrupts (except for INIT Level De-Assert message) even if
they are programmed as level triggered interrupts.

000 (Fixed): Deliver the interrupt to all processors listed in the destination field
according to the information provided in the ICR. The fixed interrupt is treated as an
edge-triggered interrupt even if programmed otherwise.

001 (Lowest Priority): As above, except that the interrupt is delivered to the processor
executing at the lowest priority among the set of processors listed in the destination.

010 & Vector Field = 00(h) (SMI): System Management Interrupt. Only the edge
trigger mode is allowed. The vector field must be programmed to zero.

011 (Remote Read): Remote read interrupt is a request to a remote local APIC unit to
send the value of one of its registers over the APIC bus. As explained above, the register
is selected by setting its partial address (bits 11 through 4 of the register address) into the
Vector field of the ICR. The register value is latched by the sending APIC and stored in
the Remote Register where it can be read by the local processor. The Remote Read
message must be sent to only one local APIC at a time. Only valid addresses can be used
in the vector field. A value of 0FF(h) in the vector field is reserved for future use.

100 (NMI):  Deliver the interrupt as an NMI interrupt to all processors listed in the
destination field. The vector information is ignored. NMI is treated as an edge triggered
interrupt even if  programmed otherwise.

101 (INIT):   Deliver the interrupt as an INIT signal to all processors listed in the destina-
tion field. As a result, all addressed APICs will assume their INIT state. As in the case of
NMI, the vector information is ignored, and INIT is treated as an edge triggered interrupt
even if  programmed otherwise.

101 & Trigger Mode = 1 & Level Mode = 0 (INIT Level De-Assert): This special
delivery mode is used as a synchronization message to all APIC agents to set their Arb
IDs by the values of their APIC IDs. Note that the INIT interrupt is sent to all agents,
regardless of the destination field value. However, at least one valid destination
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processor should be specified. For future compatibility, the software is requested to use a
broadcast-to-all ("all-incl-self" shorthand, as described below).

110 (StartUp): This delivery mode is used as a special message between two processors
in the Dual-Processing configuration. For details refer to the Pentium® Processor Family
User's Manual, Volume I. The Vector information contains the start-up address for the
DP Boot-up protocol, as explained in Chapter 20 of the Pentium® Processor Family
Developer’s Manual, Volume 1. StartUp is treated as an edge triggered interrupt even if
programmed otherwise.

NOTE

Remote Read and Start-Up interrupts are not automatically retried by the
source APIC upon failure in delivery of the message. It is up to the software
to decide whether a retry is needed in the case of failure, and issue a retry
message accordingly.

• DESTINATION MODE

0: Physical

1: Logical

• DELIVERY STATUS

0 (Idle): means that there is currently no activity for this interrupt.

1 (Send Pending): indicates that the interrupt has been injected, but its delivery is tem-
porarily delayed due to APIC bus being busy or the inability of the
receiving APIC unit to accept the interrupt at that time.

• LEVEL

For INIT Level De-Assert delivery mode the level is 0. For all other modes the level is 1.

• TRIGGER MODE

This bit is used for the INIT Level De-Assert delivery mode only.

• REMOTE READ STATUS

This field indicates the status of the data contained in the Remote Read register. This
field is read-only to software. Whenever software writes to the ICR using “Remote
Read,” the Remote Read status becomes “in-progress” (waiting for the remote data to
arrive). The remote APIC is expected to respond at a specific APIC bus cycle, as
explained in section 19.3.2. If the remote APIC is unable to do so, then the Remote Read
status becomes “Invalid”. If successful, the Remote Read status becomes “Valid”.
Software should poll the status bits to determine completion and success of the remote
read message.

• DESTINATION SHORTHAND:

This field indicates whether a shorthand notation is used to specify the destination of the
interrupt and if so, which shorthand is used. Destination shorthands do not use the 8-bit
Destination field, and can be sent by software using a single write to the lower 32-bit part
of the APIC Interrupt Command Register. Shorthands are defined for the following
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cases: software self interrupt, interrupt to all processors in the system including the
sender, interrupts to all processors in the system excluding the sender.

00: (dest field) No shorthand. The destination is specified in bits 56 to 63 of the ICR.

01: (self) The current APIC is the single destination of the interrupt. This is useful for
software self interrupts. The destination field is ignored. See Table 19-7 for description
of supported modes. Note that self interrupts do not generate bus messages.

10: (all incl self) The interrupt is sent to “all” processors in the system including the
processor sending the interrupt. The APIC will broadcast a message with the destination
field set to 0F(hex).  See Table 19-7 for description of supported modes.

11: (all excl self) The interrupt is sent to “all” processors in the system with the excep-
tion of the processor sending the interrupt. The APIC will broadcast a message using the
Physical Destination Mode and destination field set to 0F(hex).

• DESTINATION

This field is only used when the Destination Shorthand is set to “Dest Field”. If  the
destination mode is physical, then  bits 56-59 contain the APIC ID. In logical mode, the
interpretation of the 8-bit Destination field depends on the DFR and LDR of the Local
APIC Units.

19.3.1.9. INTERRUPT ACCEPTANCE

Three 256-bit read-only registers are involved in the interrupt acceptance logic. See format in
Figure 19-8. The 256 bits represents the 256 possible vectors. Because vectors 0-15 are
reserved, so are bits 0-15 in these registers.

• TMR (Trigger Mode Register)

Upon acceptance of an interrupt, the corresponding TMR bit is cleared for edge triggered
interrupts and set for level interrupts. If the TMR bit is set, the local APIC sends an EOI
message to all I/O APICs as a result of software issuing an EOI command (see definition
of EOI register in section 19.3.1.9.6).

• IRR (Interrupt Request Register)

Contains the active interrupt requests that have been accepted, but not yet dispensed by
the current Local APIC. A bit in IRR is set when the APIC accepts the interrupt. The
IRR bit is cleared, and a corresponding ISR bit is set when the INTA cycle is issued.
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• ISR (In-Service Register)

Marks the interrupts that have been delivered to the processor, but have not been fully
serviced yet, as an EOI has not yet been received from the processor. The ISR reflects
the current state of the processor interrupt queue. The ISR bit for the highest priority IRR
is set during the INTA cycle. During the EOI cycle, the highest priority ISR bit is
cleared, and if the corresponding TMR bit was set, an EOI message is sent to all I/O
APICs.

 

<Reserved> IR R

I S R

T M R

2 5 5 1 6 1 5 0
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<Reserved>

<Reserved>

Addresses: See Table 19-6
Values after Reset: 0

Figure 19-8.  IRR, ISR and TMR Registers

19.3.1.9.1. Interrupt Acceptance Decision Flow Chart

The acceptance decision process is illustrated in the following simplified flow chart.
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Figure 19-9.  Interrupt Acceptance Flow Chart  for Local APIC
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Response of the Local APIC to the Start-Up IPI is explained in Pentium® Processor Family
User's Manual, Volume I.

19.3.1.9.2. Task Priority Register

Task Priority Register (TPR) provides a "priority threshold" mechanism for interrupting the
processor. Only interrupts whose priority is higher than that specified in the TPR will be
serviced. Other interrupts are recorded and are serviced as soon as the TPR value is
decreased enough to allow that. This  enables the operating system to block temporarily
specific interrupts (generally low priority) from disturbing high-priority tasks execution. The
priority threshold mechanism is not applicable for delivery modes excluding the vector
information, i.e. for ExtINT, NMI, SMI, INIT, INIT-Deassert, Start-Up and Remote Read.

The Task Priority is specified in the TPR, as illustrated in Figure 19-10. The 4 MSB of task
priority correspond to 16 interrupt priorities, while the 4 LSB correspond to the  sub-class
priority. The TPR value is generally denoted as x:y, where x is the main priority while y
provides more precision within a given priority class. When the x-value of the TPR is 15, the
APIC will not accept any interrupts.

 

3 1 8   7 0

Ta s k
Prior ity< R e s er v e d >
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Address: FEE0_0080
Value after Reset: 0

Figure 19-10.  Task Priority Register (TPR)

19.3.1.9.3. Processor Priority Register (PPR)

The Processor Priority Register (PPR) is used to determine whether a pending interrupt can
be dispensed to the processor. Its value is computed as the following.

If TPR[7:4] > ISRV[7:4] then PPR[7:0] = TPR[7:0]

else PPR[7:4] = ISRV[7:4], PPR[3:0]=0.

Where ISRV is the vector of the highest priority ISR bit set, or zero if no ISR bit is set. The
PPR format is identical to that of the TPR. The PPR address is 0FEE0_00A0, and its value
after Reset is zero.

19.3.1.9.4. Arbitration Priority Register (APR)

Arbitration Priority Register (APR) holds the current "lowest-priority" of the processor, a
value used during Lowest Priority arbitration. See section 19.3.2. The APR format is
identical to that of the TPR. The APR value is computed as the following.
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If (TPR[7:4] ≥ IRRV[7:4]) and (TPR[7:4] > ISRV[7:4]) then APR[7:0] = TPR[7:0]

else APR[7:4] = max(TPR[7:4], ISRV[7:4], IRRV[7:4]), APR[3:0]=0.

Where IRRV is the vector of the highest priority IRR bit set, or zero if no IRR bit is set. The
APR address is 0FEE0_0090H, and its value after Reset is zero.

19.3.1.9.5. Spurious Interrupt

A special situation may occur when a processor raises its Task Priority to be greater than or
equal to the level of the interrupt for which the Processor INTR signal is currently being
asserted. If at the time the INTA cycle is issued, the interrupt that was to be dispensed has
become masked (programmed by software), the Local APIC will return a spurious interrupt
vector to the processor. Dispensing the spurious interrupt vector does not affect the ISR, so
the handler for this vector should return without an EOI.

19.3.1.9.6. End-Of-Interrupt (EOI)

During the interrupt serving routine, the software should indicate acceptance of lowest-
priority, fixed, timer and error interrupts by writing an arbitrary value into its local APIC
End-Of-Interrupt (EOI) register. This is an indication for the local APIC it can issue the next
interrupt, regardless of whether the current interrupt service has been terminated or not. Note
that interrupts whose priority is higher than that currently in service, do not wait for the EOI
command corresponding to the interrupt in service.

Upon receiving end-of-interrupt, the APIC clears the highest priority bit in the ISR and
selects the next highest priority interrupt for posting to the CPU. If the terminated interrupt
was a level-triggered interrupt, the local APIC sends an end-of-interrupt message to all I/O
APICs. Note that EOI command is supplied for the above two interrupt delivery modes
regardless of the interrupt source, i.e. as a result of either the I/O APIC interrupts or those
issued on local pins or using the ICR. For future compatibility, the software is requested to
issue the end-of-interrupt command by writing a value of 00000000h into the EOI register.

 

3 1 0

A dd re ss : 0 FE E0 _0 0B 0
Value after  Reset: 0

PP0094

Figure 19-11.  EOI Register

19.3.1.10. READING REMOTE APIC REGISTERS

Local APIC registers can only be accessed by the local processor. To read a register in a
“remote” Local APIC unit, the processor writes to the ICR specifying a Delivery Mode of
“Remote Read”. The remote APIC is specified in the Destination field of the ICR. Upon
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receiving a “Remote Read,” the target APIC responds by placing a 32-bit content of the
selected register on the APIC bus. This value is read by the sending APIC and placed in its
Remote Read Register (RR), which  can then be read by software. See Figure 19-12. The RR
is software read-only, and is valid when the Delivery Status in the ICR becomes “Valid”. See
"Remote Read Status" in section 19.3.1.8.

 

3 1 0

A dd re ss : 0 FE E0 _0 0C 0
Value after  Reset: 0

PP0095

Figure 19-12.  Remote Register (RR)

19.3.1.11. LOCAL APIC STATE

All Local Units are initialized in a software disabled state after power-up. A software
disabled Local APIC unit responds only to self-interrupts and INIT, NMI, SMI, Remote Read
and Start-Up messages arriving on the APIC Bus. The operation of local APICs during the
disabled state is summarized below.

• For the above messages, the APIC behaves normally, as if fully enabled.

• Pending interrupts in the IRR and ISR registers will be held and will require masking or
handling by the CPU.

• A disabled APIC does not affect  the sending of APIC messages. It is software
responsibility to avoid ICR commands if no sending of interrupts is desired.

• Disabling an APIC does not affect the message in progress. The local APIC will
complete the reception/transmission of the current message and then enter the disabled
state.

• A disabled APIC automatically sets all mask bits in the LVT entries. Trying to reset
these bits in the local vector table will be ignored.

• A disabled APIC listens to all bus messages in order to keep its Arb ID synchronized
with the rest of the system.

19.3.1.11.1. Spurious Interrupt Vector Register

Software can enable or disable at any time the local unit by programming bit 8 of the
Spurious interrupt Vector Register (SVR).  See Figure 19-13.
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Figure 19-13.  Spurious Interrupt Vector Register (SVR)

•• Spurious Vector: The 8-bit interrupt vector is released during an INTA cycle when all
pending interrupts are masked or when no interrupt is pending. Bits 4 to 7 of the
Spurious Vector are programmable by software, and bits 0 to 3 are hardwired to logical
ones. software writes to bits 0 to 3 have no  effect.

•• Focus Processor Checking: This bit defines if the focus processor checking is enabled
during the lowest priority delivery. A value of 0 enables the focus checking mechanism,
while a value of 1 disables it.

19.3.1.11.2. Local APIC Initialization

The Local APIC has a RESET input signal connected to its processor Reset line. On Reset,
the Local APIC and its processor are initialized simultaneously. The local APIC obtains its
physical ID at the falling edge of Reset by sampling four input pins and stores this value into
the APIC ID register.

19.3.1.11.3. Local APIC State After Power-Up Reset and Init

Power-up Reset

The state of registers and state machines after a Power up Reset are as follows:

• IRR, ISR, TMR, ICR, TPR, Holding Registers, Timer Initial Count Register,  Timer
Current count register, Remote Register, LDR and Divide Configuration Register are all
reset to 0.

• Destination Format Register is reset to all ones.

• Local Vector Table entries are reset to zero except for the Mask bits. The Mask bits are
set to ones.

• Local APIC Version register is not affected.

• Local APIC ID and Arb ID registers are loaded from CPU pins.
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• All internal state machines are reset.

• APIC is software disabled. Bit 8 of the SVR is set to 0.

Initialization Reset (INIT)

INIT is a Software Reset, and is delivered as a bus message. INIT has the same effect on the
Local APIC as the power-up Reset, except that the APIC ID and Arb ID registers are not
affected. The Local APIC asserts the INIT signal to its processor which begins the
initialization process in the local APIC.

Local APIC State After INIT Deassert Message

All Local APICs, whether they are targeted or not, load their Arbitration ID register with
values from their APIC ID registers. software is recommended to use broadcast-to-all-
excluding-self destination mode when using the INIT deassert command, and at least one
APIC must appear as a target.

19.3.1.12. LOCAL APIC VERSION REGISTER

The Local APIC contains a hardwired Version Register, used for identifying the APIC ver-
sion by software. In addition, the version register specifies the size of LVT used in the
specific implementation.
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Figure 19-14.  Local APIC Version Register

•• VERSION:  The version numbers are assigned for the 82489DX and Local APIC.

0X(h) = 82489DX

1X(h) = Pentium Processor (735\90, 815\100, 1000\120, 1110\133) Local APIC

20 - 0FFh = Reserved

•• Max LVT Entry:  Shows the number of the highest order LVT entry. For the Pentium
Processor (735\90, 815\100), having 4 entries LVT, the Max LVT number is 3.
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19.3.2. APIC Bus And Inter-APIC Communication Protocol
All I/O and local APIC units communicate via a 3-wire inter-APIC bus. Two of the wires are
open-drain (wired-OR) and are used for data transmission, and one wire is a clock. The bus
and its messages are invisible to software, and may change in future implementations
without having any effect on software compatibility. Note that electrical values of the bus
are VL for logical one and VH for logical zero.

19.3.2.1. BUS ARBITRATION

Because only one message can be delivered at any time on the APIC bus, the APIC agents
employ a "rotating priority" arbitration protocol to gain a grant for message delivery. One or
more APIC agents may start sending their messages simultaneously. At the beginning of
every message, each agent presents the type of the message it is willing to transmit and the
agent's current arbitration priority (taken from internal Arb ID register) on the APIC bus.
This information is used for arbitration. After each arbitration  cycle, only potential winners
keep driving the bus. By the time all arbitration cycles are completed, there will be only one
agent left driving the bus (see message-specific information below). Once a winner is
selected, it is granted exclusive use of the bus, and will continue driving the bus sending its
actual message.

After each successfully transmitted message all agents increase their Arb ID (a 4-bit value)
by one. The previous winner (i.e., the one that has just successfully transmitted its message)
assumes a priority of zero (lowest). An agent whose Arb ID was 15 (highest) during
arbitration, but did not send a message, adopts the previous winner Arb ID, incremented by
one.

Note that the arbitration protocol described above is slightly different if one of the APIC
agents issues a special message called End-Of-Interrupt (EOI), defined below. This high-
priority message is granted the bus regardless of its agent Arb ID, unless more than one agent
issues an EOI message simultaneously. In the latter case, EOI messages arbitrate using their
Arb IDs.

Lowest-priority (LP) arbitration utilizes the APR appended with a 4-bit updated Arb ID to
break ties if there are multiple APICs executing at the lowest priority. All 8 bits of the APR
are used for the LP arbitration. Note that Arb ID is initialized after Reset to the value of
APIC ID. Also, the INIT-deassert command resynchronizes the Arb-ID by setting it with
APIC ID value.

19.3.2.2. BUS MESSAGE FORMATS

There are 4 types of messages: 14-cycle EOI message, 21-cycle Short message, 34-cycle
Non-Focused Lowest Priority message and 39-cycle Remote Read message. The purpose of
each type of message and its format are described below.



EE MULTIPROCESSING

19-27

EOI Message

The EOI message is an indication the local APIC sends to the I/O APIC that a level triggered
interrupt has been accepted by the processor. This, in turn, is a result of software writing into
the EOI register of the Local APIC.

Table 19-1.  14-Cycle EOI Message

Cycle Bit1 Bit0

1: 1 1 11 = EOI

2: ArbID3 0 Arbitration ID bits 3 through 0

3: ArbID2 0

4: ArbID1 0

5: ArbID0 0

6: V7 V6 Interrupt vector V7 - V0

7: V5 V4

8: V3 V2

9: V1 V0

10: C C Checksum for cycles 6 - 9

11: 0 0

12: A A Status Cycle 0

13: A1 A1 Status Cycle 1

14: 0 0

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit
(Bit1:Bit0) logical data values. The carry out of all but the last addition is added to the sum.
If any APIC computes a different checksum than the one appearing on the bus in cycle 10, it
signals an error, driving 11 on the APIC bus during cycle 12. In this case, the APICs
disregard the message. The sending APIC will receive an appropriate error indication (see
section 19.3.3), and will resend the message. The status cycles are defined in Table 19-5.

Short Message

Short messages are used for delivery of Fixed, NMI, SMI, INIT, StartUp, ExtINT and Lowest
Priority with Focus processor interrupts.
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Table 19-2.  21-Cycle Short Message

Cycle Bit1 Bit0

1: 0 1 0 1 = normal

2: ArbID3 0 Arbitration ID bits 3 through 0

3: ArbID2 0

4: ArbID1 0

5: ArbID0 0

6: DM M2 DM = Destination Mode

7: M1 M0 M2-M0 = Delivery mode

8: L TM L = Level, TM = Trigger Mode

9: V7 V6 V7-V0 = Interrupt Vector

10: V5 V4

11: V3 V2

12: V1 V0

13: D7 D6 D7-D0 = Destination

14: D5 D4

15: D3 D2

16: D1 D0

17: C C Checksum for cycles 6-16

18: 0 0

19: A A Status cycle 0

20: A1 A1 Status cycle 1

21: 0 0

If DM = 0 (physical mode), then cycles 15 and 16 represent the APIC ID and cycles 13 and
14 are considered don't care by the receiver. If DM = 1 (logical mode), then cycles 13
through 16 are the 8-bit logical destination field. For shorthands of “all-incl-self” and “all-
excl-self” DM=0 and D3-D0 = 1111. The agent sending the message is the only one required
to distinguish between the two cases. It does so using internal information.

In the lowest priority delivery, if the focus processor exists, it identifies itself driving 10
during cycle 19 and accepts the interrupt. This is an indication to other agents to terminate
arbitration. In case the focus processor has not been found, the short message is extended on-
the-fly to the non-focused lowest-priority message, which continues as explained below.
Note that except for the EOI message, messages generating a checksum or an acceptance
error (see  section 19.3.3) terminate after cycle 21.
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Non-Focused Lowest Priority Message

This format is employed for the lowest priority delivery mode without a Focus Processor.
Cycles 1 through 20 are same as for the short message. If status cycle AA = 10, then a Focus
processor has been identified, and  the short message format is used. AA = 00 indicates the
need to start lowest priority arbitration, continuing the message using the 34-cycles format
shown below. For other combinations of status bits, refer to Table 19-5.

Table 19-3.  34-Cycle Non-Focused Lowest Priority Message

Cycle Bit0 Bit1

1: 0 1 0 1 = normal

2: ArbID3 0 Arbitration ID bits 3 through 0

3: ArbID2 0

4: ArbID1 0

5: ArbID0 0

6: DM M2 DM = Destination mode

7: M1 M0 M2-M0 = Delivery mode

8: L TM L = Level, TM = Trigger Mode

9: V7 V6 V7-V0 = Interrupt Vector

10: V5 V4

11: V3 V2

12: V1 V0

13: D7 D6 D7-D0 = Destination

14: D5 D4

15: D3 D2

16: D1 D0

17: C C Checksum for cycles 6-16

18: 0 0

19: A A Status cycle 0

20: A1 A1 Status cycle 1
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Table 19-3.  34-Cycle Non-Focused Lowest Priority Message (Contd.)

Cycle Bit0 Bit1

21: P7 0 P7 - P0 = Inverted Processor Priority

22: P6 0

23: P5 0

24: P4 0

25: P3 0

26: P2 0

27: P1 0

28: P0 0

29: ArbID3 0 Arbitration ID 3 -0

30: ArbID2 0

31: ArbID1 0

32: ArbID0 0

33: A2 A2 Status Cycle

34: 0 0

Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors
participating in the arbitration drive their inverted processor priority on the bus. Only the
local APICs having “free interrupt slots” will participate in the lowest priority arbitration. If
no such APIC exists, the message will be rejected, and will have to be tried later.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the
same lowest priority. In the lowest delivery mode, all combinations of errors in cycle 33 (A2
A2) will set the “accept error” bit in the error status register (defined in section 19.3.3). Arb
ID update is performed in cycle 20, and is not affected by errors detected in cycle 33. Only
the local APIC that wins in the LP arbitration, drives cycle 33. An error in cycle 33 will force
the sender to re-send the message.

Remote Read Message

The remote read message is used for a local APIC to read a register located in another local
APIC. The message format is the same as in the case of a short message for the first 20
cycles.
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Table 19-4.  39-Cycle Remote Read Message

Cycle Bit0 Bit1

1: 0 1 0 1 = normal

2: ArbID3 0 Arbitration  ID bits 3 through 0

3: ArbID2 0

4: ArbID1 0

5: ArbID0 0

6: DM M2 DM = Destination mode

7: M1 M0 M2-M0 = Delivery mode

8: L TM L = Level, TM = Trigger Mode

9: V7 V6 V7-V6 = Don’t care

10: V5 V4 V5-V0 = Register address (address bits 4 –11)

11: V3 V2

12: V1 V0

13: D7 D6 Destination

14: D5 D4

15: D3 D2

16: D1 D0

17: C C Checksum for cycles 6-16

18: 0 0

19: A A Status cycle 0

20: A1 A1 Status cycle 1

21: d31 d30 Remote register data 31-0

22: d29 d28

23: d27 d26

24: d25 d24



MULTIPROCESSING EE

19-32

Table 19-4.  39-Cycle Remote Read Message (Contd.)

Cycle Bit0 Bit1

25: d23 d22

26: d21 d20

27: d19 d18

28: d17 d16

29: d15 d14

30: d13 d12

31: d11 d10

32: d09 d08

33: d07 d06

34: d05 d04

35: d03 d02

36: d01 d00

37: S S Data Status: 11 = valid, 00 = invalid

38: C C Checksum for cycles 21 - 36

39: 0 0

Cycles 21 through 36 contain the remote register data. The status information in cycle 37
specifies the validity of the received data. The Remote read message is not retried, even if
the data is invalid. A Remote Read to an invalid address results in an invalid data status bits,
reported in cycle 37.
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Table 19-5.  APIC Bus Status Cycles Interpretation

Delivery
Mode

Focus
processor?

Status
A  A Comments

Status
A1 A1 Comments

Fixed, EOI N/A 0   0 CS OK 1   0
1   1
0   x

Accepted
Retry

Accept Error

1   1
1   0
0   1

CS Error
Error
Error

0   0
0   0
0   0

NMI, SMI,
INIT, ExtINT,

Start-Up

N/A 0   0 CS OK 1   0
1   1
0  x

Accepted
Error
Error

1   1
1   0
0   1

CS Error
Error
Error

0   0
0   0
0   0

Lowest
Priority

No 0   0 CS OK 1  1
1  0
0  x

Do LP Arb*
End and Retry

Error

Yes 1   0
1   1
0   1

CS OK
CS Error

Error

0   0
0   0
0   0

Remote Read N/A 0   0
1   1
0   1
1   0

CS OK
CS Error

Error
Error

0   0
0   0
0   0
0   0

NOTE:

*Status: A2 A2  (relevant for LP Arbitration only)

1    0    Accept

1    1    Error

0    x    Error

19.3.3. Error Handling In APIC
The Local APIC incorporates an Error Status Register (ESR) to record all the errors detected
by the APIC. The ESR is read only, and is reset after being read by either the CPU or through
the Remote Read message. A write to the ESR has no side effects. ESR fields are shown in
Fig 19-15. For compatibility with future implementations, the software must perform a
write into the ESR before reading. An Error interrupt is generated when one of the error
bits is set. Error bits are cumulative. The ESR must be cleared by software after unmasking
of the error interrupt entry in the LVT is performed. If the software, however, wishes to
handle errors set in the register prior to unmasking, it should read the ESR prior or
immediately after the unmasking.
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Figure 19-15.  Error Status Register (ESR)

• Send CS Error

Check Sum Error. The local APIC sets this bit when it detects a check sum error for a
message that was sent by it.

• Receive CS Error

Check Sum Error. The local APIC sets this bit when it detects a check sum error for a
message that was received by it

• Send Accept Error

The Local APIC sets this error bit when it detects that a message sent by it was not
accepted by any agent on the bus.

• Receive Accept Error

The Local APIC sets this error bit when it detects that the message which was received
by it was not accepted by any agent on the bus, including itself.

• Send Illegal Vector

Set when the local APIC detects an illegal vector in the message that it is sending on the
bus.

• Receive Illegal Vector

Set when the local APIC detects an illegal vector in the message  received by it. This
includes an illegal vector code in the local vector table interrupts and self interrupts from
ICR.

• Illegal Reg. Address

This bit is set when the processor is trying to access a register that is not implemented in
the Pentium Processor (735\90, 815\100, 1000\120, 1110\133) local APIC register
address space, i.e., FEE0 0000 through FEE0 03FF.

19.3.4. Timer

19.3.4.1. OVERVIEW

The Local APIC unit contains a 32-bit programmable timer for use by the local processor.
The time base is derived from the CPU bus clock, divided by the “divide” value. After reset,
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the timer is initialized to zero. The timer supports one-shot and  periodic modes. The timer
can be configured to interrupt the local processor with an arbitrary vector. Refer to
Figure 19-16.
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100  D iv ide by  32
101  D iv ide by  64
110  D iv ide b y  128
111  D iv ide by  1

PP0099

Figure 19-16.  Divide Configuration Register

The timer is started by programming its Initial Count register (IC). The IC value is copied
into the Current Count register (CC), and the counting down begins. After the timer reaches
zero in One-Shot mode, an interrupt is generated and the timer remains at its zero value until
reprogrammed. In Periodic mode, the CC is automatically reloaded from the IC and counting
down is repeated. If the IC value is N, then the CC values are N, N-1, ..., 2, 1, N, N-1, .... ,
etc. If during the counting process the IC is set, the counting will restart and the new value
will be used. The IC is read-write by software, while the CC is read only.

 

In it ia l  Count

Cur rent  Cou nt

Ad dr es s : FE E0 _03 80 ; FEE 0_ 03 90
Value after  Reset: 0

PP0100

3 1 0

Figure 19-17.  Initial Count and Current Count Registers
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Table 19-6.  APIC Registers Address Map

Address (hex) Register Name Software Read/Write

0FEE0 0000 Reserved

0FEE0 0010 Reserved

0FEE0 0020 Local APIC ID Register Read/write

0FEE0 0030 Local APIC Version Register Read only

0FEE0 0040 Reserved

0FEE0 0050 Reserved

0FEE0 0060 Reserved

0FEE0 0070 Reserved

0FEE0 0080 Task Priority Register Read/Write

0FEE0 0090 Arbitration Priority Register Read only

0FEE0 00A0 Processor Priority Register Read only

0FEE0 00B0 EOI Register Write only

0FEE0 00C0 Remote Read Register Read only

0FEE0 00D0 Logical Destination Register Read/Write

0FEE0 00E0 Destination Format Register Bits 0-27 Read only. Bits
28-31 Read/Write

0FEE0 00F0 Spurious Interrupt Vector Reg. Bits 0-3 Read only. Bits
4-9 Read/Write

0FEE0 0100 through
0FEE0 0170

ISR 0-255 Read only
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Table 19-6.  APIC Registers Address Map (Contd.)

Address (hex) Register Name Software Read/Write

0FEE0 0180 through
0FEE0 01F0

TMR 0-255 Read only

0FEE0 0200 through
0FEE0 0270

IRR 0-255 Read only

0FEE0 0280 Error Status Register Read only

0FEE0 0290 through
0FEE0 02F0

Reserved

0FEE0 0300 Interrupt Command Reg. 0-31 Read/Write

0FEE0 0310 Interrupt Command
Reg. 32-63

Read/Write

0FEE0 0320 Local Vector Table (Timer) Read/Write

0FEE0 0330 Reserved

0FEE0 0340 Reserved

0FEE0 0350 Local Vector Table (LINT0) Read/Write

0FEE0 0360 Local Vector Table (LINT1) Read/Write

0FEE0 0370 Local Vector Table (Error) Read/Write

0FEE0 0380 Initial Count Register for Timer Read/Write

0FEE0 0390 Current Count Register for Timer Read only

0FEE0 03A0 through
0FEE0 03D0

Reserved

0FEE0 03E0 Timer Divide Configuration Register Read/Write

0FEE0 03F0 Reserved
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19.3.5. APIC Valid/Invalid Programming Combination

Table 19-7.  Interrupt Command Register

Trigger Mode Destination Mode Delivery Mode Valid/Invalid Destination Shorthand

Edge Physical or Logical Fixed, Lowest Priority,
NMI, SMI, INIT, StartUp

Valid Dest. Field

Level Physical or Logical Fixed, Lowest Priority,
NMI

(*) Dest. field

Level Physical or Logical INIT (**) Dest. Field

Edge Physical Remote Read Valid Dest. field

Edge Logical Remote Read Invalid x

Level x Remote Read, SMI,
StartUp

Invalid x

Edge x Fixed Valid Self

Level x Fixed (*) Self

x x Lowest Priority, Remote
Read, NMI, INIT, SMI,
StartUp

Invalid Self

Edge x Fixed Valid All inc Self

Level x Fixed (*) All inc Self

x x Lowest Priority, Remote
Read, NMI, INIT, SMI,
StartUp

Invalid All inc Self

Edge x Fixed, Lowest Priority,
NMI, INIT, SMI, StartUp

Valid All excl Self

Level x Fixed, Lowest Priority,
NMI

(*) All excl Self

Level x SMI, StartUp Invalid All excl Self

Level x INIT (**) All excl Self
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Table 19-8.  Local Vector Table

Trigger Mode Delivery Mode Valid/Invalid

Edge or Level Fixed Valid

Edge NMI Valid

Level NMI (*)

Edge ExtINT Valid

Level ExtINT Invalid

NOTES:

* Valid. Treated as Edge Triggered if Level = 1, otherwise ignored.

**Valid. Treated as edge triggered when "level" = 1 (assert). When "level" = 0 (de-assert), treated as "INIT
Level De-assert" message.

NOTE

Only INIT-deassert messages are allowed to have level = 'de-assert'. For all
other messages the level must be "assert'.

19.3.6. Software Visible Differences Between APIC and 82489DX
The following APIC features differ in their definitions from the 82489DX features.

In the 82489DX, when the local unit is disabled by resetting the bit 8 of the spurious vector
register, all the internal registers including the IRR, ISR and TMR are cleared and the mask
bits in the local vector tables are set to logical ones. In the disabled mode, 82489DX local
unit will accept only the Reset Deassert message. In CPU, disabling the local APIC doesn’t
clear any registers. It sets the mask bits in the local vector tables and ceases accepting the
buss messages except for INIT, SMI, NMI, Remote Read and Start-Up.

In the APIC, NMI and INIT (except for INIT Deassert) are always treated as edge triggered
interrupts even if programmed otherwise. In the 82489DX these interrupts are always level
triggered. In APIC, the interrupts generated through ICR messages are always treated as edge
triggered (except INIT Deassert). In the 82489DX, ICR can be used to generate either edge
or level triggered interrupts. Logical Destination register for the 82489DX supports 32 bits
where as APIC supports only 8 bits. APIC ID register is 8 bits wide for the 82489DX and 4
bits wide for APIC.

Performance Related Differences between Pentium Processor (735\90, 815\100,
1000\120, 1110\133) APIC and 82489DX

For the 82489DX, in the lowest priority mode, all the target local APICs specified by the
destination field participate in the lowest priority arbitration. Only those local APICs which
have free interrupt slots will participate in the lowest priority arbitration.



MULTIPROCESSING EE

19-40

New Features Incorporated in APIC

• The APIC supports Cluster Addressing in logical destination mode.

• Focus Processor Checking can be enabled/disabled in the APIC.

• Interrupt Input Signal polarity can be programmed in the APIC.

• The APIC supports SMI through ICR and I/O redirection table.

• The APIC incorporates an Error Status Register to log and report error to the processor.

19.3.7. Dual Processing Bootup Handshake Protocol Sequence
With Examples

The following constants and data definitions are used in this document code examples. They
are based on the addresses of the APIC registers as defined in Table 19-6.

ICR_LOW EQU 0FEE00300H

ICR_HI EQU 0FEE00310H

SVR EQU 0FEE000F0H

APIC_ID EQU 0FEE00020H

LVT3 EQU 0FEE00370H

APIC_ENABLED EQU 100H

BOOT_ID DW   ?

UPGRD_ID DW  ?

Dual Processing Sequence of Events

1. The Primary processor boots at standard Intel architecture address and executes until
ready to activate the Dual processor.

2. It should be determined that the processor is a "GenuineIntel" by executing the CPUID
instruction with 0 in EAX. (See Intel Processor Identification with the CPUID
Instruction, Order No. 241618). System software should execute CPUID with a 1 in EAX
to obtain model, stepping, family and type information.  The values of EAX and EDX
should be saved into a configuration RAM space for use later.

3. If the type field (in the EAX register following the CPUID instruction with an input
value of 1) is 01B in bits 13 and 12, respectively, the CPU is a Future Pentium®

OverDrive™ processor and the Pentium Processor (735\90, 815\100, 1000\120,
1110\133) has been put to sleep. This means it is a uniprocessor system and normal AT
system configuration can continue.  Skip to step 15 to configure the APIC.

If the type field is 00B, the processor is a Primary processor and detection of the Dual
processor is required.  Continue with steps 4 through 14.

4. Detection of the Dual processor can be done by doing the following:

Set a timer before sending the StartUp IPI to the Dual processor.  In the Dual processor's
initialization routine, it should write a value into memory indicating its presence.  The
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Primary processor can then use the timer expiration to check if something has been
written into memory.  If the timer expires and nothing has been written into memory, the
Dual processor is not present or some error has occurred.

5. Load StartUp code for dual processor in 4kb page in lower 1Mb of memory.

6. Get into protected mode (to access APIC address space above 1Mb).

7. Determine Pentium Processor (735\90, 815\100, 1000\120, 1110\133) APIC ID from
local APIC ID register (default is 0)
MOV ESI, APIC_ID ; address of local APIC ID register
MOV EAX, [ESI]
AND EAX, 0F000000H ; zero out all other bits except APIC ID
MOV BOOT_ID, EAX ; save in memory

Save in configuration RAM (optional).

8. Determine APIC ID of Dual processor and save in configuration RAM (optional).
MOV EAX, BOOT_ID
XOR EAX, 100000H ; toggle lower bit of ID field (bit 24)
MOV UPGRD_ID, EAX

9. Convert base address of 4-Kb page for Dual processor Bootup code into 8-bit vector.
The 8-bit vector defines the address of a 4-Kb page in the Intel architecture Real Mode
Space (1 MB space).  For example, a vector of 0bdH specifies a StartUp memory address
of 000bd000H.

Steps 10 and 11 are used if the programmer wants to use the LVT APIC error handling entry
to deal with unsuccessful delivery of the StartUp IPI.

10. Enable APIC by writing to Spurious Vector Register (SVR).  This is required to do APIC
error handling via the local vector table.
MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]
OR  EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

11. Program LVT3 (APIC error interrupt vector) of the local vector table with an 8-bit vector
for handling APIC errors
MOV ESI, LVT3
MOV EAX, [ESI]
AND EAX, FFFFFF00H ; clear out previous vector
OR EAX, 000000xxH ; xx is the 8-bit vector for APIC error

; handling.
MOV [ESI], EAX
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12. Write APIC ICRH with address of dual processor APIC
MOV ESI, ICR_HI ; address of ICR high dword
MOV EAX, [ESI] ; get high word of ICR
AND EAX, 0F0FFFFFFH ; zero out ID Bits
OR  EAX, UPGRD_ID ; write ID into appropriate bits - don't

; affect reserved bits
MOV [ESI], UPGRD_ID ; write upgrade ID to destination field

13. Set timer with an appropriate value (~100 msec).

14. Write APIC ICRL to send StartUp IPI message via the APIC.
MOV ESI, ICR_LOW ; write address of ICR low dword
MOV EAX, [ESI] ; get low dword of ICR
AND EAX, 0FFFFF800H ; zero out delivery mode and vector fields
OR  EAX, 000006xxH ; 6 selects delivery mode 110 (StartUp IPI)

; xx should be vector of 4kb page as
; computed in Step 8.

MOV [ESI], EAX

15. Configure APIC as appropriate.

Dual Processor Sequence of Events following StartUp IPI

1. If the APIC is to be used for symmetric multiprocessing on the Dual processor, the
following steps must be taken:

2. Get into protected mode in order to access the APIC addresses

3. Initialize its own APIC by writing to bit 8 of the SVR register and programming its
LVT3 for error handling.

4. Configure APIC as appropriate.

5. Enable interrupts

The Dual processor can then execute a HALT instruction and wait for an IPI from the
operating system  or continue execution.

The Dual processor may also want to determine its own CPUID information and write into
configuration RAM.
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Given the following constants:

LVT1  EQU 0FEE00350H

LVT2  EQU 0FEE00360H

LVT3  EQU 0FEE00370H

SVR   EQU 0FEE000F0H

1. Mask 8259 interrupts.

2. Enable APIC via SVR (Spurious Vector Register) if not already enabled.
MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]
OR  EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

3. Program LVT1 as an ExtINT which delivers the signal to the INTR signal of all
processors cores listed in the destination as an interrupt that originated in an externally
connected interrupt controller.
MOV ESI, LVT1
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH ; mask off bits 8-10, 12, 14 and 16
OR  EAX, 700H ; Bit 16=0 for not masked, Bit 15=0 for
edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 111b for ExtINT

MOV [ESI], EAX ; Write to LVT1

4. Program LVT2 as NMI which delivers the signal on the NMI signal of all processor
cores listed in the destination.
MOV ESI, LVT2
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH ; mask off bits 8-10 and 15
OR  EAX, 0FFFF0400H ; Bit 16=0 for not masked, Bit 15=0 edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 100b for NMI

MOV [ESI], EAX ; Write to LVT2

5. Unmask 8259 interrupts and allow NMI.
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CHAPTER 20
POWER MANAGEMENT

20.1. PENTIUM® PROCESSOR (510\60,567\66) POWER
MANAGEMENT

The Pentium processor (510\60, 567\66) implements Intel's System Management Mode
(SMM) architecture.  This chapter describes the architectural features of Pentium Processor
(510\60, 567\66) and Pentium Processor (735\90, 815\100, 1000\120, 1110\133) power
management. For a detailed hardware description, refer to the Power Management chapter in
the Pentium® Processor Family Developer’s Manual, Volume 1.

The Pentium microprocessor supports four modes: Real, Virtual-86, Protected, and System
Management mode (SMM).  As an operating mode, SMM has a distinct processor
environment, interface and hardware/software features.

20.1.1. Introduction to System Management Mode Architecture
SMM provides the system designer with a means of adding new software controlled features
to their computer products which always operate transparent to the Operating System (OS)
and software applications.  SMM is intended for use only by system firmware, not by
applications software or general purpose systems software.

The SMM architectural extension consists of the following elements:

1. A System Management Interrupt (SMI#) hardware interface. The SMI# interrupt can be
delivered through the SMI# pin.

2. A dedicated and secure memory space (SMRAM) for SMI handler code and CPU state
(context) data with a status signal for the system to decode access to that memory space,
SMIACT#.

3. Resume (RSM) instruction,  for exiting the System Management Mode.

4. Auto HALT Restart and SMBASE relocation.

20.1.2. Terminology
The following terms are used throughout the discussion of System Management Mode.
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SMM: System Management Mode.  This is the operating environment that the
processor (system) enters  when the System Management Interrupt is
being serviced.

SMI: System Management Interrupt.  This is part of the SMM interface.
When SMI# is asserted (SMI# pin asserted low) it causes the processor
to invoke SMM.  In this chapter, "SMI" refers to the system
management interrupt.

SMM handler: System Management Mode handler.  This is the code that will be
executed when the processor is in SMM.  An example application that
this code might implement is a power management control or a system
control function.

RSM: Resume instruction.  This instruction is used by the SMM handler to exit
the SMM and return to the interrupted OS or Application process.

SMRAM: This is the physical memory dedicated to SMM.   The SMM handler
code and related data reside in this memory.   This memory is also used
by the processor to store its context before executing the SMM handler.
The operating system and applications do not have access to this
memory space.

Context: This term refers to the processor state.  The SMM discussion refers to
the context, or processor state, just prior to the processor invoking
SMM.  The context normally consists of  the CPU registers that fully
represent the processor state.

Context Switch: A context switch is the process of either saving or restoring the context.
The SMM discussion  refers to the context switch as the process of
saving/restoring the context while invoking/exiting SMM, respectively.

20.1.3. Pentium Processor System Management Interrupt
Processing

20.1.3.1. SMRAM

The CPU uses the SMRAM space for state save and state restore operations during an SMI.
The SMI handler, which also resides in SMRAM, uses the SMRAM space to store code, data
and stacks.  In addition, the SMI handler can use the SMRAM for system management
information such as the system configuration, configuration of a powered-down device, and
system designer-specific information.

The CPU asserts the SMIACT# output during memory accesses in SMM to indicate to the
memory controller that it is operating in System Management Mode.  The system logic
should ensure that only the CPU and SMI handler have access to this area.

The system logic is minimally required to decode the physical memory address range from
SMBASE + 8000H to SMBASE + 0FFFFH as SMRAM area.  The CPU will save its state to
the state save area from SMBASE + 0FFFFH downward to SMBASE + 0FE00H (note:  the
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SMBASE default following RESET is 30000H).   After saving its state the CPU will jump to
the address location SMBASE + 8000H to begin executing the SMI handler.  The system
logic can choose to decode a larger area of SMRAM as needed.  The size of this SMRAM
can be between 32 Kbytes and 4 Gbytes.

The system logic should provide a programmable method for switching the SMRAM into
system memory space when the CPU is not in SMM.  This will enable initialization of the
SMRAM space (i.e., loading SMI handler) before executing the SMI handler during SMM.

 

SMRAM

CPU Accesses to
System Address
Space Used for
Loading SMRAM

Sys tem Memo ry  A cces ses
Re di r ec ted
to  S MR A M

Sy s te m Memo ry  Acc ess es
Not Redi re c ted

to  S MR A M

N o r ma l
M e m o r y
S p a c e

PP0101

Figure 20-1.  Redirecting System Memory Addresses to SMRAM
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20.1.3.2. SMRAM STATE SAVE MAP

When the SMI# is recognized on an instruction boundary, the CPU core first sets the
SMIACT# signal LOW indicating to the system logic that accesses are now being made to
the system-defined SMRAM areas.  The CPU then writes its state to the state save area in the
SMRAM.   The state save area starts at SMBASE + [8000H + 7FFFH].   The default
SMBASE is 30000H, therefore the default state save area is at 3FFFFH.

Using the SMBASE Relocation feature (refer to section 20.1.5.3), the SMRAM addresses can
be changed.  The SMBASE Relocation feature is always enabled in the Pentium processor
(510\60, 567\66). The following formula is used to determine the relocated addresses where
the context is saved.  The context will reside at SMBASE + [8000H + Register Offset],
where the default initial SMBASE is 30000H and the Register Offset is listed below in the
SMRAM state save map.  Reserved spaces will be used to accommodate future
enhancements. SMBASE must be aligned on a 32-Kbyte boundary.

Some of the registers in the SMRAM state save area may be read and changed by the SMI
handler, with the changed values restored to the processor registers by the RSM instruction.
Some register images are read-only, and must not be modified (modifying these registers will
result in unpredictable behavior).  The values stored in the areas marked reserved may
change in future CPUs.  An SMM handler should not rely on any values stored in an area that
is marked as reserved.   Table 20-1 shows the state save map.
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Table 20-1.  SMRAM State Save Map

Register Offset Register Writeable?

7FFC CR0 NO

7FF8 CR3 NO

7FF4 EFLAGS YES

7FF0 EIP YES

7FEC EDI YES

7FE8 ESI YES

7FE4 EBP YES

7FE0 ESP YES

7FDC EBX YES

7FD8 EDX YES

7FD4 ECX YES

7FD0 EAX YES

7FCC DR6 NO

7FC8 DR7 NO

7FC4 TR* NO

7FC0 LDT Base* NO

7FBC GS* NO

7FB8 FS* NO

7FB4 DS* NO

7FB0 SS* NO

7FAC CS* NO

7FA8 ES* NO

7FA7 - 7F98 Reserved NO

7F94 IDT Base NO

7F93-7F8C Reserved NO

7F88 GDT Base NO
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Table 20-1.  SMRAM State Save Map (Contd.)

Register Offset Register Writeable?

7F87-7F04 Reserved NO

7F02 Auto HALT Restart Slot (Word) YES

7F00 Reserved NO

7EFC SMM Revision Identifier (Dword) NO

7EF8 SMBASE Slot (Dword) YES

7EF7 - 7E00 Reserved NO

NOTES:

* Upper two bytes are reserved

Modifying a value that is marked as not writeable will result in unpredictable behavior.

Although the following registers are not visible to the system software programmer, they are
saved and restored (in areas of the state save that are marked reserved):

• CR1, CR2 and CR4, hidden descriptor registers for  CS, DS, ES, FS, GS, SS.

If an SMI request is issued for the purpose of powering down the CPU, the values of all
reserved locations in the SMM state save must be saved to non-volatile memory.

The following registers are not automatically saved and restored by SMI# and RSM:

• DR5-DR0, TR7-TR3, FPU registers:  STn, FCS, FSW, tag word, FP instruction pointer,
FP op code, and operand pointer.

These registers usually do not have to be saved during an SMI handler's execution, as their
contents will not change unless an FPU instruction is executed in SMM.  However, if an SMI
is used to power down the CPU, a power-on reset will be required before returning to SMM,
which will reset these registers back to their default values.  So an SMI handler that is going
to trigger power down should first read these registers directly, and save them (along with the
rest of RAM) to nonvolatile storage.  After the power-on reset, the continuation of the SMI
handler should restore these values, along with the rest of the system's state.  Anytime the
SMI handler changes these registers in the CPU it must also save and restore them.

20.1.3.3. EXIT FROM SMM

The RSM instruction is only available to the SMI handler.  The opcode of the instruction is
0FAAH.  Execution of this instruction while the CPU is executing outside of SMM will
cause an invalid op-code error.  The last instruction of the SMI handler will be the RSM
instruction.

The RSM instruction restores the state save image from SMRAM back to the CPU, then
returns control back to the interrupted program execution.   There are two SMM features that
can be enabled by writing to control "slots" in the SMRAM state save area:
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1. Auto HALT Restart .   It is possible for the SMI request to interrupt the HALT state.
The SMI handler can tell the RSM instruction to return control to the HALT instruction
or to return control to the instruction following the HALT instruction by appropriately
setting the Auto HALT Restart slot.  The default operation is to restart the HALT
instruction.

2. SMBASE Relocation.   The system can relocate the SMRAM by setting the SMBASE
Relocation slot in the state save area.  The RSM instruction will set the SMBASE in the
processor based on the value in the SMBASE relocation slot.  The SMBASE must be
32 Kbyte aligned.

If the processor detects invalid state information, it enters the shutdown state; this happens
only in the following situations:

• The value stored in the SMBASE slot during an RSM instruction is not a 32 Kbyte-
aligned address.

• A reserved bit of CR4 is set to 1 on a write to CR4.

• A combination of bits written to CR0 is illegal; namely, (PG=1 and PE=0) or (NW=1
and CD=0).

In shutdown mode, the processor stops executing instructions until a RESET, INIT or NMI is
asserted. FLUSH#, SMI# and R/S# are recognized by the Pentium processor (510\60, 567\66)
in the shutdown state.

NOTE

It is recommended that system designers NOT issue SMI# during the
shutdown state in the Pentium processor (510\60, 567\66).

The processor generates a special bus cycle to indicate it has entered shutdown mode.

20.1.4. System Management Mode Programming Model

20.1.4.1. SMM ENTRY

SMM is one of the major operating modes, on a level with Protected mode, Real address
mode or virtual-86 mode.  Figure 20-2 shows how the processor can enter SMM from any of
the three modes and then return.
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Figure 20-2.  Transition to and from System Management Mode

The SMI# interrupt causes the processor to switch to SMM.  The RSM instruction exits
SMM.  SMM is transparent to applications programs and operating systems because of the
following:

• The only way to enter SMM is via a type of non-maskable interrupt triggered by an
external signal through the SMI# pin.

• The processor begins executing SMM code from a separate address space, referred to
earlier as system management RAM (SMRAM).

• Upon entry into SMM, the processor saves the register state of the interrupted program in
a part of SMRAM called the SMM context save space.

• All interrupts normally handled by the operating system or by applications are disabled
upon entry into SMM.

• A special instruction, RSM, restores processor registers from the SMM context save
space and returns control to the interrupted program.

SMM is similar to Real address mode in that there are no privilege levels or address
mapping.  An SMM program can execute all I/O and other system instructions and can
address up to 4 Gbytes of memory.
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20.1.4.2. PROCESSOR ENVIRONMENT

When an SMI# signal is recognized on an instruction execution boundary, the processor
waits for all stores to complete, including emptying of the external write buffers (i.e.,
EWBE# driven active from the system).  The final write cycle is complete when the system
returns BRDY#.  The processor then drives SMIACT# active, saves its register state to
SMRAM space, and begins to execute the SMM handler.

SMI# has greater priority than debug exceptions and external interrupts.  This means that if
more than one of these conditions occur at an instruction boundary, only the SMI# processing
occurs, not a debug exception or external interrupt.  Subsequent SMI# requests are not
acknowledged while the processor is in SMM.  The first SMI# interrupt request that occurs
while the processor is in SMM is latched, and serviced when the processor exits SMM with
the RSM instruction.  Only one SMI# will be latched by the CPU while it is in SMM.

When the CPU invokes SMM, the CPU core registers are initialized as follows:

Table 20-2.  SMM Initial CPU Core Register Settings

Register Contents

General purpose registers Unpredictable

EFLAGS 00000002 H

EIP 00008000H

CS selector 3000H

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 Bits 0,2,3 & 31 cleared (PE, EM, TS & PG); others unmodified

DR6 Unpredictable

DR7 00000400H

The following is a summary of the key features in the SMM environment:

1. Real mode style address calculation.

2. Gbyte limit checking.

3. IF flag is cleared.

4. NMI is disabled.

5. TF flag in EFLAGS is cleared; single step traps are disabled.

6. DR7 is cleared; debug traps are disabled.

7. The RSM instruction no longer generates an invalid op code error.

8. Default 16-bit op code, register and stack use.
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All bus arbitration (HOLD, AHOLD, BOFF#) inputs operate normally while the CPU is in
SMM.

20.1.4.3. EXECUTING SYSTEM MANAGEMENT MODE HANDLER

The processor begins execution of the SMM handler at offset 8000H in the CS segment.  The
CS Base is initially 30000H.  The CS Base can be changed, however, using the SMM Base
relocation feature.

When the SMM handler is invoked, the CPU's PE and PG bits in CR0 are reset to 0.  The
processor is in an environment similar to Real mode, but without the 64-Kbyte limit
checking.  However, the default operand size and the default address size are set to 16 bits.

The EM bit is cleared so that no exceptions are generated.  (If the SMM was entered from
Protected mode, the Real mode interrupt and exception support is not available.)  The SMI
handler should not use floating-point unit instructions until the FPU is properly detected
(within the SMI handler) and the exception support is initialized.

Because the segment bases (other than CS) are cleared to 0 and the segment limits are set to
4 Gbytes, the address space may be treated as a single flat 4-Gbyte linear space that is
unsegmented.  The CPU is still in Real mode and when a segment selector is loaded with a
16-bit value, that value is then shifted left by 4 bits and loaded into the segment base cache.
The limits and attributes are not modified.

In SMM, the CPU can access or jump anywhere within the 4Gbyte logical address space.
The CPU can also indirectly access or perform a near jump anywhere within the 4-Gbyte
logical address space.

20.1.4.4. EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the CPU enters SMM, it disables INTR interrupts, debug and single step traps by
clearing the EFLAGS, DR6 and DR7 registers.  This is done to prevent a debug application
from accidentally breaking into an SMM handler.  This is necessary because the SMM
handler operates from a distinct address space (SMRAM) and hence the debug trap will not
represent the normal system memory space.

If an SMM handler wishes to use the debug trap feature of the processor to debug SMM
handler code, it must first ensure that an SMM compliant debug handler is available.  The
SMM handler must also ensure DR0-DR3 is saved to be restored later.  The debug registers
DR0-DR3 and DR7 must then be initialized with the appropriate values.

If the processor wishes to use the single step feature of the processor, it must ensure that an
SMM compliant single step handler is available and then set the trap flag in the EFLAGS
register.

If the system design requires the processor to respond to hardware INTR requests while in
SMM, it must ensure that an SMM compliant interrupt handler is available and then set the
interrupt flag in the EFLAGS register (using the STI instruction).  Software interrupts are not
blocked upon entry to SMM, and the system software designer must provide an SMM
compliant interrupt handler before attempting to execute any software interrupt instructions.
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Note that in SMM mode the interrupt vector table has the same properties as the Real mode
vector table, but in Pentium processor the IDTR base address must be initialized with the
LIDT instruction before interrupts are allowed.

NMI interrupts are blocked upon entry to the SMM handler.  If an NMI request occurs during
the SMM handler, it is latched and serviced after the processor exits SMM.  Only one NMI
request will be latched during the SMM handler.  If an NMI request is pending when the
processor executes the RSM instruction, the NMI is serviced before the next instruction of
the interrupted code sequence.

Although NMI requests are blocked when the CPU enters SMM, they may be enabled
through software by invoking a dummy interrupt and vectoring to an Interrupt Service
Routine.  NMI interrupt requests will be recognized once the Interrupt Service Routine has
begun executing.  NMI interrupt requests will nest inside the SMM handler, and be handled
as real mode interrupts since SMM is in real mode.

20.1.5. SMM Features

20.1.5.1. SMM REVISION IDENTIFIER

The SMM revision identifier is used to indicate the version of SMM and the SMM extensions
that are supported by the processor.  The SMM revision identifier is written during SMM
entry and can be examined in SMRAM space at Register Offset 7EFCH. The lower word of
the SMM revision identifier refers to the version of the base SMM architecture.  The upper
word of the SMM revision identifier refers to the extensions available.

 

SMM Revision Identifier

1 7 1 6

Register Offset 7EFCH

Reserved

1 0

PP0103

SMBASE Relocation
IO Instruction Restart

Figure 20-3.  SMM Revision Identifier

Bit 16 of the SMM revision identifier is used to indicate to the SMM handler that this
processor does not support the SMM I/O Instruction Restart extension (e.g. it is always 0).
Bit 17 of this slot indicates that the processor supports relocation of the SMM jump vector
and the SMRAM base address.
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20.1.5.2. HALT AUTO RESTART
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Register Offset 7F02H

Auto HALT Restart

Reserved
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Figure 20-4.  Halt Auto Restart

Value of Bit 0 at entry Value of Bit 0 at exit Comments

0
0
1
1

0
1
0
1

Returns to next instruction in interrupted program
Unpredictable
Returns to next instruction after HALT
Returns to  HALT state

The Auto HALT Restart slot at register offset (word location) 7F02H in SMRAM indicates to
the SMM handler that the SMI interrupted the CPU during a HALT state (bit 0 of slot 7F02H
is set to 1 if the previous instruction was a HALT).  If the SMI did not interrupt the CPU in a
HALT state, bit 0 of the Auto HALT Restart slot is stored with a value of 0.  If the previous
instruction was a HALT, the SMM handler can choose to either set or reset bit 0.  If this bit is
set to 1, execution of the RSM instruction will force the processor to re-enter the HALT
state.  If this bit is set to 0 when the RSM instruction is executed, the processor will continue
execution with the instruction just after the interrupted HALT instruction.  Note that if the
interrupted instruction was not a HALT instruction (bit 0 is set to 0 in the Auto HALT
Restart slot upon SMM entry), setting bit 0 to 1 will cause unpredictable behavior when the
RSM instruction is executed.

If the HALT instruction is restarted, the CPU will generate a memory access to fetch the
HALT instruction (if it is not in the internal cache), and execute a HALT bus cycle.

20.1.5.3. SMM BASE RELOCATION

The Pentium processor (510\60, 567\66) provides a control register, SMBASE.  The address
space used as SMRAM can be modified by changing the SMBASE register before exiting an
SMI handler routine.  SMBASE can be changed to any 32K aligned value (values that are not
32K aligned will cause the CPU to enter the shutdown state when executing the RSM
instruction).  SMBASE is set to the default value of 30000H on RESET, but is not changed
on INIT.  If the SMBASE register is changed during an SMM handler, all following SMI#
requests will initiate a state save at the new SMBASE.
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Figure 20-5.  SMM Base Relocation

The SMBASE slot in the SMM state save area is a feature used to indicate and change the
SMI jump vector location and the SMRAM save area.  Since bit 17 of the SMM Revision
Identifier is set in the Pentium processor (510\60, 567\66), the SMRAM base and,
consequently, the jump vector are stored.  During the execution of the RSM instruction, the
CPU will read this slot and initialize the CPU to use the new SMBASE during the next SMI.
During an SMI, the CPU will do its context save to the new SMRAM area pointed to by the
SMBASE, store the current SMBASE in the SMM Base slot (offset 7EF8H), and then start
execution of the new jump vector based on the current SMBASE.

The SMBASE must be a 32-Kbyte aligned, 32-bit integer that indicates a base address for the
SMRAM context save area and the SMI jump vector.  For example when the processor first
powers up, the minimum SMRAM area is from 38000H-3FFFFH.  The default SMBASE is
30000H.  Hence the starting address of the jump vector is calculated by:

SMBASE + 8000H

While the starting address for the SMRAM state save area is calculated by:

SMM Base + [8000H + 7FFFH]

Hence when this feature is enabled the SMRAM register map is addressed according to the
above formula.
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Figure 20-6.  SMRAM Usage

To change the SMRAM base address and SMI jump vector location, the SMM handler
should modify the SMBASE slot.  Upon executing an RSM instruction, the processor will
read the SMBASE slot and store it internally.  Upon recognition of the next SMI request, the
processor will use the new SMBASE slot for the SMRAM dump and SMI jump vector.

If the modified SMBASE slot does not contain a 32-Kbyte aligned value, execution of the
RSM instruction will cause the CPU to enter the shutdown state.

20.1.6. Pentium Processor SMM - Software Considerations

20.1.6.1. SMM CODE CONSIDERATIONS

The default operand size and the default address size are 16 bits; however, operand-size
override and address-size override prefixes can be used as needed to directly access data
anywhere within the 4-Gbyte logical address space.

With operand-size override prefixes, the SMM handler can use jumps, calls, and returns, to
transfer control to any location within the 4-Gbyte space. Note, however, the following
restrictions:

• Any control transfer that does not have an operand-size override prefix truncates EIP to
16 low-order bits.

• Due to the Real mode style of base-address formation, a long jump or call cannot transfer
control to a segment with a base address of more than 20 bits (one megabyte).
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20.1.6.2. EXCEPTION HANDLING

Upon entry into SMM, external interrupts that require handlers are disabled (the IF bit in the
EFLAGS is cleared).  This is necessary because, while the processor is in SMM, it is running
in a separate memory space.  Consequently the vectors stored in the interrupt descriptor table
(IDT) for the prior mode are not applicable.  Before allowing exception handling (or software
interrupts), the SMM program must initialize new interrupt and exception vectors. The
interrupt vector table of SMM has the same format as for real model, but the IDTR base
address is not initialized upon entrance to SMM in the Pentium processor. The LIDT
instruction may be used to point the IDTR to a Real mode interrupt table special for SMM, or
to point to the default Real mode table at zero. In the latter case, interrupt vectors which are
to be used in SMM may need to be modified, to account for the separate SMM memory
space, and then be restored before SMM. Until the interrupt vector table is correctly
initialized, the SMM handler must not generate an exception (or software interrupt).  Even
though hardware interrupts are disabled, exceptions and software interrupts can still occur.
Only a correctly written SMM handler can prevent internal exceptions.  When new exception
vectors are initialized, internal exceptions can be serviced.  The following are the
restrictions:

1. Due to the Real mode style of base address formation, an interrupt or exception  cannot
transfer control to a segment with a base address of more that 20 bits.

2. An interrupt or exception cannot transfer control to a segment offset of more than 16 bits
(64 Kbytes).

3. If exceptions or interrupts are allowed to occur, only the low order 16 bits of the return
address (EIP) are pushed onto the stack.  If the offset of the interrupted procedure is
greater than 64 Kbytes, it is not possible for the interrupt/exception handler to return
control to that procedure.  (One work-around could be to perform software adjustment of
the return address on the stack).

4. The SMBASE Relocation feature affects the way the CPU will return from an interrupt
or exception during an SMI handler.

20.1.6.3. HALT DURING SMM

HALT should not be executed during SMM, unless interrupts have been enabled.   Interrupts
are disabled in SMM and INTR, NMI, and SMI# are the only events that take the CPU out of
HALT.

20.1.6.4. RELOCATING SMRAM TO AN ADDRESS ABOVE ONE MEGABYTE

Within SMM (or Real mode), the segment base registers can only be updated by changing
the segment register.  The segment registers contain only 16 bits, which allows only 20 bits
to be used for a segment base address (the segment register is shifted left four bits to
determine the segment base address).  If SMRAM is relocated to an address above one
megabyte, the segment registers can no longer be initialized to point to SMRAM.
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These areas can still be accessed by using address override prefixes to generate an offset to
the correct address.  For example, if the SMBASE has been relocated immediately below
16M, the DS and ES registers are still initialized to 0000 0000H.  We can still access data in
SMRAM by using 32-bit displacement registers:

mov esi,00FFxxxxH ;64K segment immediately below 16M

mov ax,ds:[esi]

20.2. PENTIUM® PROCESSOR (735\90, 815\100, 1000\120,
1110\133) POWER MANAGEMENT

The Pentium processor (735\90, 815\100, 1000\120, 1110\133) implements Intel's System
Management Mode (SMM) architecture.  This section describes the architectural features of
Pentium processor (735\90, 815\100, 1000\120, 1110\133) SMM and Clock Control.  For a
detailed hardware description, refer to the Power Management chapter in the Pentium®

Processor Family Developer’s Manual, Volume 1.

20.2.1. System Management Mode Architecture
The Pentium processor (735\90, 815\100, 1000\120, 1110\133) adds the following extension
to the SMM architecture:  I/O Instruction Restart.

20.2.2. Pentium Processor (735\90, 815\100, 1000\120, 1110\133)
Power Management Differences vs. Pentium Processor
(510\60, 567\66)

1. System Management Interrupt can be delivered through the SMI# signal or through the
local APIC using the SMI# message.  The Pentium processor (510\60, 567\66) supported
only the SMI# pin interface.  The addition of the APIC SMI# message enhances the SMI
interface, and provides for SMI delivery in APIC-based dual processing systems.

2. In dual processing systems, SMIACT# from the bus master (MRM) behaves the same as
in Pentium processor (510\60, 567\66) systems.  If the LRM processor is the CPU in
SMM mode, SMIACT# will be inactive and remain so until that processor becomes the
MRM.  For additional details, refer to Chapter 14 of the Pentium® Processor Family
Developer’s Manual, Volume 1.

3. The Pentium processor (735\90, 815\100, 1000\120, 1110\133) is capable of supporting
an SMM I/O Instruction Restart feature (not supported in the Pentium processor (510\60,
567\66)).  This feature is disabled following RESET.

4. The Pentium processor (735\90, 815\100, 1000\120, 1110\133) default SMM Revision
Identifier changes to 2 when the SMM I/O Instruction Restart feature is enabled. The
Pentium processor (510\60, 567\66) revision ID is 0.
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5. SMI# is NOT recognized by the Pentium processor (735\90, 815\100, 1000\120,
1110\133) in the shutdown state.

6. Clock control is implemented in the Pentium Processor (735\90, 815\100, 1000\120,
1110\133). Refer to Chapter 30 of the Pentium® Processor Family Developer’s Manual,
Volume 1, for more information.

20.2.3. System Management Interrupt Via APIC
When SMI# is asserted (SMI# pin asserted low or APIC SMI# message) it causes the
processor to invoke SMM.

20.2.4. I/O Instruction Restart
This section describes how the Pentium processor (735\90, 815\100, 1000\120, 1110\133)
revision identifier slot can be used to turn I/O Instruction Restart support on and off. Note
that the Pentium Processor (735\90, 815\100, 1000\120, 1110\133) interrupt priority scheme
is changed when the I/O instruction restart feature is enabled. For more information, refer to
Chapter 19 of the Pentium® Processor Family Developer’s Manual, Volume 1.

20.2.4.1. ENABLING I/O INSTRUCTION RESTART

The Pentium Processor (735\90, 815\100, 1000\120, 1110\133) I/O Instruction Restart feature
is automatically disabled following RESET. To enable the I/O Instruction Restart feature, bit
9 in TR12 must be set. See section 20.5 for effects on the System Management Mode
Revision Identifier of turning this feature ON or leaving it OFF.

20.2.4.2. SMRAM STATE SAVE MAP

Table 20-3 shows the state save map.
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Table 20-3.  SMRAM State Save Map

Register Offset Register Writeable?

7FFC CR0 NO

7FF8 CR3 NO

7FF4 EFLAGS YES

7FF0 EIP YES

7FEC EDI YES

7FE8 ESI YES

7FE4 EBP YES

7FE0 ESP YES

7FDC EBX YES

7FD8 EDX YES

7FD4 ECX YES

7FD0 EAX YES

7FCC DR6 NO

7FC8 DR7 NO

7FC4 TR* NO

7FC0 LDT Base* NO

7FBC GS* NO

7FB8 FS* NO

7FB4 DS* NO

7FB0 SS* NO

7FAC CS* NO

7FA8 ES* NO

7FA7 - 7F98 Reserved NO

7F94 IDT Base NO
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Table 20-3.  SMRAM State Save Map (Contd.)

Register Offset Register Writeable?

7F93-7F8C Reserved NO

7F88 GDT Base NO

7F87-7F04 Reserved NO

7F02 Auto HALT Restart Slot (Word) YES

7F00 I/O Instruction Restart Slot (Word) YES

7EFC SMM Revision Identifier (Dword) NO

7EF8 SMBASE Slot (Dword) YES

7EF7 - 7E00 Reserved NO

NOTES:

* Upper two bytes are reserved

Modifying a value that is marked as not writeable will result in unpredictable behavior.

20.2.4.2.1. I/O Instruction Restart Slot
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Register Offset 7F00H

I/O Instruction Restart Slot

PP0107

Figure 20-7.  I/O Instruction Restart Slot

Value at entry Value at exit Comments

00H

00H

00H

0FFH

Do not restart trapped I/O instruction

Restart trapped I/O instruction

The I/O instruction restart slot (register offset 7F00H in SMRAM) gives the SMM handler
the option of causing the RSM instruction to automatically re-execute the interrupted I/O
instruction.  When the RSM instruction is executed, if the I/O instruction restart slot contains
the value 0FFH, then the EIP is modified to point to the instruction immediately preceding
the SMI# request, and  the CPU will automatically re-execute the I/O instruction that the
SMI trapped.  If the I/O instruction restart slot contains the value 00H when the RSM
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instruction is executed, then the CPU will not re-execute the I/O instruction.  The CPU
automatically initializes the I/O instruction restart slot to 00H during SMM entry.  The I/O
instruction restart slot should be written only by the SMM handler when the processor has
asserted the SMI# pin on an I/O instruction boundary.  Processor operation is unpredictable
when the I/O instruction restart slot is set when the processor is servicing an SMI# pin
assertion that originated on a non-I/O instruction boundary.

20.2.4.3. BACK-TO-BACK SMI# AND I/O INSTRUCTION RESTART

If a new SMI# request is received while the CPU is executing an SMM handler, the CPU will
service this SMI# request before restarting the original I/O instruction.  If the I/O restart slot
is set when the CPU executes the RSM instruction for the second SMM handler, execution of
the RSM instruction will decrement the restored EIP again.  The EIP now points to an
address different from the originally interrupted instruction, and the CPU will begin
execution of the interrupted application code at an incorrect entry point.

WARNING

The SMM handler routine must not set the I/O Instruction Restart slot
during the second of two consecutive SMM invocations.

20.2.4.4. EXIT FROM SMM

There is one additional Pentium processor (735\90, 815\100, 1000\120, 1110\133) SMM
feature (to exit from SMM) that can be enabled by writing to control "slots" in the SMRAM
state save area:

I/O Instruction Restart

If the SMI# interrupt was generated on an I/O access to a powered-down device, the SMI
handler can tell the RSM instruction to re-execute that I/O instruction by setting the I/O
Instruction Restart slot.

20.2.5. System Management Mode Revision Identifier
The SMM revision identifier is used to indicate the version of SMM and the SMM extensions
that are supported by the processor.  The SMM revision identifier is written during SMM
entry and can be examined in SMRAM space at Register Offset 7EFCH. The lower word of
the SMM revision identifier refers to the version of the base SMM architecture.  The upper
word of the SMM revision identifier refers to the extensions available.
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SMM Revision Identifier

1 7 1 6

Register Offset 7EFCH

Reserved
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SMBASE Relocation
IO Instruction Restart

If bit 9 of TR12 = 1, Revision ID = 2
If bit 9 of TR12 = 0, Revision ID = 0

Figure 20-8.  System Revision Identifier

Bits Value Comments

16
16
17
17

0
1
0
1

Processor does not support I/O Instruction Restart *
Processor supports I/O Instruction Restart (default)
Processor does not support SMBASE relocation
Processor supports SMBASE relocation

NOTE:

* Pentium processor (510\60, 567\66) only

Bit 16 of the SMM revision identifier indicates to the SMM handler whether or not this
processor supports the SMM I/O Instruction Restart extension.  If this bit is high, then this
processor supports the SMM I/O Instruction Restart extension.  If this bit is low, then this
processor does not support I/O trapping using the I/O trap slot mechanism.

Bit 17 of this slot indicates whether the processor supports relocation of the SMM jump
vector and the SMRAM base address.

The Pentium processor (735\90, 815\100, 1000\120, 1110\133) supports both the I/O
Instruction Restart and the SMBASE relocation features.  To turn ON the I/O Instruction
Restart feature, bit 9 in TR12 must be set in the Pentium Processor (735\90, 815\100,
1000\120, 1110\133).

20.2.6. SMM — Dual Processing Considerations
Although the SMM functions the same when the Dual processor is inserted into Socket 5, the
dual processor operation of the system must be carefully considered.  The issues have to be
addressed with the following:  SMI# delivery, SMRAM and SMIACT#.
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20.2.6.1. DP SMI DELIVERY

In the Pentium processor (735\90, 815\100, 1000\120, 1110\133), System Management
Interrupt may be delivered via the SMI# pin or the local APIC.  For additional details, refer
to Chapter 30 of the Pentium® Processor Family Developer’s Manual, Volume 1.

20.2.6.2. DP SMRAM

SMM is not re-entrant due the fact that the SMRAM State Save Map is fixed relative to the
SMBASE.  If there is a need to support both processors in SMM mode at the same time then
the Primary and  Dual processors should have dedicated, non-overlapping SMRAM spaces.
This can be done by using the SMBASE Relocation feature that the Primary and Dual
processors support.  For additional details, refer to section 20.5.3 of this document.

20.2.6.3. DP SMIACT#

During dual processing operation, SMIACT# is driven only by the MRM processor, and
should be sampled with ADS#.  For additional details, refer to Chapter 30 of the Pentium®

Processor Family User's Manual, Volume 1.
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CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE

The Pentium processor running in protected mode, like the Intel486 and Intel386 processors,
is a complete 32-bit architecture, but it supports programs written for the 16-bit architecture
of earlier Intel processors. There are three levels of this support:

1. Running 8086 and 80286 code with complete compatibility.

2. Mixing 16-bit modules with 32-bit modules.

3. Mixing 16-bit and 32-bit addresses and data within one module.

The first level is discussed in Chapter 9, Chapter 22, and Chapter 23. Chapter 18 shows how
16-bit and 32-bit modules can cooperate with one another, and how one module can use both
16-bit and 32-bit operands and addressing.

The Pentium processor functions most efficiently when the processor can distinguish between
pure 16-bit modules and pure 32-bit modules. A pure 16-bit module has these characteristics:

• All segments occupy 64 Kbytes or less.

• Data items are primarily 8 bits or 16 bits wide.

• Pointers to code and data have 16-bit offsets.

• Control is transferred only among 16-bit segments.

A pure 32-bit module has these characteristics:

• Segments may occupy more than 64 Kbytes (0 bytes to 4 gigabytes).

• Data items are primarily 8 bits or 32 bits wide.

• Pointers to code and data have 32-bit offsets.

• Control is transferred only among 32-bit segments.

A program written for 16-bit processor would be pure 16-bit code. A new program written
for the protected mode of the Pentium processor would be pure 32-bit code.

21.1. USING 16-BIT AND 32-BIT ENVIRONMENTS
The features of the architecture which permit the Pentium processor to mix 16-bit and 32-bit
address and operand size include:

• The D-bit (default bit) of code-segment descriptors, which determines the default choice
of operand-size and address-size for the instructions of a code segment. (In real-address
mode and virtual-8086 mode, which do not use descriptors, the default is 16 bits.) A
code segment whose D-bit is set is a 32-bit segment; a code segment whose D-bit is clear
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is a 16-bit segment. The D-bit eliminates the need to put the operand size and address
size in instructions when all instructions use operands and effective addresses of the
same size.

• Instruction prefixes to override the default choice of operand size and address size
(available in protected mode as well as in real-address mode and virtual-8086 mode).

• Separate 32-bit and 16-bit gates for intersegment control transfers (including call gates,
interrupt gates, and trap gates). The operand size for the control transfer is determined by
the type of gate, not by the D-bit or prefix of the transfer instruction.

• Registers which can be used both for 16-bit and 32-bit operands and effective-address
calculations.

• The B bit (Big bit) of the stack segment descriptor, which specifies the size of stack
pointer (the 32-bit ESP register or the 16-bit SP register) used by the processor for
implicit stack references. The B bit for all data descriptors also controls upper address
range for expand down segments.

21.2. MIXING 16-BIT AND 32-BIT OPERATIONS
The Pentium processor has two instruction prefixes which allow mixing of 32-bit and 16-bit
operations within one segment:

• The operand-size prefix (66H)

• The address-size prefix (67H)

These prefixes reverse the default size selected by the Default bit. For example, the processor
can interpret the MOV mem, reg instruction in any of four ways:

• In a 32-bit segment:

1. Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

2. If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.

3. If preceded by an address-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

4. If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits
from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit segment:

1. Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

2. If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

3. If preceded by an address-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.
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4. If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits
from a 32-bit register to memory using a 32-bit effective address.

These examples show that any instruction can generate any combination of operand size and
address size regardless of whether the instruction is in a 16- or 32-bit segment. The choice of
the 16- or 32-bit default for a code segment is based upon these criteria:

1. The need to address instructions or data in segments which are larger than 64 Kbytes.

2. The predominant size of operands.

3. The addressing modes desired.

The Default bit should be given a setting which allows the predominant size of operands to
be accessed without operand-size prefixes.

21.3. SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS
Because the choice of operand size and address size is specified in code segments and their
descriptors, data segments can be shared freely among both 16-bit and 32-bit code segments.
The only limitation is imposed by pointers with 16-bit offsets, which only can point to the
first 64 Kbytes of a segment. When a data segment with more than 64 Kbytes is to be shared
among 16- and 32-bit segments, the data which is to be accessed by the 16-bit segments must
be located within the first 64 Kbytes.

A stack which spans less than 64 Kbytes can be shared by both 16- and 32-bit code segments.
This class of stacks includes:

• Stacks in expand-up segments with the Granularity and Big bits clear.

• Stacks in expand-down segments with the Granularity and Big bits clear.

• Stacks in expand-up segments with the Granularity bit set and the Big bit clear, in which
the stack is contained completely within the lower 64 Kbytes. (Offsets greater than
0FFFFH can be used for data, other than the stack, which is not shared.)

The B-bit of a stack segment cannot, in general, be used to change the size of stack used by a
16-bit code segment. The size of stack pointer used by the processor for implicit stack
references is controlled by the B-bit of the data-segment descriptor for the stack. Implicit
references are those caused by interrupts, exceptions, and instructions such as the PUSH,
POP, CALL, and RET instructions. Although it seems like the B bit could be used to increase
the stack segment for 16-bit programs beyond 64 Kbytes, this may not be done. The B-bit
does not control explicit stack references, such as accesses to parameters or local variables. A
16-bit code segment can use a "big" stack only if the code is modified so that all explicit
references to the stack are preceded by the address-size prefix, causing those references to
use 32-bit addressing and explicit writes to the stack pointer are preceded by an operand-size
prefix.

In big, expand-down segments (the Big, and Expand-down bits set), all offsets may be
greater than 64K, therefore 16-bit code cannot use this kind of stack segment unless the code



MIXING 16-BIT AND 32-BIT CODE EE

21-4

segment is modified to use 32-bit addressing. (See Chapter 12 for more information about the
B and E bits.)

21.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

When transferring control among procedures in 16-bit and 32-bit code segments,
programmers must be aware of three points:

• Addressing limitations imposed by pointers with 16-bit offsets.

• Matching of operand-size attribute in effect for the CALL/RET instruction pair and the
Interrupt/IRET pair for managing the stack correctly.

• Translation of parameters, especially pointer parameters.

• The validity of the SP register must be noted when using 16-bit gates (see
Section 21.4.2.).

Clearly, 16-bit effective addresses cannot be used to address data or code located beyond
0FFFFH in a 32-bit segment, nor can large 32-bit parameters be squeezed into a 16-bit word;
however, except for these obvious limits, most interface problems between 16-bit and 32-bit
modules can be solved. Some solutions involve inserting interface code between modules.

21.4.1. Size of Code-Segment Pointer
For control-transfer instructions which use a pointer to identify the next instruction (i.e.,
those which do not use gates), the size of the offset portion of the pointer is determined by
the operand-size attribute. The implications of the use of two different sizes of code-segment
pointer are:

• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is always
possible using a 32-bit operand size.

• A JMP, CALL, or RET instruction from a 16-bit segment using a 16-bit operand size
cannot address a destination in a 32-bit segment if the address of the destination is
greater than 0FFFFH.

An interface procedure can provide a mechanism for transfers from 16-bit segments to
destinations in 32-bit segments beyond 64K. The requirements for this kind of interface
procedure are discussed later in this chapter.

21.4.2. Stack Management for Control Transfer
Because stack management is different for 16-bit CALL and RET instructions than for 32-bit
CALL and RET instructions, the operand size of the RET instruction must match the CALL
instruction. (See Figure 21-1.) A 16-bit CALL instruction pushes the contents of the 16-bit IP
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register and (for calls between privilege levels) the 16-bit SP register. The matching RET
instruction also must use a 16-bit operand size to pop these 16-bit values from the stack into
the 16-bit registers. A 32-bit CALL instruction pushes the contents of the 32-bit EIP register
and (for interlevel calls) the 32-bit ESP register. The matching RET instruction also must use
a 32-bit operand size to pop these 32-bit values from the stack into the 32-bit registers. If the
two parts of a CALL/RET instruction pair do not have matching operand sizes, the stack will
not be managed correctly and the values of the instruction pointer and stack pointer will not
be restored to correct values.

While executing 32-bit code, if a call to 16-bit code at a higher or equal privilege level (i.e.,
DPL≤CPL) is made via a 16-bit call gate, then the upper 16-bits of the ESP register may be
unreliable upon returning to the 32-bit code (i.e., after executing a RET in the 16-bit code
segment).

When the CALL instruction and its matching RET instruction are in segments which have D
bits with the same values (i.e., both have 32-bit defaults or both have 16-bit defaults), the
default settings may be used. When the CALL instruction and its matching RET instruction
are in segments which have different D-bit values, an operand size prefix must be used.
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Figure 21-1.  Stack after Far 16- and 32-Bit Calls

There are three ways for a 16-bit procedure to make a 32-bit call:

1. Use a 16-bit call to a 32-bit interface procedure. The interface procedure uses a 32-bit
call to the intended destination.

2. Make the call through a 32-bit call gate.

3. Modify the 16-bit procedure, inserting an operand-size prefix before the call, to change it
to a 32-bit call.

Likewise, there are three ways to cause a 32-bit procedure to make a 16-bit call:

1. Use a 32-bit call to a 32-bit interface procedure. The interface procedure uses a 16-bit
call to the intended destination.

2. Make the call through a 16-bit call gate (the offset cannot exceed 0FFFFH).
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3. Modify the 32-bit procedure, inserting an operand-size prefix before the call, thereby
changing it to a 16-bit call. (Be certain that the return offset does not exceed 0FFFFH.)

Programmers can use any of the preceding methods to make a CALL instruction in a 16-bit
segment match the corresponding RET instruction in a 32-bit segment, or to make a CALL
instruction in a 32-bit segment match the corresponding RET instruction in a 16-bit segment.

NOTE:

When POP SS is used to switch from a 32-bit stack to a 16-bit stack, the
Pentium processor updates ESP[15:0] (or the SP register), based on the new
value of the B bit (B = '0') of the stack segment descriptor. In the case
where the value in ESP before the switch contains a boundary condition
(e.g., ESP[31:0] = 07ffffffch), the new value in ESP after the switch will
only be reflected on the lower 16 bits (i.e., ESP[31:0] = 07fff0000h).
Therefore, code that switches from a 32-bit stack to a 16-bit stack via the
POP SS instruction must not rely on ESP[31:16].

Similar considerations apply when switching from 16-bit to 32-bit stacks.
When executing POP SS to switch from 16-bit stack to 32-bit stack, only SP
(the old stack size) is used to increment the stack pointer, instead of ESP
(the new stack size, 32-bit).

21.4.2.1. CONTROLLING THE OPERAND SIZE FOR A CALL

The operand-size attribute in effect for the CALL instruction is specified by the D bit for the
segment containing the destination and by any operand-size instruction prefix.

When the selector of the pointer referenced by a CALL instruction selects a gate descriptor,
the type of call is determined by the type of call gate.  Calls gates with descriptor type 4 have
a 16-bit operand-size attribute; call gates with descriptor type 12 have a 32-bit operand-size
attribute. The offset to the destination is taken from the gate descriptor; therefore, even a 16-
bit procedure can call a procedure located more than 64 Kbytes from the base of a 32-bit
segment, because a 32-bit call gate contains a 32-bit offset.

An unmodified 16-bit code segment which has run successfully on an 8086 processor or in
real-mode on an Intel 286 processor will have a D-bit which is clear and will not use
operand-size override prefixes; therefore, it will use 16-bit versions of the CALL instruction.
The only modification needed to make a 16-bit procedure produce a 32-bit call is to relink
the call to a 32-bit call gate.

21.4.2.2. CHANGING SIZE OF A CALL

When adding 32-bit gates to 16-bit procedures, it is important to consider the number of
parameters. The count field of the gate descriptor specifies the size of the parameter string to
copy from the current stack to the stack of the more privileged procedure. The count field of
a 16-bit gate specifies the number of 16-bit words to be copied, whereas the count field of a
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32-bit gate specifies the number of 32-bit doublewords to be copied; therefore, the 16-bit
procedure must use an even number of words as parameters.

21.4.3. Interrupt Control Transfers
With a control transfer caused by an exception or interrupt, a gate is used. The operand-size
attribute for the interrupt is determined by the gate descriptor in the interrupt descriptor table
(IDT).

A 32-bit interrupt or trap gate (descriptor type 14 or 15) to a 32-bit interrupt handler can be
used to interrupt either 32-bit or 16-bit procedures. However, sometimes it is not practical to
permit an interrupt or exception to call a 16-bit handler when 32-bit code is running, because
a 16-bit interrupt procedure has a return offset of only 16 bits saved on its stack. If the 32-bit
procedure is running at an address beyond 0FFFFH, the 16-bit interrupt procedure cannot
provide the return address.

21.4.4. Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as parameters
between 16-bit and 32-bit procedures, some translation is required. If a 32-bit procedure
passes a pointer to data located beyond 64K to a 16-bit procedure, the 16-bit procedure
cannot use it. Except for this limitation, interface code can perform any format conversion
between 32-bit and 16-bit pointers which may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require translation
between 32-bit and 16-bit formats. The form of the translation is application-dependent.

21.4.5. The Interface Procedure
Placing interface code between 32-bit and 16-bit procedures can be the solution to several
interface problems:

• Allowing procedures in 16-bit segments to call procedures with offsets greater than
0FFFFH in 32-bit segments.

• Matching operand size between CALL and RET instructions.

• Translating parameters (data).

• Possible invalidation of the upper bits of the ESP register.

The interface code is simplified where these restrictions are followed.

• Interface code resides in a code segment whose D-bit is set, which indicates a default
operand size of 32 bits.

• All procedures which may be called by 16-bit procedures have offsets which are not
greater than 0FFFFH.
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• All return addresses saved by 16-bit procedures also have offsets not greater than
0FFFFH.

The interface code becomes more complex if any of these restrictions are violated. For
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 0FFFFH,
the interface code will have to provide the offset to the entry point. The mapping between
16- and 32-bit addresses only is performed automatically when a call gate is used, because
the descriptor for a call gate contains a 32-bit address. When a call gate is not used, the
descriptor must provide the 32-bit address.

The interface code calls procedures in other segments. There may be two kinds of interface:

• Where 16-bit procedures call 32-bit procedures. The interface code is called by 16-bit
CALL instructions and uses the operand-size prefix before RET instructions for
performing a 16-bit RET instruction. Calls to 32-bit segments are 32-bit CALL
instructions (by default, because the D-bit is set), and the 32-bit code returns with 32-bit
RET instructions.

• Where 32-bit procedures call 16-bit procedures. The interface code is called by 32-bit
CALL instructions, and returns with 32-bit RET instructions (by default, because the D-
bit is set). CALL instructions to 16-bit procedures use the operand-size prefix; 16-bit
procedures return with 16-bit RET instructions.
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CHAPTER 22
VIRTUAL-8086 MODE

The Pentium processor supports execution of one or more 8086 or 8088 programs in a
Pentium processor protected-mode environment. An 8086 program runs in this environment
as part of a virtual-8086 task. Virtual-8086 tasks take advantage of the hardware support for
multitasking offered by the protected mode. Not only can there be multiple virtual-8086
tasks, each one running an 8086 program, but virtual-8086 tasks can be multitasked with
other Pentium processor tasks.

The purpose of a virtual-8086 task is to form a "virtual machine" for running programs
written for the 8086 processor. A complete virtual machine consists of hardware and system
software. The emulation of an 8086 processor is the result of software using hardware in the
following ways:

• The hardware provides a virtual set of registers (through the TSS), a virtual memory
space (the first megabyte of the linear address space of the task), and virtual interrupt
support and directly executes all instructions which deal with these registers and with
this address space.

• The software controls the external interfaces of the virtual machine (I/O, interrupts, and
exceptions) in a manner consistent with the larger environment in which it runs.
Software can choose to emulate I/O and interrupt and exception handling or let the
hardware execute them directly without software intervention.

Software which supports virtual 8086 machines is called a virtual-8086 monitor.  The
Pentium processor includes extensions to its virtual-8086 mode of operation that improve the
performance of applications by eliminating the overhead of faulting to a virtual-8086 monitor
for emulation of certain operations. For more information on the virtual mode extensions on
the Pentium processor, see Appendix H.

22.1. EXECUTING 8086 CPU CODE
The processor runs in virtual-8086 mode when the VM (virtual machine) bit in the EFLAGS
register is set. The processor tests this flag under two general conditions:

1. When loading segment registers, to know whether to use 8086-style address translation.

2. When decoding instructions, to determine which instructions are sensitive to IOPL and
which instructions are not supported (as in real mode).
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22.1.1. Registers and Instructions
The register set available in virtual-8086 mode includes all the registers defined for the 8086
processor plus new registers introduced after the 8086 processor (FS and GS). Instructions,
which explicitly operate on the segment registers FS and GS, are available. The segment-
override prefixes can be used to cause instructions to use the FS and GS registers for address
calculations. Instructions can take advantage of 32-bit operands through the use of the
operand size prefix.

Programs running as virtual-8086 tasks can take advantage of the new application-oriented
instructions added to the architecture by the introduction of the Intel 286, Intel386, Intel486,
and Pentium processors:

• New instructions introduced on the Intel 286 processors.

 PUSH immediate data

 Push all and pop all (PUSHA and POPA)

 Multiply immediate data

 Shift and rotate by immediate count

 String I/O

 ENTER and LEAVE instructions

 BOUND instruction

• New instructions introduced on the Intel386 processors.

 LSS, LFS, LGS instructions

 Long-displacement conditional jumps

 Single-bit instructions

 Bit scan instructions

 Double-shift instructions

 Byte set on condition instruction

 Move with sign/zero extension

 Generalized multiply instruction

• New instructions introduced on the Intel486 processor.

 BSWAP instruction

 XADD instruction

 CMPXCHG instruction

• New instructions introduced on the Pentium processor.

 CMPXCHG8B instruction

 CPUID instruction
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Existing interrupt flag sensitive instructions provide significant performance improvement
when using the virtual mode extensions of the Pentium processor. See Appendix H for more
information.

22.1.2. Address Translation
In virtual-8086 mode, the Pentium processor does not interpret 8086 selectors by referring to
descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts the
selector left by four bits to form a 20-bit base address. The effective address is extended with
four clear bits in the upper bit positions and added to the base address to create a linear
address, as shown in Figure 22-1.

Because of the possibility of a carry, the resulting linear address may have as many as 21
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 to
10FFEFH (1 megabyte plus approximately 64 Kbytes) of the task's linear address space.

Virtual-8086 tasks generate 32-bit linear addresses. While an 8086 program can use only the
lowest 21 bits of a linear address, the linear address can be mapped using paging to any 32-
bit physical address.

Unlike the 8086 and 80286 processors, but like the Intel386 and Intel486 processors, the
Pentium processor can generate 32-bit effective addresses using an address override prefix.
However in virtual-8086 mode, the value of a 32-bit address may not exceed 65,535 without
causing an exception. Protection faults (interrupt 12 or 13 with no error code) occur if an
effective address is generated outside the range 0 through 65,535.
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Figure 22-1.  8086 Address Translation
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22.2. STRUCTURE OF A VIRTUAL-8086 TASK
A virtual-8086 task consists of the 8086 program to be run and the 32-bit "native mode" code
which serves as the virtual-machine monitor. The task must be represented by a 32-bit TSS
(not a 16-bit TSS). The processor enters virtual-8086 mode to run the 8086 program and
returns to protected mode to run the monitor or other 32-bit protected-mode tasks.

To run in virtual-8086 mode, an existing 8086 processor program needs the following:

• A virtual-8086 monitor.

• Operating-system services.

The virtual-8086 monitor is 32-bit protected-mode code which runs at privilege-level 0 (most
privileged). The monitor mostly consists of initialization, exception-handling procedures, and
I/O emulation in order to virtualize the PC platform. As with any other Pentium processor
program, code-segment descriptors for the monitor must exist in the GDT or in the task's
LDT. The linear addresses above 10FFEFH are available for the virtual-8086 monitor, the
operating system, and other system software. The monitor also may need data-segment
descriptors so it can examine the interrupt vector table or other parts of the 8086 program in
the first megabyte of the address space.

In general, there are two options for implementing the 8086 operating system:

1. The 8086 operating system may run as part of the 8086 program. This approach is
desirable for either of the following reasons:

 The 8086 application code modifies the operating system.

 There is not sufficient development time to reimplement the 8086 operating system
as a Pentium processor operating system.

2. The 8086 operating system may be implemented or emulated in the virtual-8086
monitor. This approach is desirable for any of the following reasons:

 Operating system functions can be more easily coordinated among several virtual-
8086 tasks.

 The functions of the 8086 operating system can be easily emulated by calls to the
Pentium processor operating system.

Note that the approach chosen for implementing the 8086 processor operating system may
have different virtual-8086 tasks using different 8086 operating systems.

22.2.1. Paging for Virtual-8086 Tasks
Paging is not necessary for a single virtual-8086 task, but paging is useful or necessary for
any of the following reasons:

• Creating multiple virtual-8086 tasks. Each task must map the lower megabyte of linear
addresses to different physical locations.
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• Emulating the address wraparound which occurs at 1 megabyte. With members of the
8086 family, it is possible to specify addresses larger than 1 megabyte. For example,
with a selector value of 0FFFFH and an offset of 0FFFFH, the effective address would
be 10FFEFH (1 megabyte plus 65519 bytes). The 8086 processor, which can form
addresses only up to 20 bits long, truncates the high-order bit, thereby "wrapping" this
address to 0FFEFH. The Pentium processor, however, does not truncate such an address.
If any 8086 processor programs depend on address wraparound, the same effect can be
achieved in a virtual-8086 task by mapping linear addresses between 100000H and
110000H and linear addresses between 0 and 10000H to the same physical addresses.

• Creating a virtual address space larger than the physical address space.

• Sharing 8086 operating system or ROM code which is common to several 8086
programs running in multitasking.

• Redirecting or trapping references to memory-mapped I/O devices.

22.2.2. Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. To protect the system
software running in a virtual-8086 task from the 8086 application program, software
designers may follow either of these approaches:

• Reserve the first megabyte (plus 64 Kbytes) of each task's linear address space for the
8086 processor program. An 8086 processor task cannot generate addresses outside this
range.

• Use the U/S bit of page-table entries to protect the virtual-machine monitor and other
system software in each virtual-8086 task's space. When the processor is in virtual-8086
mode, the CPL is 3 (least privileged). Therefore, an 8086 processor program has only
user privileges. If the pages of the virtual-machine monitor have supervisor privilege,
they cannot be accessed by the 8086 program.

22.3. ENTERING AND LEAVING VIRTUAL-8086 MODE
Figure 22-2 summarizes the ways to enter and leave an 8086 program. Virtual-8086 mode is
entered when the VM flag is set.  There are two ways to do this:

1. A switch to a task loads the image of the EFLAGS register from the new TSS. The TSS
of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does not
load the high word of the EFLAGS register, which contains the VM flag. A set VM flag
in the new contents of the EFLAGS register indicates that the new task is executing 8086
instructions; therefore, while loading the segment registers from the TSS, the processor
forms base addresses in the 8086 style.

2. An IRET instruction from a procedure of a task loads the EFLAGS register from the
stack. A set VM flag indicates the procedure to which control is being returned to be an
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8086 procedure. The CPL at the time the IRET instruction is executed must be 0,
otherwise the processor does not change the state of the VM flag.

INITIAL
ENTRY

8086 PROGRAM
(V86 MODE)

V86 MONITOR
(PROTECTED

MODE)

OTHER CPU TASKS
(PROTECTED MODE)

INTERRUPT, EXCEPTION

MODE TRANSITION DIAGRAM

IRET

TASK
SWITCH

TASK
SWITCH

TASK SWITCH TASK SWITCH

TASK SWITCH

OR IRET

APM53

Figure 22-2.  Entering and Leaving Virtual-8086 Mode

When a task switch is used to enter virtual-8086 mode, the segment registers are loaded from
a TSS. When an IRET instruction is used to set the VM flag, however, the segment registers
are loaded from the segment registers on the PL0 stack (see Figure 22-3).

The processor leaves virtual-8086 mode when an interrupt or exception occurs. There are two
cases:

1. The interrupt or exception causes a task switch. A task switch from a virtual-8086 task to
any other task loads the EFLAGS register from the TSS of the new task. If the new TSS
is a 32-bit TSS and the VM flag in the new contents of the EFLAGS register is clear or if
the new TSS is a 16-bit TSS, the processor clears the VM flag of the EFLAGS register,
loads the segment registers from the new TSS using protected-mode address formation,
and begins executing the instructions of the new task in 32-bit protected mode.

2. The interrupt or exception calls a privilege-level 0 procedure (most privileged). The
processor stores the current contents of the EFLAGS register on the stack, then clears the
VM flag. The interrupt or exception handler, therefore, runs as "native" 32-bit protected-
mode code. If an interrupt or exception calls a procedure in a conforming segment or in a
segment at a privilege level other than 0 (most privileged), the processor generates a
general-protection exception; the error code is the selector of the code segment to which
a call was attempted.
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Figure 22-3.  Privilege Level 0 Stack after Interrupt in Virtual-8086 Mode

System software does not change the state of the VM flag directly, but instead changes states
in the image of the EFLAGS register stored on the stack or in the TSS. The virtual-8086
monitor sets the VM flag in the EFLAGS image on the stack or in the TSS when first
creating a virtual-8086 task. Exception and interrupt handlers can examine the VM flag on
the stack. If the interrupted procedure was running in virtual-8086 mode, the handler may
need to call the virtual-8086 monitor.

22.3.1. Transitions Through Task Switches
A task switch to or from a virtual-8086 task may have any of three causes:

1. An interrupt which calls a task gate.

2. An action of the scheduler of the 32-bit operating system.

3. Executing an IRET instruction when the NT flag is set.

In any of these cases, the processor changes the VM flag in the EFLAGS register according
to the image in the new TSS. If the new TSS is a 16-bit TSS, the upper word of the EFLAGS
register is not in the TSS; the processor clears the VM flag in this case. The processor
updates the VM flag prior to loading the segment registers from their images in the new TSS.
The new setting of the VM flag determines whether the processor interprets the new
segment-register images as 8086 selectors, 80286 selectors or 32-bit  selectors.
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22.3.2. Transitions Through Trap Gates and Interrupt Gates
The processor may leave virtual-8086 mode as the result of an exception or interrupt which
calls a trap or interrupt gate. The exception or interrupt handler returns to the 8086 program
by executing an IRET instruction.

Exceptions and interrupts can be handled in one of three ways:

1. By the the virtual-8086 monitor.

2. The virtual-8086 monitor can pass control to the 8086 program's interrupt handler.

3. By a protected-mode interrupt service routine.

If the interrupt or exception is one which the monitor needs to handle and the VM flag is set
in the EFLAGS image stored on the stack, the interrupt handler passes control to the virtual-
8086 monitor.  The virtual-8086 monitor may choose one of the first two methods listed
above. If the exception or interrupt is one which the monitor does not need to handle, the
IOPL can be set to 3 allowing the protected-mode interrupt handler to execute for all virtual-
mode interrupts.

Because it was designed to run on an 8086 processor, an 8086 program in a virtual-8086 task
has an 8086-style interrupt table, which starts at linear address 0. However, for exceptions
and interrupts requiring virtual-8086 monitor intervention and a transition into protected
mode, the processor does not use this table directly.  Instead, the processor calls handlers
through the IDT. The IDT entry for an interrupt or exception in a virtual-8086 task must
contain either:

• A task gate.

• A 32-bit trap gate (descriptor type 14) or 32-bit interrupt gate (descriptor type 15), which
must point to a nonconforming, privilege-level 0 (most privileged), code segment.

Interrupts and exceptions which call 32-bit trap or interrupt gates use privilege-level 0. The
contents of the segment registers are stored on the stack for this privilege level. Figure 22-3
shows the format of this stack after an exception or interrupt which occurs while a virtual-
8086 task is running an 8086 program.

After the processor saves the 8086 segment registers on the stack for privilege level 0, it
clears the segment registers before running the handler procedure. This lets the interrupt
handler safely save and restore the DS, ES, FS, and GS registers as though they were
Pentium processor selectors. Interrupt handlers, which may be called in the context of either
a regular task or a virtual-8086 task, can use the same code sequences for saving and
restoring the registers for any task. Clearing these registers before execution of the IRET
instruction does not cause a trap in the interrupt handler. Interrupt procedures which expect
values in the segment registers or which return values in the segment registers must use the
register images saved on the stack for privilege level 0. Interrupt handlers which need to
know whether the interrupt occurred in virtual-8086 mode can examine the VM flag in the
stored contents of the EFLAGS register.

Sending an interrupt or exception back to the 8086 program involves the following steps:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure.
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2. Store the FLAGS, CS and IP values of the 8086 program on the privilege-level 3 stack
(least privileged).

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 3
handler procedure.

4. Execute an IRET instruction to pass control to the handler.

5. When the IRET instruction from the privilege-level 3 handler again calls the virtual-
8086 monitor, restore the return link on the privilege-level 0 stack to point to the
original, interrupted, privilege-level 3 procedure.

6. Execute an IRET instruction to pass control back to the interrupted procedure.

If the IOPL is set to three and the DPL of the interrupt gate is set to three, INT n instructions
will trap with the given vector number n. Interrupt vectors that must have their IDT gates set
to three can examine the VM bit in the EFLAGS image on the stack to determine if the
interrupt needs to be redirected to the virtual-8086 monitor or passed to the 8086 program's
interrupt handler.

22.4. SENSITIVE INSTRUCTIONS
When the Pentium processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF,
INT n, and IRET instructions are sensitive to IOPL.  The IN, INS, OUT, and OUTS
instructions, which are sensitive to IOPL in protected mode, are not sensitive in virtual-8086
mode.  Following is a complete list of instructions which are sensitive in virtual-8086 mode:

CLI   Clear Interrupt-Enable Flag

STI   Set Interrupt-Enable Flag

PUSHF   Push Flags

POPF   Pop Flags

INT n   Software Interrupt

IRET   Interrupt Return

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an
attempt to use the instructions listed above triggers a general-protection exception.  These
instructions are sensitive to IOPL in order to give the virtual-8086 monitor a chance to
emulate the facilities they affect. For information on the behavior of these instructions using
the virtual mode extensions, see  Appendix H.

22.5. VIRTUAL INTERRUPT SUPPORT
Many 8086 programs written for non-multitasking systems set and clear the IF flag to control
interrupts. This may cause problems in a multitasking environment. As a result, virtual
monitors running on the Intel386 and Intel486 processors require maintaining a virtual
interrupt flag in software. All instructions affecting the IF flag trap to the virtual-8086
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monitor for emulation on these processors. For more information on Pentium processor
support of a virtual interrupt flag, see Appendix H.

22.6. EMULATING 8086 OPERATING SYSTEM CALLS
Many 8086 operating systems are called by pushing parameters onto the stack, then
executing an INT n instruction.  The INT n instruction is sensitive to IOPL to allow the
virtual-8086 monitor to emulate the function of the 8086 operating system or send the
interrupt back to the 8086 operating system.

When the IOPL<3, INT n instructions are intercepted by the virtual-8086 monitor.  When the
IOPL=3, interrupts are serviced by the protected-mode interrupt service routine in a manner
compatible with the Intel486 processor.  On the Intel386 and Intel486 processors, all INT n
instructions running in virtual-8086 mode require interception by the virtual-8086 monitor
when the IOPL is less than 3. For information on Pentium processor virtual mode extension
support of interrupt handling, see Appendix H.

Table 22-1 determines what action the Pentium processor takes in virtual-8086 mode for a
software interrupt based on the IOPL.

Table 22-1.  Software Interrupt Operation

IOPL Processor Action

=3 Interrupt from Virtual-8086 Mode to Protected Mode:

Clears VM and TF flags

If service through interrupt gate, clears  IF flag

Changes to PL0 stack using TSS values

Pushes GS, FS, DS and ES onto PL0 stack

Clears GS, FS, DS and ES to 0

Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto PL0 stack

Sets CS and EIP from interrupt gate

<3 General protection exception

22.7. VIRTUAL I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. This
may cause problems in a multitasking environment. If more than one program accesses the
same port, they may interfere with each other. Most multitasking systems require application
programs to access I/O ports through the operating system. This results in simplified,
centralized control.



EE VIRTUAL-8086 MODE

22-11

The processor provides I/O protection for creating I/O which is compatible with the
environment and transparent to 8086 programs. Designers may take any of several possible
approaches to protecting I/O ports:

• Protect the I/O address space and generate exceptions for all attempts to perform I/O
directly.

• Let the 8086 processor program perform I/O directly.

• Generate exceptions on attempts to access specific I/O ports.

• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are I/O-mapped or
memory-mapped.

22.7.1. I/O-Mapped I/O
The I/O permission bit map can be used to generate exceptions on attempts to access specific
I/O addresses. The I/O permission bit map of each virtual-8086 task determines which I/O
addresses generate exceptions for that task. Because each task may have a different I/O
permission bit map, the addresses which generate exceptions for one task may be different
from the addresses for another task.  This differs from protected mode because the IOPL is
not checked.  See Chapter 8 for more information about the I/O permission bit map.

22.7.2. Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can be used
to generate exceptions for attempts to access I/O ports. The virtual-8086 monitor may use
paging to control memory-mapped I/O in these ways:

• Map part of the linear address space of each task which needs to perform I/O to the
physical address space where I/O ports are placed. By putting the I/O ports at different
addresses (in different pages), the paging mechanism can enforce isolation between
tasks.

• Map part of the linear address space to pages which are not-present. This generates an
exception whenever a task attempts to perform I/O to those pages. System software then
can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system intervention
under some conditions. In these cases, it may be possible to generate an exception for only
the first attempt to access I/O. The system software then may determine whether a program
can be given exclusive control of I/O temporarily, the protection of the I/O space may be
lifted, and the program allowed to run at full speed.
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22.7.3. Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be
emulated using page mapping. The linear space for the buffer can be mapped to a different
physical space for each virtual-8086 task. The virtual-8086 monitor then can control which
virtual buffer to copy onto the real buffer in the physical address space.

22.8. DIFFERENCES FROM 8086 CPU
In general, virtual-8086 mode will run software written for the 8086 and 8088 processors.
The following list shows the minor differences between the 8086 processor and the virtual-
8086 mode of the Pentium processor and other 32-bit processors.

1. Instruction clock counts.

The 32-bit processors takes fewer clocks for most instructions than the 8086 processor.
The areas most likely to be affected include:

 Delays required by I/O devices between I/O operations.

 Assumed delays with 8086 processor operating in parallel with an 8087.

2. Divide exceptions point to the DIV instruction.

Divide exceptions on the Pentium processor always leave the saved CS:IP value pointing
to the instruction which failed. On the 8086 processor, the CS:IP value points to the next
instruction.

3. Undefined 8086 processor opcodes.

Opcodes which were not defined for the 8086 processor generate an invalid-opcode or
execute as one of the new instructions defined for the Pentium processor.

4. Value written by PUSH SP.

The Pentium processor pushes a different value on the stack for PUSH SP than the 8086
processor. The Pentium processor pushes the value in the SP register before it is
decremented as part of the push operation; the 8086 processor pushes the value of the SP
register after it is decremented. If the pushed value is important, replace PUSH SP
instructions with the following three instructions:

PUSH BP

MOV BP, SP

XCHG BP, [BP ]

This code functions as the 8086 PUSH SP instruction on the Pentium processor.

5. Shift or rotate by more than 31 bits.

The Pentium processor masks all shift and rotate counts to the lowest five bits. This
limits the count to a maximum of 31 bit positions.

6. Redundant prefixes.

The Pentium processor limits instructions to 15 bytes. The only way to violate this limit
is with redundant prefixes before an instruction. A general-protection exception is
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generated if the limit on instruction length is violated. The 8086 processor has no
instruction length limit.

7. Operand crossing offset 0 or 65,535.

On the 8086 processor, an attempt to access a memory operand which crosses offset
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when the
contents of the SP register are 1) causes the offset to wrap around modulo 65,536. The
Pentium processor generates an exception in these cases, a general-protection exception
if the segment is a data segment (i.e., if the CS, DS, ES, FS, or GS register is being used
to address the segment), or a stack exception if the segment is a stack segment (i.e., if the
SS register is being used).

8. Sequential execution across offset 65,535.

On the 8086 processor, if sequential execution of instructions proceeds past offset
65,535, the processor fetches the next instruction byte from offset 0 of the same segment.
On the Pentium processor, the processor generates a general-protection exception.

9. LOCK is restricted to certain instructions.

The LOCK prefix and its output signal should only be used to prevent other bus masters
from interrupting a data movement operation. The LOCK prefix only may be used with
the following Pentium processor instructions when they modify memory. An invalid-
opcode exception results from using LOCK before any other instruction, or with these
instructions when no write operation is made to memory.

 Bit test and change: the BTS, BTR, and BTC instructions.

 Exchange: the XCHG, XADD, CMPXCHG, and CMPXCH8B instructions (no
LOCK prefix is needed for the XCHG instruction).

 One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions

 Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and
XOR instructions.

10. Single-stepping external interrupt handlers.

The priority of the Pentium processor single-step exception is different from that of the
8086 processor. This change prevents an external interrupt handler from being single-
stepped if the interrupt occurs while a program is being single-stepped. The Pentium
processor single-step exception has higher priority than any external interrupt. The
Pentium processor will still single-step through an interrupt handler called by the INT
instruction or by an exception.

11. IDIV exceptions for quotients of 80H or 8000H.

The Pentium processor can generate the largest negative number as a quotient from the
IDIV instruction. The 8086 processor generates a divide-error exception instead.

12. Flags in stack.

The contents of the EFLAGS register stored by the PUSHF instruction, by interrupts, and
by exceptions is different from that stored by the 8086 processor in bit positions 12
through 15. On the 8086 processor these bits are stored as though they were set, but in
virtual-8086 mode bit 15 is always clear, and bits 14 through 12 have the last value
loaded into them.
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13. NMI interrupting NMI handlers.

After an NMI interrupt is accepted by the Pentium processor, the NMI interrupt is
masked until an IRET instruction is executed.

14. Floating-point errors call the floating-point error exception.

Floating-point exceptions on the Pentium processor call the floating-point error
exception handler. If an 8086 processor uses another exception for the 8087 interrupt,
both exception vectors should call the floating-point error exception handler. The
Pentium processor has signals which, with the addition of external logic, support user-
defined error reporting for emulation of the interrupt mechanism used in many personal
computers.

15. Numeric exception handlers should allow prefixes.

On the Pentium processor, the value of the CS and IP registers saved for floating-point
exceptions points at any prefixes which come before the ESC instruction. On the 8086
processor, the saved CS:IP points to the ESC instruction.

16. Floating-Point Unit does not use interrupt controller.

The floating-point error signal to the Pentium processor does not pass through an
interrupt controller (an INT signal from 8087 coprocessor does). Some instructions in a
coprocessor-error exception handler may need to be deleted if they use the interrupt
controller. The Pentium processor has signals which, with the addition of external logic,
support user-defined error reporting for emulation of the interrupt mechanism used in
many personal computers.

17. Response to bus hold.

Unlike the 8086 and Intel 286 processors, the Pentium processor responds to requests for
control of the bus from other potential bus masters, such as DMA controllers, between
transfers of parts of an unaligned operand, such as two words which form a doubleword.

18. CPL is 3 in virtual-8086 mode.

The 8086 processor does not support protection, so it has no CPL. Virtual-8086 mode
uses a CPL of 3, which prevents the execution of privileged instructions. These are:

 LIDT instruction

 LGDT instruction

 LMSW instruction

 Special forms of the MOV instruction for loading and storing the control registers

 CLTS instruction

 HLT instruction

 INVD instruction

 WBINVD instruction

 INVLPG instruction

 RDMSR instruction

 WRMSR instruction
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 RSM instruction

These instructions may be executed while the processor is in real-address mode
following reset initialization. They allow system data structures, such as descriptor
tables, to be set up before entering protected mode. Since virtual-8086 mode is entered
from protected mode, these structures will already be set up.

19. Denormal exception handling is different. See Chapter 23 for details on exception
handling differences.

22.9. DIFFERENCES FROM INTEL 286 CPU
The differences between virtual-8086 mode and Intel 286 real-address mode affect the
interface between applications and the operating system. The application runs at privilege
level 3 (user mode), so all attempts to use privilege-protected instructions and architectural
features generate calls to the virtual-machine monitor. The monitor examines these calls and
emulates them.

22.9.1. Privilege Level
Programs running in virtual-8086 mode have a privilege level of 3 (user mode), which
prevents the execution of privileged instructions. These are:

• LIDT instruction

• LGDT instruction

• LMSW instruction

• Special forms of the MOV instruction for loading and storing the control and debug
registers

• CLTS instruction

• HLT instruction

• INVD instruction

• WBINVD instruction

• INVLPG instruction

• RDMSR instruction

• WRMSR instruction

• RSM instruction

Virtual-8086 mode is entered from protected mode, so it should have no need for these
instructions. These instructions, while not executable in virtual-8086 mode, can be executed
in real-address mode.
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22.9.2. Bus Lock
The Intel 286 processor implements the bus lock function differently than the Intel386,
Intel486, and Pentium processors. This fact may or may not be apparent to 8086 programs,
depending on how the virtual-8086 monitor handles the LOCK prefix. Instructions with the
LOCK prefix are sensitive to the IOPL; software designers can choose to emulate its
function. If, however, 8086 programs are allowed to execute LOCK directly, programs which
use forms of memory locking specific to the 8086 processor may not run properly when run
on the Pentium and other 32-bit  processors.

The LOCK prefix and its bus signal only should be used to prevent other bus masters from
interrupting a data movement operation. The LOCK prefix only may be used with the
following Pentium CPU instructions when they modify memory. An invalid-opcode
exception results from using the LOCK prefix before any other instruction, or with these
instructions when no write operation is made to memory (i.e., when the destination operand
is in a register).

• Bit test and change: the BTS, BTR, and BTC instructions.

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is needed
for the XCHG instruction).

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and XOR
instructions.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may lock a larger memory area. For example, typical 8086 and Intel 286
configurations lock the entire physical memory space.

Unlike the 8086 and Intel 286 processors, the Intel386, Intel486 and Pentium processors
respond to requests for control of the bus from other potential bus masters, such as DMA
controllers, between transfers of parts of an unaligned operand, such as two words which
form a doubleword.

22.10. DIFFERENCES FROM Intel386™  AND Intel486™ CPUs
Real-address mode behavior is the same on the Intel386, Intel486, and Pentium processors.
When the virtual mode extensions are disabled (VME bit in CR4 is set to zero), the virtual-
8086 mode behavior of the Pentium processor is the same as on the Intel386 and Intel486
processors.  By enabling the virtual mode extensions (VME bit in CR4 is set to one),
however, the virtual-8086 mode performance of the Pentium processor is significantly
improved.  See Appendix H for obtaining information on these extensions. For maximum
performance, programs ported to the Pentium processor should be run with the cache
enabled.
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CHAPTER 23
COMPATIBILITY

The Pentium processor is fully binary compatible with the Intel486 DX and SX CPU's, the
Intel386  DX and SX CPU's, the Intel 286 CPU and the 8086/8088 CPU's.  Compatibility
means that, within certain limited constraints, programs that execute on any previous
generations of compatible microprocessors will produce identical results when executed on
the Pentium processor. There are, however, slightly different implementations of
architectural features. These limitations and any implementation differences are listed in this
chapter.

The Pentium processor also includes extensions to the registers, instruction set, and control
functions of the Intel486 architecture just as the Intel486 CPU included extensions to the
Intel386 CPU. Those extensions have been defined with consideration for compatibility with
previous and future microprocessors. This section also summarizes the compatibility
considerations for those extensions.

23.1. RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and memory
layout descriptions. When bits are marked as undefined or reserved, it is essential for
compatibility with future processors that software treat these bits as having a future, though
unknown effect. Software should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers or
memory locations which contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously stored from the same
register.

Depending on the values of reserved register bits will make software dependent upon the
unspecified manner in which the Pentium processor handles these bits. Depending upon
reserved values risks incompatibility with future processors. AVOID ANY SOFTWARE
DEPENDENCE UPON THE STATE OF RESERVED PENTIUM PROCESSOR REGISTER
BITS.

Software written for an Intel386 or Intel486 CPU which uses reserved bits correctly will port
to the Pentium processor without generating general exceptions.



COMPATIBILITY EE

23-2

23.2. INTEGER UNIT
This section identifies the new features and the implementation differences of existing
features in the integer unit, which includes added registers and flags, exception handling,
memory management and protected-mode features.

23.2.1. New Functions and Modes
New control functions defined for the Pentium processor are enabled by mode bits in newly
defined registers, discussed below, that were not present in the Intel486 architecture. The
instructions that are executed to read and write these new registers are undefined on the
Intel486 processor, and an invalid opcode exception occurs when an attempt is made to
execute one of these instructions on the Intel486 processor. Consequently, programs that
execute correctly on the Intel486 processor cannot erroneously enable these functions.
However, when an instruction is executed to write one of the new registers and an attempt is
made to set a reserved bit to a value other than the original value, then a general protection
exception occurs on the Pentium processor so programs that execute on the Pentium
processor cannot erroneously enable functions that may be implemented in future processors.
The Pentium processor does not check for attempts to set reserved bits in model-specific
registers. It is the obligation of the software writer to enforce this discipline. These reserved
bits may be used in future Intel processors.

23.2.2. Serializing Instructions
Certain instructions have been defined to serialize instruction execution to ensure that
modifications to flags, registers and memory are completed before the next instruction is
fetched and executed. Because the Pentium processor uses branch-prediction techniques to
improve performance, instruction execution is not generally serialized when a branch
instruction is executed. As a result, branch instructions do not necessarily flush the prefetch
queue on the Pentium processor and serializing instructions should replace branch
instructions used for this purpose. Refer to Chapter 18 and the Pentium® Processor Family
Developer’s Manual, Volume 1 for more information on serializing instructions and for more
information on branch prediction.

23.2.3. Detecting the Presence of New Features
As the Pentium processor provides extensions to the architecture of the Intel486 processor,
other models within the processor family have provided both extensions to previous models
and features specific to that model (such as testability functions). Consequently, software that
wishes to use the extensions or specific features must identify on which model it is executing
to determine what features are available. Programmers have developed code sequences that
can be executed to distinguish between the 8086, Intel 286, Intel386, and Intel486
microprocessors. The code sequences commonly test which bits in the processor's FLAGS
register are implemented. (For an example see Chapter 5.) The CPUID instruction has been
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defined to provide a straightforward way for software to identify what family, model and
stepping of processor it is running on. This can be accomplished as follows:

1. One of the code sequences described in Chapter 5 can be executed to determine that the
software is executing on an Intel486 CPU or a later model that implements a superset of
the Intel486 architecture. (This is typically done by testing the ability to change the
value of the AC flag.)

2. Having determined that the processor is "at least" an Intel486 processor, a software
sequence can test whether it is able to change the value of the ID bit. If software is able
to change the value of the ID bit, then the processor supports the CPUID instruction.

3. The sequence can then continue by executing the CPUID instruction. In order to use a
particular architecture extension, software should check that the appropriate feature bit
returned by this instruction is set. Refer to this instruction in Chapter 25 for more
information about its operation.

23.2.4. Undefined Opcodes
All new instructions defined for the Pentium processor use binary encodings for which the
invalid opcode exception occurs when an attempt is made to execute these instructions on the
Intel486 processor. Consequently, programs that execute correctly on the Intel486 processor
cannot erroneously execute these instructions and thereby produce unexpected results.

23.2.5. Clock Counts
Each processor takes fewer clocks for most instructions than earlier processors. The areas
most likely to be affected include:

• Delays required by I/O devices between I/O operations.

• Assumed delays with 8086 processor operating in parallel with an 8087.

23.2.6. Initialization and Reset
This section identifies the state of the integer and floating-point units for the various
microprocessors and numeric processor extensions.

23.2.6.1. INTEGER UNIT INITIALIZATION AND RESET

Table 23-1 identifies the values of the integer unit registers following hardware reset for the
32-bit Intel architecture.  These values are the same regardless of whether the Built-In Self
Test (BIST) is invoked.
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23.2.6.2. FPU/NPX INITIALIZATION AND RESET

The Pentium processor, following RESET, contain 0 in ST0-ST7 stack registers (See Table
23-2) with the tags set to valid (10) (but visible to the programmer as 01 via
FSAVE/FSTENV). The Pentium processor, in addition, has an INIT pin which, when
asserted, causes the processor to reset without altering the FPU state.  The state of the
Intel486 processor FPU is left unchanged when the Built-In Self Test (BIST) is not requested
during RESET.
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Table 23-1.  Processor State Following Power-Up

Register
Pentium ®

Processor Intel486   CPU Intel386   CPU

EFLAGS1 00000002H 00000002H FFFC802AH

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H 60000010H 7FFFFFE0H

CR2 00000000H 00000000H 00000000H

CR3 00000000H 00000000H 00000000H

CR4 00000000H 00000000H 00000000H

CS 0F000H
base=0FFFF000H
limit=0FFFFH
AR=00000093H

0F000H
base=0FFFF000H
limit=0FFFFH
AR=0FF3F93FFH

0F000F000H
base=0FFFF000H
limit=0FFFFH
AR=0FF3F93FFH

SS, DS, ES, FS, GS 0000
base=00000000H
limit=0FFFFH
AR=00000093H

0000
base=00000000H
limit=0FFFFH
AR=0FF3F93FFH

0000
base=00000000H
limit=0FFFFH
AR=0FF3F93FFH

EDX 0000x5xxH 0000x4xxH 00000308H

EAX 02 02 02

EBX, ECX, ESI, EDI, EBP, ESP 00000000H 00000000H 00000000H

GDTR,LDTR 00000000
base=00000000H
limit=0FFFFH
AR=00000082H

xxxx0000
base=00000000H
limit=0FFFFH
AR=0FFFFFFFFH

00000000
base=00000000H
limit=0FFFFH
AR=0FFFFFFFFH

IDTR 00000000
base=00000000H
limit=0FFFFH
AR=00000082H

xxxx0000
base=00000000H
limit=0FFFFH
AR=0FFFFFFFFH

00000000
base=00000000H
limit=0FFFFH
AR=0FFFFFFFFH

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF1FF0H FFFF1FF0H

DR7 00000400H 00000000H 00000000H

Time Stamp Counter 0 NA3 NA

Control and Event Select 0 NA NA

TR12 0 NA NA

All Other MSR's Undefined NA NA

Data and Code Cache Invalid Invalid NA

TLB(s) Invalid Invalid NA
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NOTES:

1. The high ten (14 for the Intel486 and Intel386 CPU's) bits of the EFLAGS register are undefined  following
power-up. Undefined bits are reserved. Software should not depend on the states of any of these bits.

2. If Built-In Self Test is invoked, EAX is 0 only if all tests passed.

3. Not Applicable.

Upon hardware RESET on a system with an Intel386 CPU and an Intel387 math coprocessor,
the floating-point registers will remain unchanged unless the BIST is requested. When the
BIST is requested, hardware RESET has almost the same effect as the FINIT instruction; the
only difference is that FINIT leaves the stack registers unchanged, while hardware RESET
with BIST resets them to 0. This could show up as a difference in the value of the tag word
observed after the FSAVE/FSTENV instructions are executed. The FINIT instruction clears
both the data and instruction error pointers.

Following an Intel386 processor reset, the processor identifies the type of its coprocessor
(Intel287 or Intel387 DX math coprocessor) by sampling its ERROR# input some time after
the falling edge of RESET and before execution of the first ESC instruction.  The Intel287
coprocessor keeps its ERROR# output in inactive state after hardware reset; the Intel387
coprocessor keeps its ERROR# output in active state after hardware reset.  Upon hardware
RESET or FINIT, the Intel387 math coprocessor signals an error condition. The Pentium and
Intel486 processors, like the Intel287 coprocessor, do not.  Table 23-2 provides a summary of
the differences between the Intel386, Intel486, and Pentium processors FPU's following
power-up.

Table 23-2.  FPU and NPX State Following Power-Up

Register
Pentium ® Processor

FPU
Intel486   Processor

FPU
Intel387   CoProcessor

NPX

Control Word 0040H 037FHH 037FH

Status Word 0000H 0000H 0000H

Tag Word 5555H 0FFFFH 0FFFFH

IP Offset 00000000H 00000000H 00000000H

Data Operand Offset 00000000H 00000000H 00000000H

CS Selector 0000H 0000H 0000H

Operand Selector 0000H 0000H 0000H

FSTACK All zeroes All zeroes All zeroes

NOTES:

The state of the FPU is left unchanged on the Pentium processor following INIT.  The state of the FPU is left
unchanged on the Intel486 processor FPU following RESET w/o BIST.
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23.2.6.3. Intel486 SX MICROPROCESSOR AND Intel487™ SX MATH
COPROCESSOR INITIALIZATION

This interface is designed for two distinct sockets: one for the Intel486 SX CPU and one for
end-user/dealer upgrade with Intel487 SX math coprocessor. Refer to the Intel486™ SX
Microprocessor/Intel487™ SX Math CoProcessor Data Book for more details. The following
should be considered when designing an Intel486 SX CPU/Intel487 SX math coprocessor
system.

1. The timing loops should be independent of clock speed and clocks per instruction. One
way to attain this is to implement these loops in hardware and not in software (e.g.,
BIOS).

2. The initialization routine should check the presence of a math coprocessor (e.g., Intel487
SX math coprocessor) and should set the floating-point related bits in the CR0 register
accordingly (see Chapter 10 for a complete description of these bits).  The recommended
bit pattern is given in Table 23-3. The FSTCW instruction will give a value of FFFFh for
the Intel486 SX microprocessor and 037Fh for the Intel487 SX math coprocessor.

Table 23-3.  Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessor/Intel487™ SX Math CoProcessor System

CR0 Bit Intel486   SX Microprocessor Intel487   SX Math CoProcessor

EM 1 0

MP 0 1

NE 1 0, for DOS systems
1, for user-defined exception handler

Following is an example code sequence to initialize the system and check for the presence of
Intel486 SX microprocessor/Intel487 SX math coprocessor. Refer to Chapter 5 for complete
CPU and coprocessor identification information.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel487 SX math coprocessor is not present, the following code can be run to set the
CR0 register for the Intel486 SX microprocessor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

The above initialization will cause any floating-point instruction to generate the interrupt 7.
The software emulation will then take control to execute these instructions. This code is not
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required if an Intel487 SX math coprocessor is present in the system, thereupon the typical
initialization routine for the Intel486 SX microprocessor will be adequate.

The interpretation of different combinations of the EM and MP bits is shown in Table 23-4.

Table 23-4.  EM and MP Bits Interpretations

EM MP Interpretation

0 0 Numeric instructions are passed to FPU; WAIT ignores TS

0 1 Numeric instructions are passed to FPU; WAIT tests TS

1 0 Numeric instructions trap to emulator; WAIT ignores TS

1 1 Numeric instructions trap to emulator, WAIT tests TS

23.2.7. New Instructions
This section identifies the introduction of new instructions for the 32-bit microprocessors.

23.2.7.1. NEW PENTIUM PROCESSOR INSTRUCTIONS

The Pentium processor introduces three new application instructions:

• CMPXCHG8B instruction

• CPUID instruction

• RDTSC instruction  For more information on RDTSC, see Chapter 25 of this
document.

There are four new system instructions, used for reading from and writing to the new control
register (CR4) and model specific registers, and resuming from system management mode:

• MOV CR4, r32 and MOV r32, CR4

• RDMSR

• WRMSR

• RSM

The form of the MOV instruction used to access the test registers has been removed on the
Pentium processor. New test registers have been defined for the cache, the TLB's and the
BTB which are accessed through the model-specific registers on the Pentium processor. For
more information on the test registers used with the RDMSR and WRMSR instructions, see
Chapter 25 of this document.
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23.2.7.2. NEW Intel486 PROCESSOR INSTRUCTIONS

The Intel486 CPU introduced three new application instructions:

• BSWAP instruction

• XADD instruction

• CMPXCHG instruction

Three new system instructions, used for managing the cache and TLB, were introduced:

• INVD instruction

• WBINVD instruction

• INVLPG instruction

23.2.7.3. NEW Intel386 PROCESSOR INSTRUCTIONS

New instructions introduced on the Intel386 processor include:

• LSS, LFS, LGS instructions

• Long-displacement conditional jumps

• Single-bit instructions

• Bit scan instructions

• Double-shift instructions

• Byte set on condition instruction

• Move with sign/zero extension

• Generalized multiply instruction

• MOV to and from control registers

• MOV to and from test registers (now obsolete)

• MOV to and from debug registers

23.2.8. Obsolete Instructions
The following instructions no longer supported include:

• MOV to and from test registers (removed from the Pentium processor)

Execution of these instructions generates an invalid opcode fault.

23.2.9. Flags
This section discusses the flag bits additions to the EFLAGS register as shown in
Figure 23-1.
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  VIRTUAL INTERRUPT PENDING (VIP)
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  ALIGNMENT CHECK (AC)
  VIRTUAL 8086 MODE (VM)
  RESUME FLAG (RF)
  NESTED TASK (NT)
  I/O PRIVILEGE LEVEL (IOPL)
  OVERFLOW FLAG (OF)
  DIRECTION FLAG (DF)
  INTERRUPT ENABLE FLAG (IF)
  TRAP FLAG (TF)
  SIGN FLAG (SF)
  ZERO FLAG (ZF)
  AUXILIARY CARRY FLAG (AF)
  PARITY FLAG (PF)
  CARRY FLAG (CF)

Bit positions shown as 0 or 1 are Intel reserved.
Do not use. Always set them to the value previously read.

Intel486  processor flag additions

Pentium  processor flag additions

Figure 23-1.  Pentium ® Processor EFLAGS Register

23.2.9.1. NEW PENTIUM® PROCESSOR FLAGS

The Pentium processor includes the following three bits to the EFLAGS register:

• VIF  For more information, see Appendix H.

• VIP  For more information, see Appendix H.

• ID  The ability to set and clear the IDentification Flag indicates that the processor
supports the CPUID instruction.

23.2.9.2. NEW Intel486  PROCESSOR FLAGS

The AC flag (bit position 18), in conjunction with the AM bit in the CR0 register, controls
alignment checking.
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23.2.10. Control Registers
This section identifies the addition of new control registers and control register bits in the
32-bit Intel architecture. See Figure 23-2 for extensions to the control registers for the
Intel486 and Pentium processors.  These extensions are discussed further in the following
subsections.
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Intel Reserved.  Do not depend on the state of these bits.

Pentium  Processor Control Register Extensions

Intel486  Processor Control Register Extensions

Figure 23-2.  Control Register Extensions

23.2.10.1. PENTIUM PROCESSOR CONTROL REGISTERS

The recommended values for the CD and NW bits in CR0 (00) implements a writeback
strategy for the data cache of the Pentium processor.  On the Intel486 processor, these values
implement a writethrough strategy. See Table 23-5 for a comparison of these bits on the
Intel486 and Pentium processors. For complete information on caching, refer to Chapter 18.
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One new Control Register (CR4) is defined. CR4 contains bits that enable certain extensions
to the Intel486 architecture provided in the Pentium processor.  These include:

• VME  For more information, see Appendix H.

• PVI   For more information, see Appendix H.

• TSD  For more information, see Appendix H.

• DE  While this bit is 1, Debugging Extensions are enabled, providing support for I/O
breakpoints.   Refer to Chapter 17 for more information.

• PSE  For more information, see Appendix H.

• MCE  While this bit is 1, Machine Check Exceptions are enabled, allowing exception
handling for certain hardware error conditions. Refer to the Pentium® Processor Data
Book for more information.

The content of CR4 is zero following reset.

23.2.10.2. Intel486  PROCESSOR CONTROL REGISTERS

Five new bits are defined in the CR0 register for the Intel486 processor:

• NE  The Numeric Error bit enables the standard mechanism for reporting floating-
point numeric errors.

• WP  The Write Protect bit write-protects pages against supervisor-mode accesses.

• AM  The Alignment Mask bit, in conjunction with the AC (Alignment Check) flag,
controls whether alignment checking is performed.

• NW  The Not Writethrough bit enables writethroughs and cache invalidation cycles
when clear and disables invalidation cycles and writethroughs which hit in the cache
when set.

• CD  The Cache Disable bit enables the internal cache when clear and disables the
cache when set.

Two new bits have been defined in the CR3 register:

• PCD  The state of the Page-Level Cache Disable bit is driven on the PCD pin during
bus cycles which are not paged, such as interrupt acknowledge cycles, when paging is
enabled.   The PCD pin is used to control caching in an external cache on a cycle-by-
cycle basis.
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Table 23-5.  Cache Mode Differences Between the Pentium ® and Intel486™ Processors

CD NW Pentium ® Processor Description Intel486   CPU Description

0 0 Normal highest performance cache
operation .
Read hits access the cache.

Normal highest performance cache
operation
Read hits access the cache.

Read misses may cause replacements. Read misses may cause replacements.
These lines will enter the Exclusive or
Shared state under the control of the
WB/WT# pin.
Write hits update the cache. Write hits update the cache.
Only writes to shared lines and write
misses appear externally

All writes appear externally.

Writes to Shared lines can be changed to
the Exclusive State under the control of the
WB/WT# pin.
Invalidations are allowed. Invalidations are allowed.

0 1 Invalid Operation
GP(0)

Invalid Operation
GP(0)

1 0 Cache disabled.  Memory consistency
maintained.  Contents locked in cache.
Read hits access the cache.

Cache disabled.  Memory consistency
maintained.  Contents locked in
cache.
Read hits access the cache.

Read misses do not cause replacement. Read misses do not cause replacement.
Write hits update the cache. Write hits update the cache.
Only writes to Shared lines and write
misses update external memory

All writes update external memory

Writes to Shared lines can be changed to
the Exclusive State under the control of the
WB/WT# pin.
Invalidations are allowed. Invalidations are allowed.

1 1 Cache disabled.  Memory consistency
not maintained.
Read hits access the cache.

Cache disabled.  Memory consistency
not maintained.
Read hits access the cache.

Read misses do not cause replacement. Read misses do not cause replacement.
Write hits update the cache, but do not
access memory.

Write hits update the cache, but do not
access memory.

Write hits will cause Exclusive State lines
to change to Modified State
Shared lines will remain in the Shared state
after write hits.
Write misses access memory. Write misses access memory.
Inquire and Invalidation Cycles do not
effect the cache state or contents.

Inquire and Invalidation Cycles do not
effect the cache state or contents.

This is the state after reset. This is the state after reset.
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• PWT  The state of the Page-Level Writethrough bit is driven on the PWT pin during
bus cycles which are not paged, such as interrupt acknowledge cycles, when paging is
enabled.  The PWT pin is used to control writethrough in an external cache on a cycle-
by-cycle basis.

23.2.11. Debug Registers
The Pentium processor includes extensions to the Intel486 processor debugging support for
breakpoints on I/O references. To use the new breakpoint features, it is necessary to set
CR4.DE to 1.

23.2.11.1. DIFFERENCES IN DR6

It is not possible to write a 1 to reserved bit 12 in DR6 on the Pentium processor.  However,
on the Intel486 processor, it is possible to write a 1 in bit position 12.

See "Initialization Values" in this chapter for differences of this register at processor reset.

23.2.11.2. DIFFERENCES IN DR7

The Pentium processor determines the type of breakpoint access by the bits R/W0 to R/W3 in
DR7 as follows:

00 Break on instruction execution only

01 Break on data writes only

10 Undefined if CR4.DE=0, break on I/O reads or writes but not instruction fetches if
CR4.DE=1

11 Break on data reads or writes but not instruction fetches

On the Pentium processor, reserved bits 11,  12, 14 and 15 are hard-wired to 0.  On the
Intel486 CPU, however, bit 12 can be set.

See "Initialization Values" above for differences of this register at processor reset.

23.2.11.3. DEBUG REGISTERS 4 AND 5

Although the DR4 and DR5 registers have been documented as "Reserved," previous
generations of processors aliased references to these registers to Debug Registers 6 and 7,
respectively. When Debug Extensions are not enabled (CR4.DE=0), the Pentium processor
remains compatible with existing software by allowing these aliased references. However,
when Debug Extensions are enabled (CR4.DE=1), attempts to reference DR4 or DR5 will
result in an invalid opcode exception.
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23.2.12. Test Registers
The implementation of test registers on the Intel486 CPU used for testing the cache and TLB
has been redesigned using model specific registers (discussed below) on the Pentium
processor.  The MOV to and from test register instructions generate invalid opcode
exceptions on the Pentium processor.  For more information on the use of the test registers,
see Pentium® Processor Developer’s Manual, Volume 1, Chapter 33.

23.2.13. Model Specific Registers
Certain features of the Pentium processor that are described in the Pentium® Processor
Developer’s Manual, Volume 1 are specific to the Pentium processor and may not be
continued in the same way in future processors. Examples are functions for testability,
performance monitoring, and machine check errors. These features are accessed through
Model Specific Registers. The new instructions RDMSR and WRMSR are used to read and
write these registers. In order to use such model-specific features, software should check that
the "Family" number reported by the CPUID instruction is equal to 5. Software which uses
these registers and functions may be incompatible with future processors. For more
information, see Pentium® Processor Developer’s Manual, Volume 1 Chapter 33.

23.2.14. Exceptions
This section identifies the introduction of new exceptions in the 32-bit microprocessor family
and implementation differences in existing exception handling.

23.2.14.1. NEW PENTIUM PROCESSOR EXCEPTIONS

The Pentium processor includes the following extensions and conditions to the Intel486
architecture for exceptions and interrupts:

• Exception #13  A General-Protection exception occurs when an attempt is made to
write 1 to a reserved bit position of a special register.

• Exception #14  A Page Fault exception occurs when a 1 is detected in any of the
reserved bit positions of a page table entry, page directory entry, or page directory
pointer during address translation by the Pentium processor.

• Exception #18  A Machine Check Exception is newly defined for reporting parity
errors and other hardware errors.  This is a model-specific exception and may not be
implemented the same in future processors. For compatibility reasons,  the MCE bit in
the CR4 register acts as the machine check enable bit. When this bit is clear (which it is
at reset), the processor inhibits generation of the machine check abort.  In the event that
a system is using the machine check interrupt vector for another purpose and the MCE
bit in CR4 is set, the interrupt routine must examine the state of the CHK bit in the
model-specific Machine Check Type register to determine the cause of the interrupt.
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See the Pentium® Processor Developer’s Manual, Volume 1 for more information on the
Machine Check Type register and model-specific registers.

See Chapter 14 for details on exceptions and interrupts.

23.2.14.2. NEW Intel486  PROCESSOR EXCEPTIONS

The Intel486 processor includes the following extensions and conditions to the Intel486
architecture for exceptions and interrupts:

• Exception #17  An Alignment Check exception reports unaligned memory references
when alignment checking is being performed.

23.2.14.3. NEW Intel386  PROCESSOR EXCEPTIONS

The Intel386 processor introduced new conditions which can occur even in systems designed
for the Intel 286 processor.

• Exception #6 — The Invalid Opcode exception can result from improper use of the
LOCK instruction prefix.

• Exception #14 — A Page Fault exception can occur in a 16-bit program if the operating
system enables paging. Paging can be used in a system with 16-bit tasks if all tasks use
the same page directory. Because there is no place in a 16-bit TSS to store the PDBR
register, switching to a 16-bit task does not change the value of the PDBR register. Tasks
ported from the Intel 286 processor should be given 32-bit TSSs so they can make full
use of paging.

• Exception #13  The Intel386 processor set a limit of 15 bytes on instruction length.
The only way to violate this limit is by putting redundant prefixes before an instruction.
A general-protection exception is generated if the limit on instruction length is violated.
The 8086 processor has no instruction length limit.

23.2.14.4. INTERRUPT PROPAGATION DELAY

External hardware interrupts on the Pentium processor may be recognized on different
instruction boundaries due to the pipe-lined execution of the Pentium processor and possibly
an extra instruction passing through the v-pipe concurrently with an instruction in the u-pipe.
When the two instructions complete execution, the interrupt is then serviced. Therefore, the
EIP pushed onto the stack when servicing the interrupt on the Pentium processor may be
different then that for the Intel486 processor (i.e., it is serviced later).

23.2.14.5. PRIORITY OF EXCEPTIONS

The priority of exceptions are broken down into several major categories:

• Traps on the previous instruction
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• External interrupts

• Faults on fetching the next instruction

• Faults in decoding the next instruction

• Faults on executing an instruction

There are no changes in the priority of these major categories between the different
processors, however, exceptions within these categories are implementation dependent and
may change from processor to processor. See Table 14-2 in Chapter 14 of this document for
more information.

23.2.14.6. DIVIDE-ERROR EXCEPTIONS

Divide-error exceptions on the Pentium, Intel486, and Intel386 processors always leave the
saved CS:IP value pointing to the instruction which failed. On the 8086 processor, the CS:IP
value points to the next instruction.

The Pentium, Intel486, and Intel386 processors can generate the largest negative number as a
quotient for the IDIV instruction (80H and 8000H). The 8086 processor generates a divide-
error exception instead.

23.2.14.7. WRITES USING THE CS REGISTER PREFIX

Following a switch from protected mode to real-address mode, the Intel486 processor
requires the coding of a far jump control flow instruction prior to performing a write using
the CS segment register prefix (for example: MOV CS:[0], EAX). The far jump in protected
mode on the Intel486 processor reloads the CS access rights to be writable. If this
requirement is not met, a general protection exception occurs. This requirement has been
eliminated on the Pentium processor which leaves the access rights unchanged and ignores
code segment access right protection checks in real-address mode.  As a result, the code
segment register can be used as a prefix in a write operation in real-address mode without
generating an exception. For upwards and downwards compatibility, however, programmers
may wish to include the far jump instruction prior to any writes to the code segment in real-
address mode.

The code segment can not be written to in protected mode on either the Intel486 or Pentium
processors.

23.2.14.8. NMI INTERRUPTS

After an NMI interrupt is recognized by the Intel 286, Intel386, Intel486 and Pentium
processors, the NMI interrupt is masked until the first IRET instruction is executed, unlike
the 8086 processor.
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23.2.14.9. INTERRUPT VECTOR TABLE LIMIT

The LIDT instruction can be used to set a limit on the size of the interrupt vector table. The
double fault exception is generated if an interrupt or exception attempts to read a vector
beyond the limit.  Shutdown then occurs on the 32-bit Intel architecture processors if the
double fault handler vector is beyond the limit. (The 8086 processor does not have a
shutdown mode nor a limit.)

23.2.14.10. INTERRUPTS INSIDE SYSTEM MANAGEMENT MODE

In the Pentium processor, entrance into System Management Mode (SMM) automatically
resets the properties of the interrupt vector table to the Real mode, but does not reset the
Interrupt Descriptor Table Register (IDTR) to the default Real mode table base address of
zero. In the Intel386™ SL, Intel486 SL and SL Enhanced Intel486 processors, the IDTR is
reset (to base address zero) upon entrance to SMM. An LIDT instruction may be used at the
beginning of an SMM handler to allow the handler, if desired, to use the default Real mode
interrupt vector table in either a Pentium processor or an earlier Intel SL processor.

23.2.15. Descriptor Types and Contents
Operating-system code which manages space in descriptor tables often contains an invalid
value in the access-rights field of descriptor-table entries to identify unused entries.  Access
rights values of 80H and 00H remain invalid for the Intel 286, Intel386,  Intel486, and
Pentium processors.  Other values which were invalid on the Intel 286 processor may be
valid on the 32-bit processors because uses for these bits have been  defined.

23.2.16. Changes in Segment Descriptor Loads
On the Intel386 processors, loading a segment descriptor always causes a locked read and
write to set the accessed bit of the descriptor. On the Pentium and Intel486 processors, the
locked read and write occur only if the bit is not already set.

23.2.17. Task Switching and Task State Segments
This section identifies the implementation differences of task switching, additions to the task
state segment and the handling of TSS's and TSS selectors.

23.2.17.1. PENTIUM PROCESSOR TASK STATE SEGMENTS

The Pentium processor TSS may contain additional information used in virtual-8086 mode
by the virtual mode extensions to the Pentium processor. For more information on virtual
mode extensions, see Appendix H.
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23.2.17.2. TSS SELECTOR WRITES

During task state saves, the Intel486 CPU writes two-byte selectors into a 32-bit TSS, leaving
the upper 16 bits undefined.  For performance reasons, the Pentium processor writes four-
byte selectors into the TSS with the upper two bytes being zero. For compatibility reasons,
code should not depend on the value of the upper 16 bits of the selector in the TSS.

23.2.17.3. ORDER OF READS/WRITES TO THE TSS

The order of reads and writes into the TSS is processor dependent.  The Pentium processor
may generate different page fault addresses (CR2) in the same TSS area than the Intel486
CPU, if a TSS crosses a page boundary (which is not recommended).

23.2.17.4. USING A 16-BIT TSS WITH 32-BIT CONSTRUCTS

Task switches using 16-bit TSS's should be used only for pure 16-bit code.  Any new code
written using 32-bit constructs (operands, addressing, or the upper word of the EFLAGS
register) should use only 32-bit TSSs.  This is due to the fact that the 32-bit processors do not
save the upper 16 bits of EFLAGS to a 16-bit TSS.  A task switch back to a 16-bit task that
was executing in virtual mode will never re-enable the virtual mode, as this bit was not saved
in the upper half of the EFLAGS value in the TSS. Therefore, it is strongly recommended
that any code using 32-bit constructs use a only a 32-bit TSS to ensure correct behavior in a
multitasking environment.

23.2.17.4.1. Differences in I/O Map Base Addresses

The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps around
the 64K boundary. Any I/O accesses check for permission to access this I/O address at the
I/O base address plus the I/O offset.  If the I/O map base address exceeds the specified limit
of 0DFFFH, an I/O access will wrap around and obtain the permission for the I/O address at
an incorrect location within the TSS.  A TSS limit violation does not occur in this situation
on the Intel486 processor.  However, the Pentium processor considers the TSS to be a 32-bit
segment and a limit violation occurs when the I/O base address plus the I/O offset is greater
than the TSS limit.  By following the recommended specification for the I/O base address to
be less than 0DFFFH, the Intel486 processor will not wrap around and access incorrect
locations within the TSS for I/O port validation and the Pentium processor will not
experience general protection faults.  Figure 23-3 demonstrates the different areas accessed
by the Intel486 and Pentium processors.
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Figure 23-3.  I/O Map Base Address Differences

23.2.17.4.2. Caching, Pipe-lining, Prefetching

The Pentium processor includes separate instruction and data caches. The data cache
supports a writeback (or alternatively writethrough, on a line by line basis) policy for
memory updates.  Refer to Chapter 18 and the Pentium® Processor Developer’s Manual,
Volume 1 for more information about the organization and operation of the Pentium
processor caches.

The Intel486 processor includes a single internal cache for both instructions and data.

The meaning of bits CD and NW in CR0 have been redefined so the recommended value
(00) enables writeback for the data cache of the Pentium processor. In the Intel486 processor
the same value for these bits enables writethrough for the cache. However, it is possible for
external system hardware to force the Pentium processor to disable caching or to use
writethrough policy should that be required. Refer to Chapter 18 and the Pentium® Processor
Developer’s Manual, Volume 1 for more information about hardware control of the Pentium
processor caches.
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The Pentium processor supports page-level cache management in the same manner as the
Intel486 processor by using the PCD and PWT bits in CR3, page directory pointers, page
directory entries, and page table entries. The Intel486 processor, however, is not affected by
the state of the PWT bit since the internal cache of the Intel486 processor is a writethrough
cache.

23.2.17.5. SELF MODIFYING CODE WITH CACHE ENABLED

Previous versions of Intel processors maintained compatibility on sequences of self
modifying code that include a jump instruction immediately after any write that modifies an
instruction. The Pentium processor maintains this compatibility. See section 18.2.3 for
further clarification.

Historically the purpose of the jump has been to flush old versions of the instructions that
have already been fetched into the prefetch buffer. Because the Pentium processor employs
branch prediction, its prefetch queues are not necessarily flushed. In order to support self
modifying code the Pentium processor includes a mechanism to compare the address of a
write instruction to the addresses of instructions that have been prefetched.

Because the linear address of the write is checked against the linear address of the
instructions that have been prefetched, special care must be taken for self-modifying code to
work correctly when the physical addresses of the instruction and the written data are the
same, but the linear addresses differ. In such cases, it is necessary to execute a serializing
operation to flush the prefetch queue after the write and before executing the modified
instruction. See Chapter 18 for more information on serializing instructions. Because of the
requirement for writing compatible self modifying code across generations of processors,
both sets of constraints need to be complied—specifically that a jump is required and that
either there is no aliasings or that a serializing instruction is executed.

NOTE

The check on linear addresses described above is not in practice a concern
for compatibility. Applications that include self-modifying code use the
same linear address for modifying and fetching the instruction. Systems
software, such as a debugger, that might possibly modify an instruction
using a different linear address than that used to fetch the instruction must
execute a serializing operation, such as IRET, before the modified
instruction is executed.

For compatibility across Intel processors it is necessary to use the jump and
observe the precaution described above.

23.2.18. Paging
This section identifies enhancements made to the paging unit and implementation differences
in the paging mechanism.
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23.2.18.1. PENTIUM PROCESSOR PAGING

The Pentium processor provides an extension to the memory management/paging functions
of the  Intel486 CPU to support larger page sizes. See Appendix H for more information.

23.2.18.2. Intel486  PROCESSOR PAGING

Two bits introduced in the Intel486 processor have been defined in page table entries for
controlling caching of pages:

• PCD  The Page-Level Cache Disable bit controls caching on a page-by-page basis.

• PWT  The Page-Level Writethrough bit controls the use of a writethrough of or
writeback policy on a page-by-page basis.  Since the internal cache of the Intel486
processor is a writethrough cache, it is not affected by the state of the PWT bit.

23.2.18.3. ENABLING AND DISABLING PAGING

Paging is enabled and disabled by a MOV CR0, REG instruction that modifies the PG bit.
The Intel386 CPU family, the Intel486 CPU family, and the Pentium processor have slightly
different requirements on the following code used to enable and disable paging:

1. MOV CR0, REG followed immediately by a short JMP instruction.

2. Identity map the entire sequence bounded by the MOV and JMP instructions.

The Intel386 CPU family require steps 1 or 2 be performed. The Pentium processor and
Intel486 CPU family require that both steps 1 and 2 be performed. The instructions
modifying the PG bit should be followed immediately by a JMP instruction and those
instructions should reside on a page whose linear and physical addresses are identical.

23.2.19. Stack Operations
This section identifies the differences in stack implementation between the various
microprocessors.

23.2.19.1. PUSH SP

The Pentium processor, Intel486, Intel386, and Intel 286 processors push a different value on
the stack for a PUSH SP instruction than the 8086 processor. The 32-bit processors push the
value of the SP register before it is decremented as part of the push operation; the 8086
processor pushes the value of the SP register after it is decremented. If the value pushed is
important, replace PUSH SP instructions with the following three instructions:

PUSH BP
MOV  BP, SP
XCHG BP, [BP]
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This code functions as the 8086 processor PUSH SP instruction on the Pentium processor.

23.2.19.2. FLAGS PUSHED ON THE STACK

The setting of the flags stored by the PUSHF instruction, by interrupts, and by exceptions is
different on the 32-bit processors than that stored by the 8086 and Intel 286 processors in bits
12 and 13 (IOPL), 14 (NT), and 15 (reserved).  The differences are as follows:

• 8086 processor  bits 12 through 15 are always set.

• Intel 286 processor  bits 12 through 15 are always clear in real-address mode.

• 32-bit processors in real-address mode, bit 15 is always clear, and bits 14 through 12
have the last value loaded into them.

Other bits that can be used to differentiate between the 32 bit processors include:

• Bit 18 (AC) can be used to distinguish an Intel386 processor from the Intel486 and
Pentium processors. Since it is not implemented on the Intel386 processor, it will always
be clear.

• Bit 21 (ID) can be used to determine if an application can execute the CPUID
instruction. This instruction supplies information to applications at run time that
identifies the family, model, stepping, vendor and what features are implemented on the
processor in a system.  The ability to set and clear this bit indicates that the CPUID is
supported on a processor.

• Bits 19 and 20 will always be zero on processors that do not support virtual mode
extensions. For more information on virtual mode extensions, see Appendix H.

These differences can be used to distinguish what type of processor is present and are used in
the CPU identification code example in Chapter 5.

23.2.19.3. SELECTOR PUSHES/POPS

On selector pushes, the Intel486 CPU writes 2 bytes onto 4-byte stacks and decrements ESP
by 4.  The Pentium processor writes 4 bytes with the upper 2 bytes being zeros.

On selector pops, the Intel486 CPU reads only 2 bytes.  The Pentium processor reads 4 bytes
and discards the upper 2 bytes.  This may have an effect if the ESP is close to the stack
segment limit.  On the Pentium processor, ESP+4 may be above the stack limit in which case
a fault will be generated.  On the Intel486 CPU, ESP+2 may be less than the stack limit and
no fault is generated.

23.2.19.4. ERROR CODE PUSHES

The Intel486 CPU implements the error code pushed on the stack as a 16-bit value.  When
pushed onto a 32-bit stack, the Intel486 CPU only pushes 2 bytes and updates ESP by 4.  The
Pentium processor error code is a full 32 bits with the upper 16 bits set to zero.  The Pentium
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processor, therefore, pushes 4 bytes and updates ESP by 4. Any code that relies on the state
of the upper 16 bits may produce inconsistent results.

23.2.19.5. FAULT HANDLING EFFECTS ON THE STACK

During the handling of certain instructions, such as CALL and PUSHA, faults may occur in
different sequences for the different processors.  For example, during far calls, the Intel486
CPU pushes the old CS and EIP before a possible branch fault is resolved. A branch fault is a
fault from a branch instruction occurring from a segment limit or access rights violation. If a
branch fault is taken, the Intel486 CPU will have corrupted memory below the stack pointer.
However, ESP is backed up in order to make the instruction restartable.  The Pentium
processor issues the branch before the pushes.  Therefore, if a branch fault does occur, the
Pentium processor does not corrupt memory below the stack pointer.  This implementation
difference, however, does not constitute a compatibility problem, as only values at or above
the stack pointer are considered to be valid.

23.2.19.6. INTERLEVEL RET/IRET FROM A 16-BIT INTERRUPT OR
CALL GATE

If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, only 16
bits of the old ESP can be pushed onto the stack. On the subsequent RET/IRET, the 16-bit
ESP is popped but the full 32-bit ESP is updated since control is being resumed in a 32-bit
stack environment. The Intel486 processor writes the SS selector into the upper 16 bits of
ESP.  The Pentium processor writes zeros into the upper 16 bits.

23.2.20. Mixing 16- and 32-Bit Segments
The features of the 16-bit Intel 286 processor are an object-code compatible subset of those
of the Pentium processor. The Default bit in segment descriptors indicates whether the
processor is to treat a code, data, or stack segment as a 16-bit or 32-bit segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit
processors if the Intel-reserved word (highest word) of the descriptor is clear. On the 32-bit
Intel architecture, this word includes the upper bits of the base address and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there are
no descriptors for global descriptor tables), and task gates are the same for the 16- and 32-bit
processors. Other 16-bit descriptors (TSS segment, call gate, interrupt gate, and trap gate) are
supported by the 32-bit processors. The 32-bit processors also have descriptors for TSS
segments, call gates, interrupt gates, and trap gates which support the 32-bit architecture.
Both kinds of descriptors can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits in the
reserved word cause the 32-bit processors to interpret these descriptors exactly as an Intel
286 processor does; for example:
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• Base Address—The upper eight bits of the 32-bit base address are clear, which limits
base addresses to 24 bits.

• Limit—The upper four bits of the limit field are clear, restricting the value of the limit
field to 64 Kbytes.

• Granularity bit—The Granularity bit is clear, indicating the value of the 16-bit limit is
interpreted in units of 1 byte.

• Big bit—In a data-segment descriptor, the B bit is clear in the segment descriptor used
by the 32-bit processors, indicating the segment is no larger than 64 Kbytes.

• Default bit—In a code-segment descriptor, the D bit is clear, indicating 16-bit addressing
and operands are the default. In a stack-segment descriptor, the D bit is clear, indicating
use of the SP register (instead of the ESP register) and a 64-Kbyte maximum segment
limit.

For formats of these descriptors and documentation of their use see the iAPX 286
Programmer's Reference Manual. For information on mixing 16- and 32-bit code in
applications, see Chapter 21.

23.2.21. Segment and Address Wraparound
This section discusses differences in segment and address wraparound between the Pentium,
Intel486, Intel386, Intel 286, and 8086 processors.

23.2.21.1. SEGMENT WRAPAROUND

On the 8086 processor, an attempt to access a memory operand which crosses offset 65,535
or 0FFFFH or offset 0 (e.g., MOV a word to offset 65,535 or PUSH a word when SP = 1)
causes the offset to wrap around modulo 65,536 or 010000H. With the Intel 286 processor,
any base and offset combination which addresses beyond 16 megabytes wraps around to the
first megabyte of the address space. The Pentium, Intel486, and Intel386 processors in real-
address mode generate an exception in these cases: a general-protection exception if the
segment is a data segment (i.e., if the CS, DS, ES, FS, or GS register is being used to address
the segment) or a stack exception if the segment is a stack segment (i.e., if the SS register is
being used).  An exception to this behavior occurs when a stack access is datum aligned, and
the stack pointer is pointing to the last aligned datum of that size at the top of the stack
(ESP=0FFFFFFFC).  When this data is popped, no segment limit violation occurs and the
stack pointer will wrap around  to 0.

The address space of the Pentium and Intel486 processors may wraparound at 1 megabyte in
real-address mode. An external pin A20M# forces wraparound if enabled. On members of the
8086 family, it is possible to specify addresses greater than 1 megabyte. For example, with a
selector value 0FFFFH and an offset of 0FFFFH, the effective address would be 10FFEFH (1
megabyte + 65519 bytes). The 8086 processor, which can form addresses up to 20 bits long,
truncates the uppermost bit, which "wraps" this address to 0FFEFH. However, the Pentium
and Intel486 processors do not truncate this bit if A20M# is not enabled.
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If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor
does not have a shutdown mode nor a limit.)

23.2.22. Write Buffers and Memory Ordering
The Pentium processor has two write buffers, one corresponding to each of the pipe-lines, to
enhance the performance of consecutive writes to memory. These write buffers can be filled
simultaneously in one clock e.g., by two simultaneous write misses in the two pipe-lines.
Writes in these buffers are driven out on the external bus in the order they were generated by
the processor core. No reads (as a result of cache miss) are reordered around previously
generated writes sitting in the write buffers. The implication of this is that the write buffers
will be flushed or emptied before a subsequent bus cycle is run on the external bus.

It should be noted that only memory writes are buffered and I/O writes are not. The Pentium
and Intel486 processors do not synchronize the completion of memory writes on the bus and
instruction execution after the write. The OUT instruction or a serializing instruction needs to
be executed to synchronize writes with the next instruction. Refer to Chapter 18 for
information on serializing instructions.

No re-ordering of read cycles occurs on the Pentium processor. Specifically, the write buffers
are flushed before the IN instruction is executed.

On the Intel486 CPU, under certain conditions, a memory read will go onto the external bus
before the memory writes pending in the buffer even though the writes occurred earlier in the
program execution. A memory read will only be reordered in front of all writes pending in
the buffers if all writes pending in the buffers are cache hits and the read is a cache miss.
Under these conditions, the Intel486 processor will not read from an external memory
location that needs to be updated by one of the pending writes.

Locked bus cycles are used for read-modify-write accesses to memory.  During a locked bus
cycle, the Intel486 processor will always access external memory, it will never look for the
location in the on-chip cache.  All data pending in the Intel486 processor's write buffers will
be written to memory before a locked cycle is allowed to proceed to the external bus. Thus,
the locked bus cycle can be used for eliminating the possibility of reordering read cycles on
the Intel486 processor. If the line is present in the cache, the Pentium processor will write it
back if it was dirty and invalidate the line.

I/O reads are never reordered in front of buffered memory writes on the Intel486 processor.
This ensures an update of all memory locations before reading the status from an I/O device.

23.2.23. Bus Locking
The LOCK prefix and its bus signal only should be used to prevent other bus masters from
interrupting a data movement operation. The LOCK prefix only may be used with the
following Pentium processor, Intel486 CPU, and Intel386 CPU instructions when they
modify memory. An invalid-opcode exception results from using the LOCK prefix before
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any other instruction, or with these instructions when no write operation is made to memory
(i.e., when the destination operand is in a register).

• Bit test and change: the BTS, BTR, and BTC instructions.

• Exchange: the XCHG, XADD, CMPXCHG, and CMPXCHG8B instructions (no LOCK
prefix is needed for the XCHG instruction).

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions.

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and XOR
instructions.

The Intel 286 processor performs the bus lock function differently than the Intel486
processor. Programs which use forms of memory locking specific to the Intel 286 processor
may not run properly when run on the Intel486 processor.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may lock a larger memory area. For example, typical 8086 and Intel 286
configurations lock the entire physical memory space. Programmers should not depend on
this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL; if CPL is less privileged
than the IOPL, a general protection exception is generated. On the Intel386 DX, Intel486,
and Pentium processors, no check against IOPL is performed.

23.2.24. Bus Hold
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the
Pentium processor respond to requests for control of the bus from other potential bus masters,
such as DMA controllers, between transfers of parts of an unaligned operand, such as two
words which form a doubleword. Unlike the Intel386 processor, the Pentium and Intel486
processors respond to bus hold during reset initialization.

23.2.25. Two Ways to Run Intel 286 CPU Tasks
When porting 16-bit programs to the Pentium processor, there are two approaches
to consider:

1. Porting an entire 16 software system to a 32-bit processor, complete with the old
operating system, loader, and system builder.

In this case, all tasks will have 16-bit TSSs. The 32-bit processor is being used as if it
were a faster version of the 16-bit processor.

2. Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-
bit operating system, loader, and system builder.

In this case, the TSSs used to represent 286 tasks should be changed to 32-bit TSSs. It is
possible to mix 16 and 32-bit TSSs, but the benefits are small and the problems are great.
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All tasks in a 32-bit software system should have 32-bit TSSs. It is not necessary to
change the 16-bit object modules themselves; TSSs are usually constructed by the
operating system, by the loader, or by the system builder. See Chapter 21 for more
discussion of the interface between 16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit segment
descriptors, 16-bit programs which place values in this word may not run correctly on the 32-
bit  processors.

23.3. FLOATING-POINT UNIT
This section addresses the issues that must be faced when transporting numerical software to
a Pentium processor with integrated FPU from one of its predecessor systems. To software,
the Pentium processor looks very much like an Intel486 DX processor system, an Intel486
SX and Intel487 SX math coprocessor system, or an Intel386 CPU and Intel387 math
coprocessor system. Software which runs on any of these systems will run with at most minor
modifications on the Pentium processor. To transport code directly from an Intel 286 CPU
with an Intel287 math coprocessor-based system or an 8086 CPU with an 8087 math
coprocessor-based system to the Intel486 processor, certain additional issues must be
addressed.

23.3.1. Control Register Bits
This section summarizes the differences in control register bits that may affect numerical
software.

23.3.1.1. EXTENSION TYPE (ET) BIT

The ET (Extension Type) bit of the CR0 control register is used in the Intel386 processor to
indicate whether the math coprocessor in the system is an Intel287 math coprocessor (ET=0)
or an Intel387 DX math coprocessor (ET=1). This bit is not used by Pentium processor or
Intel486 processor hardware. The ET bit is hardwired to "1."

23.3.1.2. NUMERIC EXCEPTION (NE) BIT

The NE (Numeric Exception) bit of the CR0 register is used in the Pentium and Intel486
processors to determine whether unmasked floating-point exceptions are reported internally
via interrupt vector 16 (NE=1) or through external interrupt (NE=0). On reset, the NE bit is
initialized to 0, so software using the automatic internal error-reporting mechanism must set
this bit to 1. This bit is nonexistent on the Intel386 processor.
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23.3.1.3. MONITOR COPROCESSOR (MP) BIT

As on the Intel 286 and Intel386 processors, the MP (Monitor coProcessor) bit of the CR0
control register determines whether WAIT instructions trap when the context of the FPU is
different from that of the currently-executing task. If MP=1 and TS=1, then a WAIT
instruction will cause a Device Not Available fault (interrupt vector 7). The MP bit is used on
the Intel 286 and Intel386 microprocessors to support the use of a WAIT instruction to wait
on a device other than a numeric coprocessor. The device reports its status through the
BUSY# pin. Since the Pentium and Intel486 processors do not have such a pin, the MP bit
has no relevant use, and should be set to 1 for normal operation.

23.3.1.4. FPU STATUS WORD

This section identifies differences to the FPU status word for the different Intel architecture
processors/math coprocessors, as well as the reason for the differences, and their impact on
software.

• Bits C3-C0  After FINIT and hardware reset, these bits are set to zero on the Pentium
processor, Intel486 CPU, and Intel387 math coprocessor. After FINIT and hardware
reset, the Intel287 and 8087 math coprocessors leave these bits intact (they contain the
prior value). This has no impact on software and provides a consistent state after reset.
Transcendental instruction results in the core range of the Pentium processor (as defined
in Chapter 7) may differ from the Intel486 DX and Intel487 SX CPU's by around 2 to 3
units in last place (ulps).  As a result, C1 may also differ.

• Bits C3, C1, C0  After an incomplete FPREM/FPREM1, these bits are set on zero on
the Pentium processor, Intel486 processor and the Intel387 math coprocessor.  On the
8087 and the Intel287 math coprocessor, these bits are left intact following incomplete
FPREM/FPREM1 execution.

• Bit C2  Bit 10 serves as an incomplete bit for FPTAN on the Pentium and Intel486
processors and the Intel387 math coprocessor. This bit is undefined for FPTAN on the
Intel287 and 8087 math coprocessors.  This change has no impact on software as
programs do not check C2 after FPTAN. This upgrade allows fast checking of operand
range.

• Status Word Bit 6 for Stack Fault  When an invalid-operation exception occurs on the
Pentium processor, Intel486 CPU, or Intel387 math coprocessor due to stack overflow or
underflow, not only is bit 0 (IE) of the status word set, but also bit 6 is set to indicate a
stack fault and bit 9 (C1) specifies overflow or underflow. Bit 6 is called SF and serves
to distinguish invalid exceptions caused by stack overflow/underflow from those caused
by numeric operations.  When an invalid-operation exception occurs on the Intel287 or
8087 math coprocessor due to stack overflow or underflow, only bit 0 (IE) of the status
word is set. Bit 6 is RESERVED. This has no impact on software. Existing exception
handlers need not change, but may be upgraded to take advantage of the additional
information. Newly written handlers will be more effective.  This upgrade provides
performance improvement.
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23.3.1.5. CONTROL WORD

Only affine closure is supported for infinity control on the Pentium processor, Intel486 CPU,
and Intel387 math coprocessor NPX. Bit 12 remains programmable but has no effect
on operation. On the Intel287 and 8087 math coprocessors, both affine and projective
closures are supported. After RESET, the default value in the control word is projective.
Software that requires projective infinity arithmetic may give different results. This change
was made in order to conform to IEEE Standard 754.

23.3.1.6. TAG WORD

This section describes the differences in the tag word for the difference Intel architectures,
the reason for the differences, and their impact on software.

• When loading the tag word of the Pentium processor, Intel486 CPU, or Intel387 math
coprocessor NPX with an FLDENV or FRSTOR instruction, the processor examines the
incoming tag and classifies the location only as empty or non-empty.  Thus, tag values of
00, 01, and 10 are interpreted by the CPU to indicate a non-empty location.  Tag values
of 11 are interpreted by the CPU to indicate an empty location. Subsequent operations on
a nonempty register always examine the value in the register, not the value in its tag.
The FSTENV and FSAVE instructions examine the nonempty registers and put the
correct values in the tags before storing the tag word.

The corresponding tag for the Intel287 and 8087 math coprocessors is checked before
each register access to determine the class of operand in the register; the tag is updated
after every change to a register so that the tag always reflects the most recent status of
the register. Programmers can load a tag with a value that disagrees with the contents of
a register (for example, the register contains valid contents, but the tag says special; the
Intel287 and 8087 math coprocessors, in this case, honor the tag and do not examine the
register).

Software may not operate correctly if it uses FLDENV or FRSTOR to change tags to
values (other than empty) that are different from actual register contents.

The reason for this change was due to performance improvement.

• The encoding in the tag word for the Pentium processor/Intel486 CPU/Intel487 math
coprocessors NPX for the unsupported data formats  is "special data" (type 10). The
encoding the Intel287 and 8087 math coprocessors for pseudo-zero and unnormal is
"valid" (type 00); the others are "special data" (type 10). Exception handlers may need to
be changed if programmers use such data types.

The reason for this difference is IEEE Standard 754 compatibility.

23.3.2. Data Types
This section discusses the differences of data types for the various microprocessors/math
coprocessors, the reason for the differences, and their impact on software.
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23.3.2.1. NaNs

The Pentium processor, Intel486 DX CPU, Intel487 SX math coprocessor NPX, and Intel387
math coprocessor NPX distinguish between signaling NaNs and quiet NaNs. These
processors only generate quiet NaNs. An invalid-operation exception is raised only upon
encountering a signaling NaN (except for FCOM, FIST, and FBSTP which also raise IE for
quiet NaNs).

The Intel287 and 8087 math coprocessors only generate one kind of NaN (the equivalent of a
quiet NaN) but raise an invalid-operation exception upon encountering any kind of NaN.

Uninitialized memory locations that contain QNaNs should be changed to SNaNs to cause
the Pentium and Intel486 processors and the Intel387 math coprocessor to fault when
uninitialized memory locations are referenced.

The reason for the difference is IEEE Standard 754 compatibility.

23.3.2.2. PSEUDOZERO, PSEUDO-NaN, PSEUDEOINFINITY, AND
UNNORMAL FORMATS

The Pentium processor/Intel486 CPU/Intel387 math coprocessor NPX neither generate nor
support these formats; they raise an invalid-operation exception whenever they encounter
them in an arithmetic operation. The Intel287 and 8087 math coprocessors define and support
special handling for these formats.

This difference has no impact on software. The Pentium and Intel486 processors and the
Intel387 DX math coprocessor do not generate these formats, and therefore will not
encounter them unless a programmer deliberately enters them.

The reason for this difference is to conform to  IEEE Standard 754.

23.3.3. Exceptions
This section identifies the implementation differences in exception handling of floating-point
instructions.

23.3.3.1. DENORMAL EXCEPTIONS

The denormal exception is not raised in transcendental instructions and FXTRACT on the
Intel287 and 8087 math coprocessors. The denormal exception is raised in transcendental
instructions and FXTRACT on the Pentium and Intel486 processors and the Intel387 math
coprocessor. The exception handler needs to be changed only if it gives special treatment to
different opcodes.  The reason for this change was performance enhancement for normal
cases.

Because the Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX
automatically normalize denormalized numbers when possible, an 8087 program that uses
the denormal exception solely to normalize denormalized operands can run on the 32-bit
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Intel architecture FPU's by masking the denormal exception. The 8087 denormal exception
handler would not be used by the 32-bit Intel architecture FPU's  in this case. A numerics
program runs faster when the FPU performs normalization of denormalized operands.

23.3.3.2. OVERFLOW EXCEPTIONS

There are differences in overflow exception behavior when it is masked and unmasked.

On the Pentium processor/Intel486 CPU/Intel487 math coprocessor NPX when the overflow
exception is masked, and the rounding mode is set to chop (toward zero), the result is the
largest positive or smallest negative number. The Intel287 and 8087 math coprocessors do
not signal the overflow exception when the masked response is not infinity; i.e., they signal
overflow only when the rounding control is not set to round to zero. If rounding is set to chop
(toward zero), the result is positive or negative infinity. Under the most common rounding
modes, there is no impact on software.

If rounding is toward zero (chop), a program on the Pentium processor/Intel486
CPU/Intel387 math coprocessor NPX produces, under overflow conditions, a result that is
different in the least significant bit of the significand, compared to the result on the Intel287
math coprocessor.  The reason for this difference is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the
Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX. When the result is
stored in the stack, the significand is rounded according to the precision control (PC) bit of
the control word or according to the opcode. On the Intel287 and 8087 math coprocessors,
the precision exception is not flagged and the significand is not rounded. The impact on
software is that if the result is stored on the stack, a program on the Pentium and Intel486
processors and the Intel387 math coprocessor produce a different result under overflow
conditions than on the Intel287 and 8087 math coprocessors. The difference is apparent only
to the exception handler. This difference is for IEEE Standard 754 compatibility.

23.3.3.3. UNDERFLOW EXCEPTIONS

Two related events contribute to underflow:

1. The creation of a tiny (denormal) result. A tiny number, because it is so small, may
cause some other exception later (such as overflow upon division).

2. Loss of accuracy during the denormalization of a tiny number.

Which of these events triggers the underflow exception depends on whether the
underflow exception is masked.

When the underflow exception is masked on the 32-bit FPU's and NPX's, the underflow
exception is signaled when both the result is tiny and denormalization results in a loss
of accuracy. When the underflow exception is unmasked and the instruction is supposed to
store the result on the stack, the significand is rounded to the appropriate precision
(according to the precision control (PC) bit of the control word, for those instructions
controlled by PC, otherwise to extended precision), after adjusting the exponent.
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When the underflow exception is masked on the Intel287 and 8087 math coprocessors and
rounding is toward zero, the underflow exception flag is raised on tininess, regardless of loss
of accuracy. When the underflow exception is not masked and the destination is the stack,
the significand is not rounded but rather is left as is.

When the underflow exception is masked, there is no impact on software. The underflow
exception occurs less often when rounding is toward zero.

When the underflow exception not masked. A program on a 32-bit Intel architecture FPU or
NPX produces a different result during underflow conditions than on the Intel287 and 8087
math coprocessors if the result is stored on the stack. The difference is only in the least
significant bit of the significand and is apparent only to the exception handler.

The reason for these differences are due to EEE Standard 754 compatibility.

23.3.3.4. EXCEPTION PRECEDENCE

There is no difference in the precedence of the denormal exception on the Pentium and
Intel487 processors and the Intel387 math coprocessor NPX, whether it be masked or not.
When the denormal exception is not masked on the Intel287 and 8087 math coprocessors, it
takes precedence over all other exceptions. This difference causes no impact on software, but
some unneeded normalization of denormalized operands is prevented on the Intel486 CPU
and Intel387 math coprocessor NPX.  Operational improvement is the reason for this
difference.

23.3.3.5. CS AND IP FOR FPU EXCEPTIONS

On the Intel 32-bit Intel architecture FPU's and NPX's, the value of the CS and IP registers
saved for floating-point exceptions points at any prefixes which come before the ESC
instruction. On the 8086 processor, the saved CS:IP points to the ESC instruction.

23.3.3.6. FPU ERROR SIGNALS

The floating-point error signals to the Pentium and Intel486 processors do not pass through
an interrupt controller (an INT signal from Intel387, Intel287 or 8087 math coprocessors do).
If an 8086 processor uses another exception for the 8087 interrupt, both exception vectors
should call the floating-point error exception handler. Some instructions in a floating-point
error exception handler may need to be deleted if they use the interrupt controller. The
Pentium and Intel486 processors have signals which, with the addition of external logic,
support reporting for emulation of the interrupt mechanism used in many personal computers.

On the Pentium and Intel486 processors, an undefined ESC opcode will cause an Invalid
Opcode exception (interrupt vector 6). Undefined ESC opcodes, like legal ESC opcodes,
cause a Device Not Available exception (interrupt vector 7) when either the TS or the EM bit
of CR0 is set. The Pentium and Intel486 processors do not check for floating-point error
conditions on encountering an undefined ESC opcode.
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23.3.3.7. INVALID OPERATION ON DENORMALS

No invalid opcode exception is raised on the Pentium processor/Intel486 CPU/Intel487 math
coprocessor NPX upon encountering a denormal in FSQRT, FDIV, or FPREM or upon
conversion to BCD or to integer. The operation proceeds by first normalizing the value. On
Intel287 and 8087 math coprocessors, upon encountering a denormal in FSQRT, FDIV, or
FPREM or upon conversion to BCD or to integer, the invalid-operation exception is raised.
This difference has no impact on software. Software on the Pentium processor/Intel486
CPU/Intel387 math coprocessor NPX continues to execute in cases where Intel287 and 8087
math coprocessors trap. The reason for this change was to eliminate an exception from being
raised.

23.3.3.8. ALIGNMENT EXCEPTIONS

A misaligned data operand on the Pentium and Intel486 processors causes an alignment
exception (interrupt vector 17) in level 3 software, except for the stack portion of an
FSAVE/FRSTOR operation.

23.3.3.9. SEGMENT FAULT DURING FLDENV

On the Intel486 processor, when a segment fault occurs in the middle of an FLDENV
operation, it can happen that part of the environment is loaded and part not. In such cases, the
FPU control word is left with a value of 007FH. The Pentium processor ensures the internal
state is correct at all times by attempting to read the first and last bytes of the environment
before updating the internal state.

23.3.3.10. INTERRUPT 7 — DEVICE NOT AVAILABLE

Interrupt 7 will occur in the Pentium and Intel486 processors when executing ESC
instructions with either TS (task switched) or EM (emulation) of the MSW set (TS=1 or
EM=1). If TS and MP are set, then a WAIT instruction will also cause interrupt 7. An
exception handler should be included in the Pentium processor and Intel486 processor code
to handle these situations.

23.3.3.11. INTERRUPT 9 — COPROCESSOR SEGMENT OVERRUN

Interrupt 9 does not occur in the Pentium and Intel486 processors. In cases where the
Intel387 math coprocessor would cause interrupt 9, the Pentium and Intel486 processors
simply abort the instruction. Some care is necessary, however. Memory faults (especially
page faults), if they occur in FLDENV or FRSTOR while the operating system is performing
a task switch, can cause the floating-point environment to be lost. Intel strongly recommends
that the floating-point save area be the same page as the TSS.
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23.3.3.12. INTERRUPT 13 — GENERAL PROTECTION

Interrupt 13 occurs if the starting address of a numeric operand falls outside a segment’s size.
An exception handler should be included to report these programming errors.

23.3.3.13. INTERRUPT 16 — FLOATING-POINT ERROR

In real mode and protected mode (not including virtual 8086 mode), interrupt vector 16 must
point to the numeric exception handling routine. In virtual 8086 mode, the virtual-8086
monitor can be programmed to accommodate a different location of the interrupt vector for
numeric exceptions.

23.3.4. Instructions
This section identifies the differences in instructions for the various Intel architectures, the
reason for the differences, and their impact on software.

• FDIV, FPREM, FSQRT  Operation on denormalized operands is supported on the
Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX and an underflow
exception can occur. Operation on denormalized operands raise an invalid-operation
exception on the Intel287 and 8087 math coprocessors and underflow is not possible.
The exception handler for underflow may require change only if it gives different
treatment to different opcodes. Possibly fewer invalid-operation exceptions will occur.
The reason for this change was for IEEE Standard 754 compatibility.

• FSCALE  The range of the scaling operand on the Pentium processor, Intel486 CPU,
and Intel387 math coprocessor NPX is not restricted. If 0 < | ST(1) < 1, the scaling factor
is zero; therefore, ST(0) remains unchanged. If the rounded result is not exact or if there
was a loss of accuracy (masked underflow), the precision exception is signaled. The
range of the scaling operand on the Intel287 math coprocessor and 8087 NPX's is
restricted. If 0 < | ST(1) | < 1, the result is undefined and no exception is signaled.  The
impact on software is that a different result will occur when 0 < | ST(1) | < 1.  This
change was to upgrade the existing range of scaling.

• FPREM1  The Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX
perform partial remainder according to the IEEE Standard 754 standard. This instruction
does not exist on the Intel287 math coprocessor and 8087 NPX's.  There is no impact on
software but provides IEEE Standard 754 compatibility and an upgrade to the
architecture.

• FPREM  Bits C0, C3, C1 of the status word on the Pentium processor, Intel486 CPU,
and Intel387 math coprocessor NPX correctly reflect the three low-order bits of
the quotient. On the Intel287 math coprocessor and 8087 NPX's, the quotient bits are
incorrect when performing a reduction of 64N+M when N ≥ 1 and M=1 or M=2. This has
no impact on software. Software that works around the bug should not be affected.
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• FUCOM, FUCOMP, FUCOMPP  The Pentium processor, Intel486 CPU, and Intel387
math coprocessor NPX perform unordered compare according to IEEE Standard 754
standard.  These instructions do not exist on the Intel287 math coprocessor and 8087
NPX's. There is no impact on existing software and provides IEEE Standard
754 compatibility.

• FPTAN  The range of operand is much less restricted (| ST(0) | < 263) on the Pentium
processor, Intel486 CPU, and Intel387 math coprocessor NPX; reduces operand
internally using an internal π/4 constant that is more accurate. The range of operand is
restricted (| ST(0) | < π/4) on the Intel287 math coprocessor and 8087 NPX's; the operand
must be reduced to range using FPREM. There is no impact on software due to this
difference but provides a performance upgrade.

After a stack overflow, when the invalid-operation exception is masked on the Pentium
processor, Intel486 CPU, and Intel387 math coprocessor NPX, both ST and ST(1)
contain quiet NaNs. After a stack overflow when the invalid-operation exception is
masked on the Intel287 math coprocessor and 8087 NPX's, the original operand remains
unchanged, but is pushed to ST(1).  This has no impact on software and provides IEEE
Standard 754 compatibility.

• FSIN, FCOS, FSINCOS  These instructions perform three common trigonometric
functions on the Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX.
They do not exist on the Intel287 math coprocessor and 8087 NPX's and their presence
on more recent architectures have no impact on existing software but provide a
performance upgrade.

• FPATAN  The range of operands is unrestricted on the Pentium processor, Intel486
CPU, and Intel387 math coprocessor NPX.  | ST(0) | must be smaller than | ST(1) | on the
Intel287 math coprocessor and 8087 NPX's. There is no software compatibility impact
but serves as a performance upgrade only.

• F2XM1  The Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX
support a wider range of operands (–1 < ST (0) < + 1). The supported operand range on
the Intel287 math coprocessor and 8087 NPX's is 0 ≤ ST(0) ≤ 0.5. There is no software
compatibility impact but serves as a performance upgrade only.

• FLD extended-real  On the Pentium processor, Intel486 CPU, and Intel387 math
coprocessor NPX, this instruction does not report denormal exception because the
instruction is not arithmetic. The Intel287 math coprocessor and 8087 NPX's report
denormal exception. There is no software compatibility impact but serves as a
performance upgrade only.

• FXTRACT   If the operand is zero on the Pentium processor, Intel486 CPU, or
Intel387 math coprocessor NPX, the zero-divide exception is reported and –∞ is
delivered to ST(1). If the operand is +∞, no exception is reported. If the operand is zero
on the Intel287 math coprocessor and 8087 NPX's, ST(1) is zero and no exception is
reported. If the operand is +∞, the invalid-operation exception is reported. There is no
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impact on software due to these differences. Software usually bypasses zero and ∞. This
change is due to the IEEE 754 recommendation to fully support the logb function.

• FLD constant  Rounding control is in effect for the Pentium processor, Intel486 CPU,
and Intel387 math coprocessor NPX. Rounding control is not in effect for the Intel287
math coprocessor and 8087 NPX's. Results for FLDPI, FLDLN2, FLDLG2, and FLDL2E
are the same as for the Intel287 math coprocessor and 8087 NPX's when rounding
control is set to round to nearest or round to +∞. They are the same for FLDL2T when
rounding control is set to round to nearest, round to –∞, or round to zero. Results are
different from the Intel287  math coprocessor and 8087 NPX's in the least significant bit
of the mantissa if rounding control is set to round to –∞ or round to 0 for FLDPI,
FLDLN2, FLDLG2, and FLDL2E; they are different for FLDL2T if round to +∞ is
specified. These changes were implemented due to IEEE 754 recommendations.

• FLD single/double precision  Loading a denormal on the Pentium processor, Intel486
CPU, or Intel387 math coprocessor NPX causes the number to be converted to extended
precision (because it is put on the stack). Loading a denormal on the Intel287 math
coprocessor and 8087 NPX causes the number to be converted to an unnormal. If the
next instruction is FXTRACT or FXAM, the Pentium processor, Intel486 CPU, and
Intel387 math coprocessor NPX will give a different result than the Intel287 math
coprocessor and 8087 NPX's. This change was made for IEEE Standard 754
compatibility.

• FLD single/double precision  When loading a signaling NaN, the Pentium processor,
Intel486 CPU, and Intel387 math coprocessor NPX raises an invalid exception. The
Intel287 math coprocessor and 8087 NPX's do not raise an exception when loading a
signaling NaN. The exception handler needs to be updated to handle this condition. This
change was made for IEEE Standard 754 compatibility.

• FSETPM  This instruction is treated as FNOP (no operation) on the Pentium
processor, Intel486 CPU, and Intel387 math coprocessor NPX. This instruction informs
the Intel287 math coprocessor that the system is in protected mode. There is no impact
on software as a result of this difference. The Pentium processor, Intel486 CPU, and
Intel386 CPU handle all addressing and exception-pointer information, whether in
protected mode or not.

• FXAM  Encountering an empty register on the Pentium processor, Intel486 CPU, or
Intel387 math coprocessor NPX will not generate combinations of C3-C0 equal to 1101
or 1111. The Intel287 math coprocessor and 8087 NPX's may generate these
combinations, among others. There is no impact on software but provides a performance
upgrade, to provide repeatable results.

• FSAVE, FSTENV  The address of a memory operand pointer stored by FSAVE or
FSTENV is undefined if the previous ESC instruction did not refer to memory on the
Pentium and Intel486 processor FPUs and the Intel387 math coprocessor NPX.
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23.3.5. Transcendental Instructions
The numeric results of the Pentium processor for transcendental instructions in the core range
(as defined in Chapter 7) may differ from the Intel486 processors by about 2 or 3 ulps.  The
C1 bit may differ as a result. Some operands raise the precision exception in the Pentium
processor that did not in the Intel486; see section 7.1.13. The exact threshold for
underflow/overflow will vary by a few ulps.  The Pentium processor results will have a worst
case error of less than 1 ulp when rounding to the nearest-even and less than 1.5 ulps when
rounding in other modes. The transcendental instructions are guaranteed to be monotonic,
with respect to the input operands, throughout the domain supported by the instruction. See
 Appendix G for more information on transcendental accuracy.

On the Intel486 processor but not on the Pentium processor, transcendental instructions can
be aborted at certain checkpoints during execution if an INTR is pending. Transcendental
instructions should therefore be used only in an environment where INTRs are not expected
to come as close as 200 clocks apart.

Transcendental instructions may generate different results in the round-up bit (C1) of status
word on the Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX. The
round-up bit of the status word is undefined for these instructions on the Intel287 math
coprocessor and 8087 NPX's. There is no impact on software due to this difference but it
serves as an upgrade to signal rounding status.

23.3.6. Obsolete Instructions
The 8087 processor instructions FENI and FDISI and the Intel287 coprocessor instruction
FSETPM are treated as NOPS in the Pentium processor, Intel486 CPU, and Intel387 math
coprocessor. However, the FENI, FDISI, and FSETPM instructions do check for device-not-
available faults. If these opcodes are detected in the instruction stream, no specific operation
is performed and no internal states are affected.

The 80387 DX User's Manual Programmer's Reference and the Intel486™ DX Processor
Programmer's Reference Manual indicate that the Intel287 math coprocessor and 8087
floating-point unit (FPU) opcodes for FENI, FDISI, and FSETPM are treated as FNOP in the
Intel387 math coprocessor NPX and the Intel486 processor and Pentium processor FPUs.
However, FNOP checks for unmasked floating-point exceptions and these instructions do
not. Thus, these instructions are integer NOP instructions rather than FNOP's in the Intel387
math coprocessor NPX, and in the Intel486 processor and Pentium processor FPU's.

23.3.6.1. WAIT PREFIX DIFFERENCES

On the Intel486 processor, when a WAIT prefix precedes a numeric instruction (one which
itself automatically synchronizes with the previous numeric instruction), the WAIT is treated
as an NOP.  Pending numeric exceptions from a previous numeric instruction are processed
not on the WAIT but on the numeric instruction following the WAIT. In such a case, the
report of a numeric exception may appear one instruction later on the Intel486 processor than
on an Intel386 CPU/Intel387 math coprocessor NPX system or Pentium processor.
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23.3.6.2. OPERANDS SPLIT ACROSS SEGMENTS/PAGES

On the Pentium and Intel486 processors, when the first half of an operand to be written is
inside a page or segment and the second half is outside, a memory fault can cause the first
half to be stored without the second. In such cases, Intel386 CPU/Intel387 math coprocessor
NPX systems store nothing.

23.3.6.3. FPU INSTRUCTION SYNCHRONIZATION

All of the Pentium processor, Intel486 CPU, and Intel387 math coprocessor NPX numeric
instructions are automatically synchronized—the processor automatically waits until the
previous numeric instruction has completed before executing the next ESC instruction. No
explicit WAIT instructions are required to assure this synchronization. For the 8087 used
with 8086 and 8088 processors, explicit WAITs are required before each numeric instruction
to ensure synchronization. Although 8087 programs having explicit WAIT instructions
execute perfectly on the 32-bit Intel architecture processors without reassembly, these WAIT
instructions are unnecessary.

Since the 32-bit Intel architecture FPU's do not require WAIT instructions before each
numeric instruction, the ASM386/486 assembler does not automatically generate these
WAIT instructions. The ASM86 assembler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although numeric routines generated using the ASM86
assembler will generally execute correctly on the 32-bit Intel architecture FPU's, reassembly
using ASM386/486 may result in a more compact code image and faster execution. The
control instructions for the 32-bit Intel architecture FPU's can be coded using either a WAIT
or No-WAIT form of mnemonic. The WAIT forms of these instructions cause ASM386/486
to precede the ESC instruction with a WAIT instruction, in the identical manner as does
ASM86.

23.3.7. Numeric Exceptions: Interrupt Sampling Window
This section must be read in conjunction with section 7.1.8.2 on Software Exception
Handling. The other relevant section is the FERR# pin description in the Pentium® Processor
Developer’s Manual, Volume 1, section 5.2.21.

The Pentium processor and the Intel486 processor implement the “No-Wait” class of
instructions asserts the FERR# pin. This is to indicate the pending exception. These
instructions are implemented such that during their execution, there is a window in which the
processor will sample and accept external interrupts. If there is a pending interrupt the
processor services the interrupt first before resuming the execution of the instruction.
Consequently, it is possible that the “No-Wait” Floating-Point instruction may accept the
external interrupt caused by it’s own assertion of the FERR# pin in the event of a pending
unmasked numeric exception. This is illustrated by Figure 23-4.



COMPATIBILITY EE

23-40

 

Assertion of FERR#
by the processor

System Dependent
Delay

Assertion of INTR
pin by the system

Case Ι

Case ΙΙ

Exception generating
FP instruction

Start of the
“No-Wait” FP instruction

External Interrupt
Sampling Window

Window CLOSED

intrpin

Figure 23-4.  The two cases that arise depending on the timing of the receipt of the
external interrupt

A floating-point instruction, belonging to the class which asserts the FERR# pin only on
encountering the next floating-point instruction, causes an unmasked numeric exception. The
next floating-point instruction following this instruction is one of the “No-Wait” floating-
point instructions. After the assertion of the FERR# pin the “No-Wait” floating-point
instruction opens a window where the pending external interrupts are sampled. There are two
cases possbile depending on the timing of the receipt of the interrupt via the INTR pin
(asserted by the system in response to the FERR# pin) by the processor.

CaseI:  If the system responds to the assertion of FERR# pin by the “No-Wait” floating-point
instruction via the INTR pin during this window then the interrupt is serviced first before
resuming the execution of the “No-Wait” floating-point instruction.

Case II:  If the system responds via the INTR pin after the window has closed then the
interrupt is recognized only at the next instruction boundary.
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23.3.7.1. USAGE OF THE “NO-WAIT” FLOATING-POINT INSTRUCTION
CLASS

The “No-Wait” Floating-Point instructions proceed in the presence of pending numeric
exceptions. Note, however, that this does not mean that the pending numeric exception is
discarded. As pointed out in section 23.3.7, the “No-Wait” Floating-Point instructions report
any pending numeric exceptions via FERR# (CR0.NE = 0).

The “No-Wait” Floating-Point instructions are useful in floating point exception handlers and
in context switching code in multi-threaded systems. Note that when CR.NE = 0, system
software must be prepared to service an interrupt from FERR# at any time. This is not a
function of the behavior of the “No-Wait” Floating-Point instructions, but is an implication
of using an asynchronous interrupt to report numeric exceptions. In particular, during a
context switch where the floating point unit is being reallocated to a new process, exception
synchronization is required to ensure that exceptions generated by the old context are not
unintentionally associated with the new thread of execution. In the case of a floating point
exception handler, however, further exception synchronization is not necessary, as the
exception handler is being executed because FERR# was previously (and remains) asserted.

Note further that FNINIT, FNCLEX, and FNSAVE modify the FPU status word exception
flags. Software that uses these instructions must be prepared for their implications on
exception synchronization. In particular, if an FERR# is asserted before or by an FNINIT,
FNCLEX, or FNSAVE, and the resulting interrupt is serviced after completion of the
instruction, the FPU status word will not reflect the conditions that caused the interrupt.

See section 6.4.1.8 for more information on the proper synchronization of floating point
exceptions.
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CHAPTER 24
OPTIMIZATION

This chapter provides some general guidelines for programming Intel's architectures. For
additional information refer to AP-500, Optimizations for Intel's 32-Bit Processors, order
number 241799.

24.1. ADDRESSING MODES AND REGISTER USAGE
This section identifies instruction examples that result on delays based on addressing modes
and register usage.

An Address Generation Interlock (AGI) occurs when a register being used as the base or
index component of an effective address calculation was the destination register of a previous
instruction. It causes a 1-clock delay.

In the following sequence, the MOV instruction has a one clock stall on both the Intel486
and the Pentium processors.

add edx, 4
mov esi, [edx]

On the Intel486 processor, only adjacent instructions can cause AGI's. On the Pentium
processor, with its higher degree of concurrent execution, instructions which are up to three
instructions away can interact to cause an AGI. Consider the following fabricated worst case
sequence:

add esi, 4
pop ebx
inc ebx
mov edx, [esi]

This sequence executes on the Intel486 processor in four clocks. Due to the pairing of
instructions on the Pentium processor, the MOV needs the value of ESI, which is not
available until the ADD completes the execute (EX) stage, the MOV stalls for one clock.
Therefore, the above instruction sequence executes in three clocks on the Pentium processor.

Note that some instructions have implicit writes/reads to registers. Instructions that generate
addresses implicitly through ESP (PUSH/POP/RET/CALL) also suffer from the AGI penalty
(explicit write followed by explicit or implicit read).

Examples:

sub esp, 24 / 1 cycle stall
  (sub)
push ebx



OPTIMIZATION EE

24-2

mov esp, ebp / 1 cycle stall
  (mov)
pop ebp

PUSH and POP also implicitly write to ESP. This, however, does not cause an AGI when the
next instruction addresses through ESP (implicit write followed by explicit or implicit read
through ESP). The following example demonstrates that an implicit write followed by an
explicit or implicit read of ESP does not generate an AGI.

Example:

push edi / no stall
mov  ebx, [esp]

On the Intel486 CPU, there is a one clock penalty for decoding an instruction with either an
index or an immediate-displacement combination. On the Pentium processor, there is no one
clock penalty. There also is no penalty for an indexed instruction on the Pentium processor.

Example:

mov result, 555   / 555 is immediate, result
 / is displacement

mov dword ptr [esp+4], 1  / 1 is immediate, 4 is
 displacement

Unlike the Intel486 CPU, there is no one clock penalty when using a register immediately
after its sub-register was written.

Example (Pentium processor):

mov al, 0 /1
mov [ebp], eax /2 no delay on Pentium processor

Example (Intel486 CPU):

mov al, 0 /1
  (mov) /2 one clock delay on Intel486 CPU
mov [ebp], eax /3

24.2. ALIGNMENT
The effect of data misalignment on the Pentium processor is similar to its effect on the
Intel486 CPU. However, code alignment requirements are not as strict as on the Intel486
CPU.

24.2.1. Code Alignment
Unlike the Intel486 CPU, alignment of code on a cache line boundary (32-byte on Pentium
processor, 16-byte on Intel486 CPU) does not have a substantial effect on Pentium processor
performance. However, labels may be aligned as recommended for the Intel486 CPU because
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the incremental cost on the Pentium processor is negligible and it improves the efficiency of
the Intel486 CPU.

24.2.2. Data Alignment
A misaligned access in the data cache costs an extra 3 cycles on both the Intel486 and
Pentium processors.

•• 4-byte Data.  The alignment of 4-byte objects should be on a 4-byte boundary.

•• 2-byte Data.  A 2-byte object should be fully contained  within an aligned 4-byte word
(i.e., its binary address  should be xxxx00, xxxx01, xxxx10, but not xxxx11). (A 2-byte
data object has to be aligned on a 2-byte boundary to avoid a penalty.)

•• 8-byte Data. The penalty for a misaligned 8-byte data object (64-bit, e.g., double
precision reals) access is 3 cycles (as in Intel486 CPU). An 8-byte datum should be
aligned on an 8-byte boundary.

24.3. PREFIXED OPCODES
The prefixes lock, segment override, address size, two-byte opcode map (0F), and operand
size are decoded in one clock for each prefix. Note that this includes all the 16-bit
instructions when executing in 32-bit mode because an operand size prefix is required (e.g.,
MOV WORD PTR [..],  ADD WORD PTR [..], ...).  Use 32-bit operands for 32-bit segments
and 16-bit operands for 16-bit segments as much as possible to avoid the additional byte for
prefixes.

The near conditional jump instructions that have a 0FH prefix are decoded differently. In this
case, the processor does not take an extra clock. Other 0F opcodes behave as normal prefixed
instructions.

24.4. OPERAND AND REGISTER USAGE
This section discusses some guidelines to follow and delays which can occur based on the
type of operand and register selection.

• Use the EAX register when possible. Many instructions are one byte shorter when the
EAX register is used, such as loads and stores to memory when absolute addresses are
used, transfers to other registers using the XCHG instruction, and operations using
immediate operands.

• Use the DS register to access the data segment when possible. Instructions which deal
with the DS register are one byte shorter than instructions which use the other data
segments, because of the lack of a segment-override prefix.

• Use the ESP register to reference the stack in the deepest level of subroutines.
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• When several references are made to a variable addressed with a displacement, load the
displacement into a register.

24.5. INTEGER INSTRUCTION SELECTION
This section highlights some instruction sequences to avoid and some sequences to use when
generating Intel architecture assembly code.

1. LEA

The LEA instruction can be advantageous in the following circumstances:

 LEA may be used sometimes as a three/four operand addition instruction.
LEA ECX,[EAX+EBX*4+ARRAY_NAME] ).

 In many cases an LEA instruction (or a sequence of of LEA, add and shift
instructions) may be used to replace constant multiply instructions.

 This can also be used to avoid copying a register when both operands to an ADD are
being used after the add, since LEA need not overwrite its operands.

The disadvantage of the LEA instruction is that it increases the possibility of an AGI stall
with previous instructions.

2. Complex Instructions

Avoid using complex instructions (ENTER, LEAVE, LOOP, string instructions, etc.).
Use sequences of simple instructions instead.

3. Zero-Extension of Short Integers

The MOVZX instruction has a prefix and takes 3 cycles to execute (a total of 4 cycles).
As with the Intel486 CPU, it is recommended to use the following sequence instead:
xor eax, eax
mov al, mem

If this occurs within a loop, it may be possible to pull the XOR out of the loop if the only
assignment to EAX is the MOV AL, MEM. This has greater importance for the Pentium
processor due to its concurrency of instruction execution.

Access 16-bit data with the MOVSX and MOVZX instructions. These instructions sign-
extend and zero-extend word operands to doubleword length. This eliminates the need
for an extra instruction to initialize the high word.

4. 8/16-Bit  Operands

With 8-bit operands, try to use the byte opcodes, rather than using 32-bit operations on
sign and zero extended bytes. Prefixes for operand size override apply to 16-bit operands,
not to 8-bit operands.

Sign Extension is usually quite expensive. Often, the semantics can be maintained by
zero extending 16-bit operands. Specifically, the C code in the following example does
not need sign extension nor does it need prefixes for operand size overrides.
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static short int a,b;
if (a==b) {
}

5. Compares

Use TEST when comparing a value in a register with 0. Test essentially AND's the
operands together without writing to a destination register. If you AND a value with
itself and the result sets the zero condition flag, the value was zero.

Use TEST when comparing the result of a boolean AND with an immediate constant for
equality or inequality if the register is EAX. (IF (AVAR & 8) { }).

6. Address Calculations

Pull address calculations into load and store instructions. Internally, memory reference
instructions can have 4 operands: a relocatable load time segment base, a base register, a
displacement, and a scaled index register. In many cases, several integer instructions can
be eliminated by fully using the operands of memory references.

When there is a choice to use either a base or index register, always choose the base
because there is a one clock penalty on an Intel486 CPU for using an index.

7. Clearing a Register

The preferred sequence to move zero to a register is XOR REG, REG.  This saves code
space but sets the condition codes. In contexts where the condition codes must be
preserved, use: MOV REG, 0.

8. Integer Divide

Typically, an integer divide is preceded by a CDQ instruction. (Divide instructions use
EDX:EAX as the dividend and CDQ sets up EDX.)  It is better to copy EAX into EDX,
then right shift EDX 31 places to sign extend.  The copy/shift takes the same number of
clocks as CDQ on both the Pentium processor and Intel486 CPU, but the copy/shift
scheme allows two other instructions to execute at the same time on the Pentium
processor.  If you know the value is positive, use XOR EDX, EDX.

9. Avoid Compares with Immediate Zero

Often when a value is compared with zero, the operation producing the value sets
condition codes which can be tested directly by a JCC instruction. (The most notable
exceptions are MOV and LEA. In these cases, use TEST.)

10. Integer Multiply by Constant

The integer multiply by an immediate can usually be replaced by a faster series of shift's,
add's, sub's, and lea's.

In general, if there are 8 or fewer bits set in the binary representation of the constant, it is
better not to do the integer multiply.  On an Intel486 CPU, the break even point is lower:
it is profitable if 6 bits or less are in the constant.  Basically, shift and add for each bit
set.

11. In place of using an ENTER instruction at lexical level 0, use a code sequence like:
PUSH EBP
MOV EBP, ESP
SUB ESP, BYTE_COUNT
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12. Jump Instructions

The jump instructions come in two forms: one form has an eight-bit immediate for
relative jumps in the range from 128 bytes back to 127 bytes forward, the other form has
a full 32-bit displacement. Many assemblers use the long form in situations where the
short form can be used. When it is clear that the short form may be used, explicitly
specify the destination operand as being byte length. This tells the assembler to use the
short form. Note that some assemblers perform this optimization automatically.

13. For fastest task switching, perform task switching in software. This allows a smaller
processor state to be saved and restored. See Chapter 13 for a discussion of multitasking.

14. Minimize segment register loads and use of far pointers as much as possible. Increased
protection between segments costs performance as a substantial number of clocks are
required to load the segment registers.
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CHAPTER 25
INSTRUCTION SET

This chapter presents the instructions in alphabetical order. For each instruction, the forms
are given for each operand combination, including object code produced, operands required,
execution time, and a description. For each instruction, there is an operational description
and a summary of exceptions generated.

25.1. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES
When executing an instruction, the processor can address memory using either 16 or 32-bit
addresses. Consequently, each instruction that uses memory addresses has associated with it
an address-size attribute of either 16 or 32 bits. The use of 16-bit addresses implies both the
use of 16-bit displacements in instructions and the generation of 16-bit address offsets
(segment relative addresses) as the result of the effective address calculations. 32-bit
addresses imply the use of 32-bit displacements and the generation of 32-bit address offsets.
Similarly, an instruction that accesses words (16 bits) or doublewords (32 bits) has an
operand-size attribute of either 16 or 32 bits.

The attributes are determined by a combination of defaults, instruction prefixes, and (for
programs executing in protected mode) size-specification bits in segment descriptors.

25.1.1. Default Segment Attribute
For programs running in protected mode, the D bit in executable-segment descriptors
specifies the default attribute for both address size and operand size. These default attributes
apply to the execution of all instructions in the segment. A clear D bit sets the default address
size and operand size to 16 bits; a set D bit, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit addresses and operands
by default.

25.1.2. Operand-Size and Address-Size Instruction Prefixes
The internal encoding of an instruction can include two byte-long prefixes: the address-size
prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction Format," shows
the position of the prefixes in an instruction's encoding.) These prefixes override the default
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segment attributes for the instruction that follows. Table 25-1 shows the effect of each
possible combination of defaults and overrides.

Table 25-1.  Effective Size Attributes

Segment Default D = ... 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

Y  =  Yes, this instruction prefix is present
N  =  No, this instruction prefix is not present

25.1.3. Address-Size Attribute for Stack
Instructions that use the stack implicitly (for example: POP EAX) also have a stack address-
size attribute of either 16 or 32 bits. Instructions with a stack address-size attribute of 16 use
the 16-bit SP stack pointer register; instructions with a stack address-size attribute of 32 bits
use the 32-bit ESP register to form the address of the top of the stack.

The stack address-size attribute is controlled by the B bit of the data-segment descriptor in
the SS register. A value of zero in the B bit selects a stack address-size attribute of 16; a
value of one selects a stack address-size attribute of 32.

25.2. INSTRUCTION FORMAT
All instruction encodings are subsets of the general instruction format shown in Figure 25-1.
Instructions consist of optional instruction prefixes (in any order), one or two primary opcode
bytes, possibly an address specifier consisting of the ModR/M byte and the SIB (Scale Index
Base) byte, a displacement, if required, and an immediate data field, if required.
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APM117

INSTRUCTION
PREFIX

ADDRESS-
SIZE PREFIX

OPERAND-
SIZE PREFIX

SEGMENT
OVERIDE

0 OR 1 0 OR 1 0 OR 1 0 OR 1

NUMBER OF BYTES

OPCODE MODR/M DISPLACEMENT IMMEDIATE

1 OR 2 0 OR 1 0,1,2 OR 4 0,1,2 OR 4

NUMBER OF BYTES

SIB

0 OR 1

Figure 25-1. Instruction Format

Smaller encoding fields can be defined within the primary opcode or opcodes. These fields
define the direction of the operation, the size of the displacements, the register encoding, or
sign extension; encoding fields vary depending on the class of operation.

Most instructions that can refer to an operand in memory have an addressing form byte
following the primary opcode byte(s). This byte, called the ModR/M byte, specifies the
address form to be used. Certain encodings of the ModR/M byte indicate a second addressing
byte, the SIB (Scale Index Base) byte, which follows the ModR/M byte and is required to
fully specify the addressing form.

Addressing forms can include a displacement immediately following either the ModR/M or
SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits.

If the instruction specifies an immediate operand, the immediate operand always follows any
displacement bytes. The immediate operand, if specified, is always the last field of the
instruction.

Zero or one bytes are reserved for each group of prefixes.  The prefixes are grouped as
follows:

1. Instruction Prefixes:  REP, REPE/REPZ, REPNE/REPNZ, LOCK

2. Segment Override Prefixes:  CS, SS, DS, ES, FS, GS

3. Operand Size Override

4. Address Size Override
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For each instruction, one prefix may be used from each group.  The effect of redundant
prefixes (more than one prefix from a group) is undefined and may vary from processor to
processor. The prefixes may come in any order.

The following are the allowable instruction prefix codes:

F3H REP prefix (used only with string instructions)

F3H REPE/REPZ prefix (used only with string instructions)

F2H REPNE/REPNZ prefix (used only with string instructions)

F0H LOCK prefix

The following are the segment override prefixes:

2EH CS segment override prefix

36H SS segment override prefix

3EH DS segment override prefix

26H ES segment override prefix

64H FS segment override prefix

65H GS segment override prefix

66H Operand-size override

67H Address-size override

25.2.1. ModR/M and SIB Bytes
The ModR/M and SIB bytes follow the opcode byte(s) in many of the processor instructions.
They contain the following information:

• The indexing type or register number to be used in the instruction

• The register to be used, or more information to select the instruction

• The base, index, and scale information

The ModR/M byte contains three fields of information:

• The mod field, which occupies the two most significant bits of the byte, combines with
the r/m field to form 32 possible values: eight registers and 24 indexing modes.

• The reg field, which occupies the next three bits following the mod field, specifies either
a register number or three more bits of opcode information. The meaning of the reg field
is determined by the first (opcode) byte of the instruction.

• The r/m  field, which occupies the three least significant bits of the byte, can specify a
register as the location of an operand, or can form part of the addressing-mode encoding
in combination with the mod field as described above.

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. The
presence of the SIB byte is indicated by certain encodings of the ModR/M byte. The SIB
byte then includes the following fields:
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• The ss field, which occupies the two most significant bits of the byte, specifies the scale
factor.

• The index field, which occupies the next three bits following the ss field and specifies
the register number of the index register.

• The base field, which occupies the three least significant bits of the byte, specifies the
register number of the base register.

Figure 25-2 shows the formats of the ModR/M and SIB bytes.

APM119

MOD REG/OPCODE R/M

MODR/M BYTE

7 6 5 4 3 2 1 0

SS INDEX BASE

SIB (SCALE INDEX BASE) BYTE

7 6 5 4 3 2 1 0

Figure 25-2.  ModR/M and SIB Byte Formats

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown
in Table 25-2 through Table 25-4. The 16-bit addressing forms specified by the ModR/M
byte are in Table 25-2. The 32-bit addressing forms specified by the ModR/M byte are in
Table 25-3. Table 25-4 shows the 32-bit addressing forms specified by the SIB byte.
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Table 25-2.  16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
/digit (Opcode)
REG =

AL
AX
EAX
0
000

CL
CX
ECX
1
001

DL
DX
EDX
2
010

BL
BX
EBX
3
011

AH
SP
ESP
4
100

CH
BP
EBP
5
101

DH
SI
ESI
6
110

BH
DI
EDI
7
111

Effective
Address Mod R/M ModR/M Values in Hexadecimal

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp16
[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp8
[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL
ECX/CX/CL
EDX/DX/DL
EBX/BX/BL
ESP/SP/AH
EBP/BP/CH
ESI/SI/DH
EDI/DI/BH

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

NOTES:
1 disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added to the

index.
2 disp16 denotes a 16-bit displacement following the ModR/M byte, to be added to the index.

Default segment register is SS for the effective addresses containing a BP index, DS for other effective
addresses.



EE INSTRUCTION SET

25-7

Table 25-3.  32-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
/digit (Opcode)
REG =

AL
AX
EAX
0
000

CL
CX
ECX
1
001

DL
DX
EDX
2
010

BL
BX
EBX
3
011

AH
SP
ESP
4
100

CH
BP
EBP
5
101

DH
SI
ESI
6
110

BH
DI
EDI
7
111

Effective
Address Mod R/M ModR/M Values in Hexadecimal

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1

disp32
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

disp8[EAX]
disp8[ECX]
disp8[EDX]
disp8[EBX];
disp8[--][--]
disp8[EBP]
disp8[ESI]
disp8[EDI]

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

disp32[EAX]
disp32[ECX]
disp32[EDX]
disp32[EBX]
disp32[--][--]
disp32[EBP]
disp32[ESI]
disp32[EDI]

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL
ECX/CX/CL
EDX/DX/DL
EBX/BX/BL
ESP/SP/AH
EBP/BP/CH
ESI/SI/DH
EDI/DI/BH

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

NOTES:
1 [--][--]  means a SIB follows the ModR/M byte.
2 disp8  denotes an 8-bit displacement following the SIB byte, to be sign-extended and added to the index.

disp32  denotes a 32-bit displacement following the SIB byte, to be added to the index.
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Table 25-4.  32-Bit Addressing Forms with the SIB Byte

r32
Base =
Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index SIB Values in Hexadecimal

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[ECX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

NOTES:

[*] means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the following addressing modes:

disp32[index] (MOD=00)
disp8[EBP][index] (MOD=01)
disp32[EBP][index] (MOD=10)
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25.2.2. How to Read the Instruction Set Pages
The following is an example of the format used for each processor instruction description in
this chapter:

CMC—Complement Carry Flag
Opcode Instruction Clocks Description

F5 CMC 2 Complement carry flag

The above table is followed by paragraphs labelled "Operation," "Description," "Flags
Affected," "Protected Mode Exceptions," "Real Address Mode Exceptions," and, optionally,
"Notes." The following sections explain the notational conventions and abbreviations used in
these paragraphs of the instruction descriptions.

25.2.2.1. OPCODE COLUMN

The "Opcode" column gives the complete object code produced for each form of the
instruction. When possible, the codes are given as hexadecimal bytes, in the same order in
which they appear in memory. Definitions of entries other than hexadecimal bytes are as
follows:

•• /digit:  (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides
an extension to the instruction's opcode.

•• /r: indicates that the ModR/M byte of the instruction contains both a register operand
and an r/m operand.

•• cb, cw, cd, cp: a 1-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code
segment register.

•• ib, iw, id:  a 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines
if the operand is a signed value. All words and doublewords are given with the low-order
byte first.
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•• +rb, +rw, +rd:  a register code, from 0 through 7, added to the hexadecimal byte given
at the left of the plus sign to form a single opcode byte. The codes are—

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7

•• +i: used in floating-point instructions when one of the operands is ST(i) from the FPU
register stack. The number i (which can range from 0 to 7) is added to the hexadecimal
byte given at the left of the plus sign to form a single opcode byte.

25.2.2.2. INSTRUCTION COLUMN

The "Instruction" column gives the syntax of the instruction statement as it would appear in
an ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

•• rel8: a relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

•• rel16, rel32: a relative address within the same code segment as the instruction
assembled. rel16 applies to instructions with an operand-size attribute of 16 bits; rel32
applies to instructions with an operand-size attribute of 32 bits.

•• ptr16:16, ptr16:32: a far pointer, typically in a code segment different from that of the
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.
ptr16:16 is used when the instruction's operand-size attribute is 16 bits; ptr16:32 is used
with the 32-bit attribute.

•• r8:  one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

•• r16: one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.

•• r32: one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

•• imm8: an immediate byte value. imm8 is a signed number between –128 and +127
inclusive. For instructions in which imm8 is combined with a word or doubleword
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operand, the immediate value is sign-extended to form a word or doubleword. The upper
byte of the word is filled with the topmost bit of the immediate value.

•• imm16: an immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between –32768 and +32767 inclusive.

•• imm32: an immediate doubleword value used for instructions whose operand-size
attribute is 32 bits. It allows the use of a number between +2147483647 and –
2147483648 inclusive.

•• r/m8:  a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL,
AH, BH, CH, DH), or a byte from memory.

•• r/m16: a word register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The
contents of memory are found at the address provided by the effective address
computation.

•• r/m32: a doubleword register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP,
EBP, ESI, EDI. The contents of memory are found at the address provided by the
effective address computation.

•• r/m64: a quadword register or memory operand used for instructions whose operand-size
attribute is 64 bits.  The reg/opcode field represents the opcode.  The contents of
memory are found at the address provided by the effective address computation.

•• m: a 16- or 32-bit memory operand.

•• m8: a memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

•• m16: a memory word addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

•• m32: a memory doubleword addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

•• m16:16, m16:32: a memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

•• m16&32, m16&16, m32&32: a memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory
addressing modes are allowed. m16&16 and m32&32 operands are used by the BOUND
instruction to provide an operand containing an upper and lower bounds for array
indices. m16&32 is used by LIDT and LGDT to provide a word with which to load the
limit field, and a doubleword with which to load the base field of the corresponding
Global and Interrupt Descriptor Table Registers.

•• moffs8, moffs16, moffs32: (memory offset) a simple memory variable of type BYTE,
WORD, or DWORD used by some variants of the MOV instruction. The actual address
is given by a simple offset relative to the segment base. No ModR/M byte is used in the
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instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

•• Sreg: a segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

•• m32real, m64real, m80real: (respectively) single-, double-, and extended-real floating-
point operands in memory.

•• m16int, m32int, m64int: (respectively) word-, short-, and long-integer floating-point
operands in memory.

•• mNbyte: N-byte floating-point operand in memory.

•• ST or ST(0): Top element of the FPU register stack.

•• ST(i): ith element from the top of the FPU register stack. (i=0..7)

25.2.2.3. CLOCKS COLUMN

The "Clocks" column gives the approximate number of clock cycles the instruction takes to
execute. The clock count calculations makes the following assumptions:

• Data and instruction accesses hit in the cache.

• The target of a jump instruction is in the cache.

• No invalidate cycles contend with the instruction for use of the cache.

• Page translation hits in the TLB.

• Memory operands are aligned.

• Effective address calculations use a base register which is not the destination register of
the preceding instruction.

• No exceptions are detected during execution.

• There are no write-buffer delays.

For a discussion of the performance penalties incurred when these conditions do not hold, see
Appendix F.

The following symbols are used in the clock count specifications:

• n, which represents a number of repetitions.

• m, which represents the number of components in the next instruction executed, where
the entire displacement (if any) counts as one component, the entire immediate data (if
any) counts as one component, and every other byte of the instruction and prefix(es)
each counts as one component.

• pm=, a clock count that applies when the instruction executes in Protected Mode. pm= is
not given when the clock counts are the same for Protected and Real Address Modes.
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When an exception occurs during the execution of an instruction and the exception handler is
in another task, the instruction execution time is increased by the number of clocks to effect a
task switch. This parameter depends on several factors:

• The type of TSS used to represent the new task (32-bit TSS or 16-bit TSS).

• Whether the current task is in V86 mode.

• Whether the new task is in V86 mode.

• Whether accesses hit in the cache.

• Whether a task gate on an interrupt/trap gate is used.

Table 25-5 summarizes the task switch times for exceptions, assuming cache hits and the use
of task gates. For full details, see Appendix F.

Table 25-5.  Task Switch Times for Exceptions

New Task

Old Task To 32 Bit TSS To 16 Bit TSS To VM TSS

VM/32-bit/16-bit TSS 85 87 71

25.2.2.4. DESCRIPTION COLUMN

The "Description" column following the "Clocks" column briefly explains the various forms
of the instruction. The "Operation" and "Description" sections contain more details of the
instruction's operation.

25.2.2.5. OPERATION

The "Operation" section contains an algorithmic description of the instruction which uses a
notation similar to the Algol or Pascal language. The algorithms are composed of the
following elements:

• Comments are enclosed within the symbol pairs "(*" and "*)".

• Compound statements are enclosed between the keywords of the "if" statement (IF,
THEN, ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement (CASE
... OF, ESAC).

• Execution continues until the END statement is encountered.

• A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative
address is in register DI. [SI] indicates the contents of the address contained in register SI
relative to SI's default segment (DS) or overridden segment.
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• Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, <>, ≥, and ≤ are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE.
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The following identifiers are used in the algorithmic descriptions:

• OperandSize represents the operand-size attribute of the instruction, which is either 16
or 32 bits. AddressSize represents the address-size attribute, which is either 16 or 32
bits. For example,

IF instruction = CMPSW
THEN OperandSize ← 16;
ELSE

IF instruction = CMPSD
THEN OperandSize ← 32;
FI;

FI;

indicates that the operand-size attribute depends on the form of the CMPS instruction
used. Refer to the explanation of address-size and operand-size attributes at the
beginning of this chapter for general guidelines on how these attributes are determined.

• StackAddrSize represents the stack address-size attribute associated with the instruction,
which has a value of 16 or 32 bits, as explained earlier in the chapter.

• SRC represents the source operand. When there are two operands, SRC is the one on the
right.

• DEST represents the destination operand. When there are two operands, DEST is the one
on the left.

• LeftSRC, RightSRC distinguishes between two operands when both are source
operands.

• eSP represents either the SP register or the ESP register depending on the setting of the
B-bit for the current stack segment.

The following functions are used in the algorithmic descriptions:

• Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding
the uppermost bits as needed.

• Addr(operand) returns the effective address of the operand (the result of the effective
address calculation prior to adding the segment base).

• ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of –10
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the
value passed to ZeroExtend and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend(value) returns a value sign-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the value
–10 converts the byte from F6H to a doubleword with hexadecimal value FFFFFFF6H. If
the value passed to SignExtend and the operand-size attribute are the same size,
SignExtend returns the value unaltered.
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• Push(value) pushes a value onto the stack. The number of bytes pushed is determined by
the operand-size attribute of the instruction. The action of Push is as follows:

IF StackAddrSize = 16
THEN
         IF OperandSize = 16
         THEN
                  SP ← SP – 2;
                  SS:[SP] ← value; (* 2 bytes assigned starting at byte address in SP *)
         ELSE (* OperandSize = 32 *)
                  SP ← SP – 4;
                  SS:[SP] ← value; (* 4 bytes assigned starting at byte address in SP *)
         FI;
ELSE (* StackAddrSize = 32 *)
         IF OperandSize = 16
         THEN
                  ESP ← ESP – 2;
                  SS:[ESP] ← value; (* 2 bytes assigned starting at byte address in ESP*)
         ELSE (* OperandSize = 32 *)
                  ESP ← ESP – 4;
                  SS:[ESP] ← value; (* 4 bytes assigned starting at byte address in ESP*)
         FI;
FI;

• Pop(value) removes the value from the top of the stack and returns it. The statement
EAX ← Pop( ); assigns to EAX the 32-bit value that Pop took from the top of the stack.
Pop will return either a word or a doubleword depending on the operand-size attribute.
The action of Pop is as follows:

IF StackAddrSize = 16
THEN
         IF OperandSize = 16
         THEN
                  ret val ← SS:[SP]; (* 2-byte value *)
                  SP ← SP + 2;
         ELSE (* OperandSize = 32 *)
                  ret val ← SS:[SP]; (* 4-byte value *)
                  SP ← SP + 4;
         FI;
ELSE (* StackAddrSize = 32 *)
         IF OperandSize = 16
         THEN
                  ret val ← SS:[ESP]; (* 2 byte value *)
                  ESP ← ESP + 2;
         ELSE (* OperandSize = 32 *)
                  ret val ← SS:[ESP]; (* 4 byte value *)
                  ESP ← ESP + 4;
         FI;
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FI;
RETURN(ret val); (*returns a word or doubleword*)

Pop ST is used on floating-point instruction pages to mean pop the FPU register stack.

• Bit[BitBase, BitOffset] returns the value of a bit within a bit string, which is a sequence
of bits in memory or a register. Bits are numbered from low-order to high-order within
registers and within memory bytes. In memory, the two bytes of a word are stored with
the low-order byte at the lower address.

If the base operand is a register, the offset can be in the range 0..31. This offset addresses
a bit within the indicated register. An example, ‘BIT[EAX, 21]’ is illustrated in Figure
25-3.

If BitBase is a memory address, BitOffset can range from –2 gigabits to 2 gigabits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase +
(BitOffset DIV 8)), where DIV is signed division with rounding towards negative
infinity, and MOD returns a positive number. This is illustrated in Figure 25-4.

APM116

BITOFFSET=21

31 21 0

Figure 25-3.  Bit Offset for BIT[EAX,21]
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APM118

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BITBASE + 1 BITBASE BITBASE - 1

OFFSET = +13

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BITBASE - 2BITBASE - 1BITBASE

OFFSET = -11

Figure 25-4.  Memory Bit Indexing

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O
permission bitmap and other factors. This function is defined as follows:

IF TSS type is 16 bit THEN RETURN FALSE; FI;
Ptr ← [TSS + 66]; (* fetch bitmap pointer *)
BitStringAddr ← SHR (I-O-Address, 3) + Ptr;
MaskShift ← I-O-Address AND 7;
CASE width OF:

BYTE: nBitMask ← 1;
WORD: nBitMask ← 3;
DWORD: nBitMask ← 15;

ESAC;
mask ← SHL (nBitMask, MaskShift);
CheckString ← [BitStringAddr] AND mask;
IF CheckString = 0
THEN RETURN (TRUE);
ELSE RETURN (FALSE);
FI;

•• Switch-Tasks is the task switching function described in Chapter 13.

25.2.2.6. DESCRIPTION

The "Description" section contains further explanation of the instruction's operation.

25.2.2.7. FLAGS AFFECTED

The "Flags Affected" section lists the flags that are affected by the instruction, as follows:
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• If a flag is always cleared or always set by the instruction, the value is given (0 or 1)
after the flag name. Arithmetic and logical instructions usually assign values to the status
flags in the uniform manner described in Appendix C. Nonconventional assignments are
described in the "Operation" section.

• The values of flags listed as "undefined" may be changed by the instruction in an
indeterminate manner.

All flags not listed are unchanged by the instruction.

The floating-point instruction pages have a section called "FPU Flags Affected," which tells
how each instruction can affect the four condition code bits of the FPU status word. These
pages also have a section called "Numeric Exceptions," which lists the exception flags of the
FPU status word that each instruction can set.

25.2.2.8. PROTECTED MODE EXCEPTIONS

This section lists the exceptions that can occur when the instruction is executed in protected
mode. The exception names are a pound sign (#) followed by two letters and an optional
error code in parentheses. For example, #GP(0) denotes a general protection exception with
an error code of 0. Table 25-6 associates each two-letter name with the corresponding
interrupt number.

Table 25-6.  Exceptions

Mnemonic Interrupt Description

#UD  6 Invalid opcode

#NM  7 Device not available

 #DF  8 Double fault

#TS 10 Invalid TSS

#NP 11 Segment or gate not present

#SS 12 Stack fault

#GP 13 General protection fault

#PF 14 Page fault

#MF 16 Floating-point error

#AC 17 Alignment check

Chapter 14 describes the exceptions and the processor state upon entry to the exception.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.
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25.2.2.9. REAL ADDRESS MODE EXCEPTIONS

Because less error checking is performed by the Pentium processor in Real Address Mode,
this mode has fewer exception conditions. Refer to Chapter 9 for further information on these
exceptions.

25.2.2.10. VIRTUAL-8086 MODE EXCEPTIONS

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 Mode
exceptions are similar to those for the 8086 processor, but there are some differences. Refer
to Chapter 22 for complete information on Virtual Mode exceptions.
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AAA— ASCII Adjust after Addition
Opcode Instruction Clocks Description

37 AAA 3 ASCII adjust AL after addition

Operation

ALcarry ←  AL > 0F9H; (* 1 if true *)
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN
    AL ← (AL + 6) AND 0FH;
    AH ← AH + 1 + ALcarry;
    AF ← 1;
    CF ← 1;
ELSE
    AF ← 0;
    CF ← 0;

AL ←  AL AND 0FH;
FI;

Description

Execute the AAA instruction only following an ADD instruction that leaves a byte result in
the AL register. The lower nibbles of the operands of the ADD instruction should be in the
range 0 through 9 (BCD digits). In this case, the AAA instruction adjusts the AL register to
contain the correct decimal digit result. If the addition produced a decimal carry, the AH
register is incremented, and the CF and AF flags are set. If this same addition also produced
FH in the upper nibble of AL then AH is incremented again. If there was no decimal carry,
the CF and AF flags are cleared and the AH register is unchanged. In either case, the AL
register is left with its top nibble set to 0. To convert the AL register to an ASCII result,
follow the AAA instruction with OR AL, 30H.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal carry;
the OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions

None.
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Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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AAD—ASCII Adjust AX before Division
Opcode Instruction Clocks Description

D5    0A AAD 10 ASCII adjust AX before division

Operation

regAL = AL;
regAH = AH;
AL ← (regAH * imm8 + regAL) AND 0FFH;
AH ← 0;

NOTE:

imm8 has the value of the instruction's second byte. The second byte under
normally assembly of this instruction will be 0A, however, explicit
modification of this byte will result in the operation described above and
may alter results.

Description

The AAD instruction is used to prepare two unpacked BCD digits (the least-significant digit
in the AL register, the most-significant digit in the AH register) for a division operation that
will yield an unpacked result. This is accomplished by setting the AL register to AL +
(second byte of opcode * AH), and then clearing the AH register. The AX register is then
equal to the binary equivalent of the original unpacked two-digit number.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are
undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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AAM—ASCII Adjust AX after Multiply
Opcode Instruction Clocks Description

D4    0A AAM 18 ASCII adjust AX after multiply

Operation

regAL ← AL;
AH ← regAL / imm8; 
AL ← regAL MOD imm8;

NOTE:

imm8 has the value of the instruction's second byte. The second byte under
normally assembly of this instruction will be 0A, however, explicit
modification of this byte will result in the operation described above and
may alter results.

Description

Execute the AAM instruction only after executing a MUL instruction between two unpacked
BCD digits that leaves the result in the AX register. Because the result is less than 100, it is
contained entirely in the AL register. The AAM instruction unpacks the AL result by
dividing AL by the second byte of the opcode, leaving the quotient (most-significant digit) in
the AH register and the remainder (least-significant digit) in the AL register.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are
undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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AAS—ASCII Adjust AL after Subtraction
Opcode Instruction Clocks Description

3F AAS 3 ASCII adjust AL after subtraction

Operation

ALborrow ←  AL < 6; (* 1 if true *)
IF (AL AND 0FH) > 9 OR AF = 1
THEN
    AL ← (AL – 6) AND 0FH;
    AH ← AH – 1 – ALborrow;
    AF ← 1;
    CF ← 1;
ELSE
    CF ← 0;
    AF ← 0;
    AL ← AL AND 0FH;
FI;

Description

Execute the AAS instruction only after a SUB instruction that leaves the byte result in the
AL register. The lower nibbles of the operands of the SUB instruction must have been in the
range 0 through 9 (BCD digits). In this case, the AAS instruction adjusts the AL register so it
contains the correct decimal digit result. If the subtraction produced a decimal carry, the AH
register is decremented, and the CF and AF flags are set. If no decimal carry occurred, the
CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL
register is left with its top nibble set to 0. To convert the AL result to an ASCII result, follow
the AAS instruction with OR AL, 30H.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal carry;
the OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.
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Virtual 8086 Mode Exceptions

None.
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ADC—Add with Carry
Opcode Instruction Clocks Description

14 ib ADC AL,imm8 1 Add with carry immediate byte to AL
15 iw ADC AX,imm16 1 Add with carry immediate word to AX
15 id ADC EAX,imm32 1 Add with carry immediate dword to EAX
80 /2 ib ADC r/m8,imm8 1/3 Add with carry immediate byte to r/m byte
81 /2 iw ADC r/m16,imm16 1/3 Add with carry immediate word to r/m word
81 /2 id ADC r/m32,imm32 1/3 Add with CF immediate dword to r/m dword
83 /2 ib ADC r/m16,imm8 1/3 Add with CF sign-extended immediate byte to r/m

word
83 /2 ib ADC r/m32,imm8 1/3 Add with CF sign-extended immediate byte into

r/m dword
10 /r ADC r/m8,r8 1/3 Add with carry byte register to r/m byte
11 /r ADC r/m16,r16 1/3 Add with carry word register to r/m word
11 /r ADC r/m32,r32 1/3 Add with CF dword register to r/m dword
12 /r ADC r8,r/m8 1/2 Add with carry r/m byte to byte register
13 /r ADC r16,r/m16 1/2 Add with carry r/m word to word register
13 /r ADC r32,r/m32 1/2 Add with CF r/m dword to dword register

Operation

DEST ← DEST + SRC + CF;

Description

The ADC instruction performs an integer addition of the two operands DEST and SRC and
the carry flag, CF. The result of the addition is assigned to the first operand (DEST), and the
flags are set accordingly. The ADC instruction is usually executed as part of a multi-byte or
multi-word addition operation. When an immediate byte value is added to a word or
doubleword operand, the immediate value is first sign-extended to the size of the word or
doubleword operand.

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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ADD—Add
Opcode Instruction Clocks Description

04 ib ADD AL,imm8 1 Add immediate byte to AL
05 iw ADD AX,imm16 1 Add immediate word to AX
05 id ADD EAX,imm32 1 Add immediate dword to EAX
80 /0 ib ADD r/m8,imm8 1/3 Add immediate byte to r/m byte
81 /0 iw ADD r/m16,imm16 1/3 Add immediate word to r/m word
81 /0 id ADD r/m32,imm32 1/3 Add immediate dword to r/m dword
83 /0 ib ADD r/m16,imm8 1/3 Add sign-extended immediate byte to r/m word
83 /0 ib ADD r/m32,imm8 1/3 Add sign-extended immediate byte to r/m dword
00 /r ADD r/m8,r8 1/3 Add byte register to r/m byte
01 /r ADD r/m16,r16 1/3 Add word register to r/m word
01 /r ADD r/m32,r32 1/3 Add dword register to r/m dword
02 /r ADD r8,r/m8 1/2 Add r/m byte to byte register
03 /r ADD r16,r/m16 1/2 Add r/m word to word register
03 /r ADD r32,r/m32 1/2 Add r/m dword to dword register

Operation

DEST ← DEST + SRC;

Description

The ADD instruction performs an integer addition of the two operands (DEST and SRC). The
result of the addition is assigned to the first operand (DEST), and the flags are set
accordingly.

When an immediate byte is added to a word or doubleword operand, the immediate value is
sign-extended to the size of the word or doubleword operand.

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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AND—Logical AND
Opcode Instruction Clocks Description

24 ib AND AL,imm8 1 AND immediate byte to AL
25 iw AND AX,imm16 1 AND immediate word to AX
25 id AND EAX,imm32 1 AND immediate dword to EAX
80 /4 ib AND r/m8,imm8 1/3 AND immediate byte to r/m byte
81 /4 iw AND r/m16,imm16 1/3 AND immediate word to r/m word
81 /4 id AND r/m32,imm32 1/3 AND immediate dword to r/m dword
83 /4 ib AND r/m16,imm8 1/3 AND sign-extended immediate byte with r/m word
83 /4 ib AND r/m32,imm8 1/3 AND sign-extended immediate byte with r/m dword
20 /r AND r/m8,r8 1/3 AND byte register to r/m byte
21 /r AND r/m16,r16 1/3 AND word register to r/m word
21 /r AND r/m32,r32 1/3 AND dword register to r/m dword
22 /r AND r8,r/m8 1/2 AND r/m byte to byte register
23 /r AND r16,r/m16 1/2 AND r/m word to word register
23 /r AND r32,r/m32 1/2 AND r/m dword to dword register

Operation

DEST ← DEST AND SRC;
CF ← 0;
OF ← 0;

Description

Each bit of the result of the AND instruction is a 1 if both corresponding bits of the operands
are 1; otherwise, it becomes a 0.

Flags Affected

The CF and OF flags are cleared; the PF, SF, and ZF flags are set according to the result; the
AF flag is undefined.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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ARPL—Adjust RPL Field of Selector
Opcode Instruction Clocks Description

63 /r ARPL r/m16,r16 pm=7 Adjust RPL of r/m16 to not less than RPL  of r16

Operation

IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC
THEN
    ZF ← 1;
    RPL bits(0,1) of DEST ← RPL bits(0,1) of SRC;
ELSE
    ZF ← 0;
FI;

Description

The ARPL instruction has two operands. The first operand is a 16-bit memory variable or
word register that contains the value of a selector. The second operand is a word register. If
the RPL field ("requested privilege level"—bottom two bits) of the first operand is less than
the RPL field of the second operand, the ZF flag is set and the RPL field of the first operand
is increased to match the second operand. Otherwise, the ZF flag is cleared and no change is
made to the first operand.

The ARPL instruction appears in operating system software, not in application programs. It is
used to guarantee that a selector parameter to a subroutine does not request more privilege
than the caller is allowed. The second operand of the ARPL instruction is normally a register
that contains the CS selector value of the caller.

Flags Affected

The ZF flag is set if the RPL field of the first operand is less than that of the second operand,
otherwise ZF is cleared.

Protected Mode Exceptions

#GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the ARPL instruction is not recognized in Real Address Mode.
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Virtual 8086 Mode Exceptions

Interrupt 6; the ARPL instruction is not recognized in Virtual 8086 Mode.
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BOUND—Check Array Index Against Bounds
Opcode Instruction Clocks Description

62 /r BOUND
r16,m16&16

8 (within bounds)
int+32 (out of bounds)

Check if r16 is within bounds

62 /r BOUND
r32,m32&32

8 (within bounds)
int+32 (out of bounds)

Check if r32 is within bounds

Operation

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8])
    (* Under lower bound or over upper bound *)
THEN Interrupt 5;
FI;

Description

The BOUND instruction ensures that a signed array index is within the limits specified by a
block of memory consisting of an upper and a lower bound. Each bound uses one word when
the operand-size attribute is 16 bits and a doubleword when the operand-size attribute is 32
bits. The first operand (a register) must be greater than or equal to the first bound in memory
(lower bound), and less than or equal to the second bound in memory (upper bound) plus the
number of bytes occupied for the operand size. If the register is not within bounds, an
Interrupt 5 occurs; the return EIP points to the BOUND instruction.

The bounds limit data structure is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array.

Flags Affected

None.

Protected Mode Exceptions

Interrupt 5 if the bounds test fails, as described above; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

The second operand must be a memory operand, not a register. If the BOUND instruction is
executed with a ModR/M byte representing a register as the second operand, #UD occurs.

Real Address Mode Exceptions

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie outside of
the effective address space from 0 to 0FFFFH; Interrupt 6 if the second operand is a register.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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BSF—Bit Scan Forward
Opcode Instruction Clocks Description

0F BC BSF r16,r/m16 6-34/6-35 Bit scan forward on r/m word
0F BC BSF r32,r/m32 6-42/6-43 Bit scan forward on r/m dword

Operation

IF r/m = 0
THEN
    ZF ← 1;
    register ← UNDEFINED;
ELSE
    temp ← 0;
    ZF ← 0;
    WHILE BIT[r/m, temp] = 0
    DO
        temp ← temp + 1;
        register ← temp;
    OD;
FI;

Description

The BSF instruction scans the bits in the second word or doubleword operand starting with
bit 0. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the
destination register is loaded with the bit index of the first set bit.

Flags Affected

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared. OF, SF, AF, PF, CF =
undefined.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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BSR—Bit Scan Reverse
Opcode Instruction Clocks Description

0F BD BSR r16,r/m16 7-39/7-40 Bit scan reverse on r/m word
0F BD BSR r32,r/m32 7-71/7-72 Bit scan reverse on r/m dword

Operation

IF r/m = 0
THEN
    ZF ← 1;
    register ← UNDEFINED;
ELSE
    temp ← OperandSize – 1;
    ZF ← 0;
    WHILE BIT[r/m, temp] = 0
    DO
        temp ← temp – 1;
        register ← temp;
    OD;
FI;

Description

The BSR instruction scans the bits in the second word or doubleword operand from the most
significant bit to the least significant bit. The ZF flag is set if all the bits are 0; otherwise, the
ZF flag is cleared and the destination register is loaded with the bit index of the first set bit
found when scanning in the reverse direction.

Flags Affected

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared. OS, SF, AF, PF, CF =
undefined.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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BSWAP—Byte Swap
Opcode Instruction Clocks Description

0F C8+rd BSWAP r32 1 Swap bytes to convert little/big endian data in a
32-bit register to big/little endian form.

Operation

TEMP ← r32
r32(7..0) ← TEMP(31..24)
r32(15..8) ← TEMP(23..16)
r32(23..16) ← TEMP(15..8)
r32(31..24) ← TEMP(7..0)

Description

The BSWAP instruction reverses the byte order of a 32-bit register, converting a value in
little/big endian form to big/little endian form. When BSWAP is used with 16-bit operand
size, the result left in the destination register is undefined.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

BSWAP is not supported on Intel386 processors. Include functionally-equivalent code for
Intel386 CPU's.



EE INSTRUCTION SET

25-41

BT—Bit Test
Opcode Instruction Clocks Description

0F A3 BT r/m16,r16 4/9 Save bit in carry flag
0F A3 BT r/m32,r32 4/9 Save bit in carry flag
0F BA /4 ib BT r/m16,imm8 4 Save bit in carry flag
0F BA /4 ib BT r/m32,imm8 4 Save bit in carry flag

Operation

CF ← BIT[LeftSRC, RightSRC];

Description

The BT instruction saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the CF flag.

Flags Affected

The CF flag contains the value of the selected bit.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction or by
a value in a general register. Only an 8-bit immediate value is used in the instruction. This
operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any
bit within a register to be selected. For memory bit strings, this immediate field gives only
the bit offset within a word or doubleword.

Immediate bit offsets larger than 31 are supported by some assemblers by using the
immediate bit offset field in combination with the displacement field of the memory operand.
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In this case, the low-order 3 to 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits are
shifted and combined with the byte displacement in the addressing mode by the assembler.
The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + (4 * (BitOffset DIV 32))

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + (2 * (BitOffset DIV 16))

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed in
order to reach the given bit. You must therefore avoid referencing areas of memory close to
address space holes. In particular, avoid references to memory-mapped I/O registers. Instead,
use the MOV instructions to load from or store to these addresses, and use the register form
of these instructions to manipulate the data.



EE INSTRUCTION SET

25-43

BTC—Bit Test and Complement
Opcode Instruction Clocks Description

0F BB BTC r/m16,r16 7/13 Save bit in carry flag and complement
0F BB BTC r/m32,r32 7/13 Save bit in carry flag and complement
0F BA /7 ib BTC r/m16,imm8 7/8 Save bit in carry flag and complement
0F BA /7 ib BTC r/m32,imm8 7/8 Save bit in carry flag and complement

Operation

CF ← BIT[LeftSRC, RightSRC];
BIT[LeftSRC, RightSRC] ← NOT BIT[LeftSRC, RightSRC];

Description

The BTC instruction saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the CF flag and then complements the bit.

Flags Affected

The CF flag contains the complement of the selected bit.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction or by
a value in a general register. Only an 8-bit immediate value may be used in the instruction.
This operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows
any bit within a register to be selected. For memory bit strings, this immediate field gives
only the bit offset within a word or doubleword.



INSTRUCTION SET EE

25-44

Immediate bit offsets larger than 31 are supported by some assemblers by using the
immediate bit offset field in combination with the displacement field of the memory operand.
In this case, the low-order 3 to 5 bits (3 for 16 bit operands, 5 for 32 bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits are
shifted and combined with the byte displacement in the addressing mode by the assembler.
The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + (4 * (BitOffset DIV 32))

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + (2 * (BitOffset DIV 16))

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed in
order to reach the given bit. Therefore, referencing areas of memory close to address space
holes should be avoided. In particular, avoid references to memory-mapped I/O registers.
Instead, use the MOV instructions to load from or store to these addresses, and use the
register form of these instructions to manipulate the data.
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BTR—Bit Test and Reset
Opcode Instruction Clocks Description

0F B3 BTR r/m16,r16 7/13 Save bit in carry flag and reset
0F B3 BTR r/m32,r32 7/13 Save bit in carry flag and reset
0F BA /6 ib BTR r/m16,imm8 7/8 Save bit in carry flag and reset
0F BA /6 ib BTR r/m32,imm8 7/8 Save bit in carry flag and reset

Operation

CF ← BIT[LeftSRC, RightSRC];
BIT[LeftSRC, RightSRC] ← 0;

Description

The BTR instruction saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the CF flag and then stores 0 in the bit.

Flags Affected

The CF flag contains the value of the selected bit.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction or by
a value in a general register. Only an 8-bit immediate value is used in the instruction. This
operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any
bit within a register to be selected. For memory bit strings, this immediate field gives only
the bit offset within a word or doubleword.
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Immediate bit offsets larger than 31 are supported by some assemblers by using the
immediate bit offset field in combination with the displacement field of the memory operand.
In thise case, the low-order 3 to 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits are
shifted and combined with the byte displacement in the addressing mode by the assembler.
The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + 4 * (BitOffset DIV 32)

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + 2 * (BitOffset DIV 16)

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed in
order to reach the given bit. You must therefore avoid referencing areas of memory close to
address space holes. In particular, avoid references to memory-mapped I/O registers. Instead,
use the MOV instructions to load from or store to these addresses, and use the register form
of these instructions to manipulate the data.
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BTS—Bit Test and Set
Opcode Instruction Clocks Description

0F AB BTS r/m16,r16 7/13 Save bit in carry flag and set
0F  AB BTS r/m32,r32 7/13 Save bit in carry flag and set
0F BA /5 ib BTS r/m16,imm8 7/8 Save bit in carry flag and set
0F BA /5 ib BTS r/m32,imm8 7/8 Save bit in carry flag and set

Operation

CF ← BIT[LeftSRC, RightSRC];
BIT[LeftSRC, RightSRC] ← 1;

Description

The BTS instruction saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the CF flag and then stores 1 in the bit.

Flags Affected

The CF flag contains the value of the selected bit.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The index of the selected bit can be given by the immediate constant in the instruction or by
a value in a general register. Only an 8-bit immediate value is used in the instruction. This
operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any
bit within a register to be selected. For memory bit strings, this immediate field gives only
the bit offset within a word or doubleword.
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Immediate bit offsets larger than 31 are supported by some assemblers by using the
immediate bit offset field in combination with the displacement field of the memory operand.
In this case, the low-order 3 to 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits are
shifted and combined with the byte displacement in the addressing mode by the assembler.
The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the
memory address given by:

Effective Address + (4 * (BitOffset DIV 32))

for a 32-bit operand size, or two bytes starting from the memory address given by:

Effective Address + (2 * (BitOffset DIV 16))

for a 16-bit operand size. It may do this even when only a single byte needs to be accessed in
order to get at the given bit. You must therefore be careful to avoid referencing areas of
memory close to address space holes. In particular, avoid references to memory-mapped I/O
registers. Instead, use the MOV instructions to load from or store to these addresses, and use
the register form of these instructions to manipulate the data.
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CALL— Call Procedure
Opcode Instruction Clocks Description

E8 cw CALL rel16 1 Call near, displacement relative to next instruction
FF /2 CALL r/m16 2 Call near, register indirect/memory indirect
9A cd CALL ptr16:16 4 Call intersegment, to full pointer given
9A cd CALL ptr16:16 pm=22 Call gate, same privilege
9A cd CALL ptr16:16 pm=44 Call gate, more privilege, no parameters
9A cd CALL ptr16:16 pm=45+2x Call gate, more privilege, x parameters
9A cd CALL ptr16:16 pm=21+ts Call to task
FF /3 CALL m16:16 5 Call intersegment, address at r/m dword
FF /3 CALL m16:16 pm=22 Call gate, same privilege
FF /3 CALL m16:16 pm=44 Call gate, more privilege, no parameters
FF /3 CALL m16:16 pm=45+2x Call gate, more privilege, x parameters
FF /3 CALL m16:16 pm=21+ts Call to task
E8 cd CALL rel32 1 Call near, displacement relative to next instruction
FF /2 CALL r/m32 2 Call near, indirect
9A cp CALL ptr16:32 4 Call intersegment, to full pointer given
9A cp CALL ptr16:32 pm=22 Call gate, same privilege
9A cp CALL ptr16:32 pm=44 Call gate, more privilege, no parameters
9A cp CALL ptr16:32 pm=45+2x Call gate, more privilege, x parameters
9A cp CALL ptr16:32 pm=21+ts Call to task
FF /3 CALL m16:32 5 Call intersegment, address at r/m dword
FF /3 CALL m16:32 pm=22 Call gate, same privilege
FF /3 CALL m16:32 pm=44 Call gate, more privilege, no parameters
FF /3 CALL m16:32 pm=45+2x Call gate, more privilege, x parameters
FF /3 CALL m16:32 pm=21+ts Call to task

NOTE: Values of ts are given by the following table:

New Task

Old Task To 32 Bit TSS To 16 Bit TSS To VM TSS

VM/32-bit/16-bit TSS 85 87 71

Operation

IF rel16 or rel32 type of call
THEN (* near relative call *)    
    IF OperandSize = 16
    THEN
        Push(IP);
        EIP ← (EIP + rel16) AND 0000FFFFH;
    ELSE (* OperandSize = 32 *)
        Push(EIP);
        EIP ← EIP + rel32;
    FI;
FI;
IF r/m16 or r/m32 type of call
THEN (* near absolute call *)    
IF OperandSize = 16
    THEN        

   Push(IP);
        EIP ← [r/m16] AND 0000FFFFH;
    ELSE (* OperandSize = 32 *)
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        Push(EIP);
        EIP ← [r/m32];
    FI;
FI;

IF (PE = 0 OR (PE = 1 AND VM = 1))
(* real mode or virtual 8086 mode *)
    AND instruction = far CALL
     (* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *)
THEN
    IF OperandSize = 16
    THEN
        Push(CS);
        Push(IP); (* address of next instruction; 16 bits *)
    ELSE
        Push(CS); (* padded with 16 high-order bits *)
        Push(EIP); (* address of next instruction; 32 bits *)
    FI;
    IF operand type is m16:16 or m16:32
    THEN (* indirect far call *)
        IF OperandSize = 16
        THEN
            CS:IP ← [m16:16];
            EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)
        ELSE (* OperandSize = 32 *)
            CS:EIP ← [m16:32];
        FI;
    FI;
    IF operand type is ptr16:16 or ptr16:32
    THEN (* direct far call *)
        IF OperandSize = 16
        THEN
            CS:IP ← ptr16:16;
            EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)
        ELSE (* OperandSize = 32 *)
            CS:EIP ← ptr16:32;
        FI;
    FI;
FI;

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *)
    AND instruction = far CALL
THEN
    If indirect, then check access of EA doubleword;
        #GP(0) if limit violation;
    New CS selector must not be null else #GP(0);
    Check that new CS selector index is within its
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        descriptor table limits; else #GP(new CS selector);
    Examine AR byte of selected descriptor for various legal values;
        depending on value:
        go to CONFORMING-CODE-SEGMENT;
        go to NONCONFORMING-CODE-SEGMENT;
        go to CALL-GATE;
        go to TASK-GATE;
        go to TASK-STATE-SEGMENT;
    ELSE #GP(code segment selector);
FI;

CONFORMING-CODE-SEGMENT:
    DPL must be ≤ CPL ELSE #GP(code segment selector);
    Segment must be present ELSE #NP(code segment selector);
    Stack must be big enough for return address ELSE #SS(0);
    Instruction pointer must be in code segment limit ELSE #GP(0);
    Load code segment descriptor into CS register;
    Load CS with new code segment selector;
    Load EIP with zero-extend(new offset);
    IF OperandSize=16 THEN EIP ← EIP AND 0000FFFFH; FI;

NONCONFORMING-CODE-SEGMENT:
    RPL must be ≤ CPL ELSE #GP(code segment selector)
    DPL must be = CPL ELSE #GP(code segment selector)
    Segment must be present ELSE #NP(code segment selector)
    Stack must be big enough for return address ELSE #SS(0)
    Instruction pointer must be in code segment limit ELSE #GP(0)
    Load code segment descriptor into CS register
    Load CS with new code segment selector
    Set RPL of CS to CPL
    Load EIP with zero-extend(new offset);
    IF OperandSize=16 THEN EIP ← EIP AND 0000FFFFH; FI;

CALL-GATE:
    Call gate DPL must be ≥ CPL ELSE #GP(call gate selector)
    Call gate DPL must be ≥ RPL ELSE #GP(call gate selector)
    Call gate must be present ELSE #NP(call gate selector)
    Examine code segment selector in call gate descriptor:
        Selector must not be null ELSE #GP(0)
        Selector must be within its descriptor table
            limits ELSE #GP(code segment selector)
        AR byte of selected descriptor must indicate code
            segment ELSE #GP(code segment selector)
        DPL of selected descriptor must be ≤ CPL ELSE
            #GP(code segment selector)
        IF non-conforming code segment AND DPL < CPL
        THEN go to MORE-PRIVILEGE
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        ELSE go to SAME-PRIVILEGE
        FI;

MORE-PRIVILEGE:
    Get new SS selector for new privilege level from TSS
        Check selector and descriptor for new SS:
            Selector must not be null ELSE #TS(0)
            Selector index must be within its descriptor
                table limits ELSE #TS(SS selector)
            Selector's RPL must equal DPL of code segment
                ELSE #TS(SS selector)
            Stack segment DPL must equal DPL of code
                segment ELSE #TS(SS selector)
            Descriptor must indicate writable data segment
                ELSE #TS(SS selector)
            Segment present ELSE #SS(SS selector)
        IF OperandSize=32
        THEN
            New stack must have room for parameters plus 16 bytes
                ELSE #SS(SS selector)
            EIP must be in code segment limit ELSE #GP(0)
            Load new SS:eSP value from TSS
            Load new CS:EIP value from gate
        ELSE
            New stack must have room for parameters plus 8 bytes
                ELSE #SS(SS selector)
            IP must be in code segment limit ELSE #GP(0)
            Load new SS:eSP value from TSS
            Load new CS:IP value from gate
        FI;
        Load CS descriptor
        Load SS descriptor
        Push long pointer of old stack onto new stack
        Get word count from call gate, mask to 5 bits
        Copy parameters from old stack onto new stack
        Push return address onto new stack
        Set CPL to stack segment DPL
        Set RPL of CS to CPL

SAME-PRIVILEGE:
    IF OperandSize=32
    THEN
        Stack must have room for 6-byte return address (padded to 8 bytes)
            ELSE #SS(0)
        EIP must be within code segment limit ELSE #GP(0)
        Load CS:EIP from gate
    ELSE
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        Stack must have room for 4-byte return address ELSE #SS(0)
        IP must be within code segment limit ELSE #GP(0)
        Load CS:IP from gate
    FI;
    Push return address onto stack
    Load code segment descriptor into CS register
    Set RPL of CS to CPL

TASK-GATE:
    Task gate DPL must be ≥ CPL ELSE #TS(gate selector)
    Task gate DPL must be ≥ RPL ELSE #TS(gate selector)
    Task Gate must be present ELSE #NP(gate selector)
    Examine selector to TSS, given in Task Gate descriptor:
        Must specify global in the local/global bit ELSE #TS(TSS selector)
        Index must be within GDT limits ELSE #TS(TSS selector)
        TSS descriptor AR byte must specify nonbusy TSS
            ELSE #TS(TSS selector)
        Task State Segment must be present ELSE #NP(TSS selector)
    SWITCH-TASKS (with nesting) to TSS
    IP must be in code segment limit ELSE #TS(0)

TASK-STATE-SEGMENT:
    TSS DPL must be ≥ CPL ELSE #TS(TSS selector)
    TSS DPL must be ≥ RPL ELSE #TS(TSS selector)
    TSS descriptor AR byte must specify available TSS
        ELSE #TS(TSS selector)
    Task State Segment must be present ELSE #NP(TSS selector)
    SWITCH-TASKS (with nesting) to TSS
    IP must be in code segment limit ELSE #TS(0)

Description

The CALL instruction causes the procedure named in the operand to be executed. When the
procedure is complete (a return instruction is executed within the procedure), execution
continues at the instruction that follows the CALL instruction.

The action of the different forms of the instruction are described below.

Near calls are those with destinations of type r/m16, r/m32, rel16, rel32; changing or saving
the segment register value is not necessary. The CALL rel16 and CALL rel32 forms add a
signed offset to the address of the instruction following the CALL instruction to determine
the destination. The rel16 form is used when the instruction's operand-size attribute is 16 bits;
rel32 is used when the operand-size attribute is 32 bits. The result is stored in the 32-bit EIP
register. With rel16, the upper 16 bits of the EIP register are cleared, resulting in an offset
whose value does not exceed 16 bits. CALL r/m16 and CALL r/m32 specify a register or
memory location from which the absolute segment offset is fetched. The offset fetched from
r/m is 32 bits for an operand-size attribute of 32 (r/m32), or 16 bits for an operand-size of 16
(r/m16). The offset of the instruction following the CALL instruction is pushed onto the
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stack. It will be popped by a near RET instruction within the procedure. The CS register is
not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptr16:32, use a four-byte or six-byte operand as a
long pointer to the procedure called. The CALL m16:16 and m16:32 forms fetch the long
pointer from the memory location specified (indirection). In Real Address Mode or Virtual
8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits for the EIP
register (depending on the operand-size attribute). These forms of the instruction push both
the CS and IP or EIP registers as a return address.

In Protected Mode, both long pointer forms consult the AR byte in the descriptor indexed by
the selector part of the long pointer. Depending on the value of the AR byte, the call will
perform one of the following types of control transfers:

• A far call to the same protection level

• An inter-protection level far call

• A task switch

A CALL-indirect-thru-memory, which uses the stack pointer (ESP) as a base register,
references memory before the CALL. The base used is the value of the ESP before the
instruction executes.

For more information on Protected Mode control transfers, refer to Chapter 6 and Chapter 7.

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not
occur.

Protected Mode Exceptions

For far calls: #GP, #NP, #SS, and #TS, as indicated in the “Operation” section.

For near direct calls: #GP(0) if procedure location is beyond the code segment limits; #SS(0)
if pushing the return address exceeds the bounds of the stack segment; #PF (fault-code) for a
page fault; #AC for unaligned memory reference if the current privilege level is 3.

For a near indirect call: #GP(0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the
indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

Any far call from a 32-bit code segment to a 16-bit code segment should be made from the
first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of the
instruction is set to 16, allowing only a 16-bit return address offset to be saved.
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CBW/CWDE— Convert Byte to Word/Convert Word to 
Doubleword

Opcode Instruction Clocks Description

98 CBW 3 AX ← sign-extend of AL
98 CWDE 3 EAX ← sign-extend of AX

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ← SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)
    EAX ← SignExtend(AX);
FI;

Description

The CBW instruction converts the signed byte in the AL register to a signed word in the AX
register by extending the most significant bit of the AL register (the sign bit) into all of the
bits of the AH register. The CWDE instruction converts the signed word in the AX register to
a doubleword in the EAX register by extending the most significant bit of the AX register
into the two most significant bytes of the EAX register. Note that the CWDE instruction is
different from the CWD instruction. The CWD instruction uses the DX:AX register pair
rather than the EAX register as a destination.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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CDQ—Convert Double to Quad
See entry for CWD/CDQ — Convert Word to Double/Convert Double to Quad.
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CLC—Clear Carry Flag
Opcode Instruction Clocks Description

F8 CLC 2 Clear carry flag

Operation

CF ← 0;

Description

The CLC instruction clears the CF flag. It does not affect other flags or registers.

Flags Affected

The CF flag is cleared.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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CLD—Clear Direction Flag
Opcode Instruction Clocks Description

FC CLD 2 Clear direction flag; SI and DI will increment during
string instructions

Operation

DF ← 0;

Description

The CLD instruction clears the direction flag. No other flags or registers are affected. After a
CLD instruction is executed, string operations will increment the index registers (SI and/or
DI) that they use.

Flags Affected

The DF flag is cleared.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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CLI—Clear Interrupt Flag
Opcode Instruction Clocks Description

FA CLI 7 Clear interrupt flag; interrupts disabled when
interrupt flag cleared

Operation

IF PE = 0
THEN

IF ← 0;
ELSE

IF VM = 0   (* Executing in protected Mode *)
THEN

IF IOPL = 3
THEN IF ← 0;
ELSE IF CPL ≤ IOPL

THEN IF ← 0;
ELSE #GP(0);
FI;

FI;
ELSE  (* Executing in Virtual-8086 mode  *)

IF IOPL = 3
THEN IF  ←
ELSE #GP(0);
FI;

FI;
FI;

Decision Table

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table.

PE = 0 1 1 1 1

VM = – 0 – 0 1

CPL – ≤ IOPL – >IOPL –

IOPL – – = 3 – < 3

IF ←← 0 Y Y Y

#GP(0) Y Y

NOTES:

– Don't care

Blank Action Not Taken

Y Action in Column 1 taken
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Description

The CLI instruction clears the IF flag if the current privilege level is at least as privileged as
IOPL. No other flags are affected.  External interrupts are not recognized at the end of the
CLI instruction from that point on until the IF flag is set.

Flags Affected

IF

Protected Mode Exceptions

#GP(0) if the current privilege level is greater (has less privilege) than the I/O privilege level
in the flags register. The I/O privilege level specifies the least privileged level at which I/O
can be performed.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) as for protected mode.

Notes

For information on this instruction when using virtual mode extensions, see Appendix H.
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CLTS—Clear Task-Switched Flag in CR0
Opcode Instruction Clocks Description

0F 06 CLTS 10 Clear task-switched flag

Operation

TS Flag in CR0 ← 0;

Description

The CLTS instruction clears the task-switched (TS) flag in the CR0 register. This flag is set
by the processor every time a task switch occurs. The TS flag is used to manage processor
extensions as follows:

• Every execution of an ESC instruction is trapped if the TS flag is set.

• Execution of a WAIT instruction is trapped if the MP flag and the TS flag are both set.

Thus, if a task switch was made after an ESC instruction was begun, the floating-point unit’s
context may need to be saved before a new ESC instruction can be issued. The fault handler
saves the context and clears the TS flag.

The CLTS instruction appears in operating system software, not in application programs. It is
a privileged instruction that can only be executed at privilege level 0.

Flags Affected

The TS flag is cleared (the TS flag is in the CR0 register, not the flags register).

Protected Mode Exceptions

#GP(0) if the CLTS instruction is executed with a current privilege level other than 0.

Real Address Mode Exceptions

None (valid in Real Address Mode to allow initialization for Protected Mode).

Virtual 8086 Mode Exceptions

Same exceptions as in Protected Mode.
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CMC—Complement Carry Flag
Opcode Instruction Clocks Description

F5 CMC 2 Complement carry flag

Operation

CF ← NOT CF;

Description

The CMC instruction reverses the setting of the CF flag. No other flags are affected.

Flags Affected

The CF flag contains the complement of its original value.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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CMP—Compare Two Operands
Opcode Instruction Clocks Description

3C ib CMP AL,imm8 1 Compare immediate byte to AL
3D iw CMP AX,imm16 1 Compare immediate word to AX
3D id CMP EAX,imm32 1 Compare immediate dword to EAX
80 /7 ib CMP r/m8,imm8 1/2 Compare immediate byte to r/m byte
81 /7 iw CMP r/m16,imm16 1/2 Compare immediate word to r/m word
81 /7 id CMP r/m32,imm32 1/2 Compare immediate dword to r/m dword
83 /7 ib CMP r/m16,imm8 1/2 Compare sign extended immediate byte to r/m

word
83 /7 ib CMP r/m32,imm8 1/2 Compare sign extended immediate byte to r/m

dword
38 /r CMP r/m8,r8 1/2 Compare byte register to r/m byte
39 /r CMP r/m16,r16 1/2 Compare word register to r/m word
39 /r CMP r/m32,r32 1/2 Compare dword register to r/m dword
3A /r CMP r8,r/m8 1/2 Compare r/m byte to byte register
3B /r CMP r16,r/m16 1/2 Compare r/m word to word register
3B /r CMP r32,r/m32 1/2 Compare r/m dword to dword register

Operation

LeftSRC - SignExtend(RightSRC);
(* CMP does not store a result; its purpose is to set the flags *)

Description

The CMP instruction subtracts the second operand from the first but, unlike the SUB
instruction, does not store the result; only the flags are changed. The CMP instruction is
typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to
Appendix D for the list of signed and unsigned flag tests provided.) If an operand greater
than one byte is compared to an immediate byte, the byte value is first sign-extended.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
Opcode Instruction Clocks Description

A6 CMPS m8,m8 5 Compare bytes ES:[(E)DI] (second operand) with
[(E)SI] (first operand)

A7 CMPS m16,m16 5 Compare words ES:[(E)DI] (second operand) with
[(E)SI] (first operand)

A7 CMPS m32,m32 5 Compare dwords ES:[(E)DI] (second operand)
with [(E)SI] (first operand)

A6 CMPSB 5 Compare bytes ES:[(E)DI] with DS:[SI]
A7 CMPSW 5 Compare words ES:[(E)DI] with DS:[SI]
A7 CMPSD 5 Compare dwords ES:[(E)DI] with DS:[SI]

Operation

IF (instruction = CMPSD) OR
    (instruction has operands of type DWORD)
THEN OperandSize ← 32;
ELSE OperandSize ← 16;
FI;
IF AddressSize = 16
THEN
    use SI for source-index and DI for destination-index
ELSE (* AddressSize = 32 *)
    use ESI for source-index and EDI for destination-index;
FI;
IF byte type of instruction
THEN
    set ZF based on
    [source-index] - [destination-index]; (* byte comparison *)
    IF DF = 0 THEN IncDec ← 1 ELSE IncDec ← –1; FI;
ELSE
    IF OperandSize = 16
    THEN
        set ZF based on
        [source-index] - [destination-index]; (* word comparison *)
        IF DF = 0 THEN IncDec ← 2 ELSE IncDec ← –2; FI;
    ELSE (* OperandSize = 32 *)
        set ZF based on
        [source-index] - [destination-index]; (* dword comparison *)
        IF DF = 0 THEN IncDec ← 4 ELSE IncDec ← –4; FI;
    FI;
FI;
source-index = source-index + IncDec;
destination-index = destination-index + IncDec;
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Description

The CMPS instruction compares the byte, word, or doubleword pointed to by the source-
index register with the byte, word, or doubleword pointed to by the destination-index
register.

If the address-size attribute of this instruction is 16 bits, the SI and DI registers will be used
for source- and destination-index registers; otherwise the ESI and EDI registers will be used.
Load the correct index values into the SI and DI (or ESI and EDI) registers before executing
the CMPS instruction.

The comparison is done by subtracting the operand indexed by the destination-index register
from the operand indexed by the source-index register.

Note that the direction of subtraction for the CMPS instruction is [SI] – [DI] or [ESI] –
[EDI]. The left operand (SI or ESI) is the source and the right operand (DI or EDI) is the
destination. This is the reverse of the usual Intel convention in which the left operand is the
destination and the right operand is the source.

The result of the subtraction is not stored; only the flags reflect the change. The types of the
operands determine whether bytes, words, or doublewords are compared. For the first
operand (SI or ESI), the DS register is used, unless a segment override byte is present. The
second operand (DI or EDI) must be addressable from the ES register; no segment override is
possible.

After the comparison is made, both the source-index register and destination-index register
are automatically advanced. If the DF flag is 0 (a CLD instruction was executed), the
registers increment; if the DF flag is 1 (an STD instruction was executed), the registers
decrement. The registers increment or decrement by 1 if a byte is compared, by 2 if a word is
compared, or by 4 if a doubleword is compared.

The CMPSB, CMPSW and CMPSD instructions are synonyms for the byte, word, and
doubleword CMPS instructions, respectively.

The CMPS instruction can be preceded by the REPE or REPNE prefix for block comparison
of CX or ECX bytes, words, or doublewords. Refer to the description of the REP instruction
for more information on this operation.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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CMPXCHG—Compare and Exchange
Opcode Instruction Clocks Description

0F B0/r CMPXCHG r/m8,r8 6 Compare AL with r/m byte. If equal, set ZF and
load byte reg into r/m byte. Else, clear ZF and load
r/m byte into AL.

0F B1/r CMPXCHG r/m16,r16 6 Compare AX with r/m word. If equal, set ZF and
load word reg into r/m word. Else, clear ZF and
load r/m word into AX.

0F B1/r CMPXCHG r/m32,r32 6 Compare EAX with r/m dword. If equal, set ZF and
load dword reg into r/m dword. Else, clear ZF and
load r/m dword into EAX.

Operation

IF accumulator=DEST
            ZF ← 1
            DEST ← SRC
ELSE
            ZF ← 0
            accumulator ← DEST

Description

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX register) with
DEST. If they are equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the
accumulator.

Flags Affected

The CF, PF, AF, SF, and OF flags are affected as if a CMP instruction had been executed
with DEST and the accumulator as operands. The ZF flag is set if the destination operand
and the accumulator are equal; otherwise it is cleared.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF (fault code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

This instruction can be used with a LOCK prefix. In order to simplify interface to the
processor’s bus, the destination operand receives a write cycle without regard to the result of
the comparison. DEST is written back if the comparison fails, and SRC is written into the
destination otherwise. (The processor never produces a locked read without also producing a
locked write.) This instruction is not supported on Intel386 processors. See Chapter 23 to use
CMPXCHG compatible with Intel386 processors.
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CMPXCHG8B—Compare and Exchange 8 Bytes
Opcode Instruction Clocks Description

0F C7 /1 m64 CMPXCHG8B r/m64 10 Compare EDX:EAX with r/m qword. If equal, set
ZF and load ECX:EBX into r/m qword.  Else, clear
ZF and load r/m qword into EDX:EAX.

Operation

IF EDX:EAX=DEST
            ZF ← 1
            DEST ← ECX:EBX
ELSE
            ZF ← 0
            EDX:EAX ← DEST

Description

The CMPXCHG8B instruction compares the 64-bit value in EDX:EAX with DEST.  EDX
contains the high-order 32 bits, and EAX contains the low-order 32 bits of the 64-bit value.
If they are equal, the 64-bit value in ECX:EBX is stored into DEST.  ECX contains the high-
order 32 bits and EBX contains the low order 32 bits.  Otherwise, DEST is loaded into
EDX:EAX.

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF (fault code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

The destination operand must be a memory operand, not a register.  If the CMPXCHG8B
instruction is executed with a modr/m byte representing a register as the destination operand,
#UD occurs.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.  #UD if modr/m byte
represents a register as the destination.

Notes

This instruction can be used with a LOCK prefix.  In order to simplify interface to the
processor's bus, the destination operand receives a write cycle without regard to the result of
the comparison.  DEST is written back if the comparison fails, and SRC is written into the
destination otherwise. (The processor never produces a locked read without also producing a
locked write.)

The "r/m64" syntax had previously been used only in the context of floating-point operations.
It indicates a 64-bit value, in memory at an address determined by the modr/m byte.  This
instruction is not supported on Intel486 processors.
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CPUID—CPU Identification
Opcode Instruction Clocks Description

0F A2 CPUID 14 EAX ← CPU identification information

Operation

 switch (EAX)
       case 0:
                EAX ← hv; (* hv=1 for the Pentium processor *)
                     `           (* hv is  the highest input value that is understood by CPUID.*)

                EBX ← Vendor identification string;
                EDX ← Vendor identification string;
                ECX ← Vendor identification string;
                break;

            case 1:
                EAX[3:0] ← Stepping ID;
                EAX[7:4] ← Model;
                EAX[11:8] ← Family;
                EAX[31:12] ← Reserved;

                EBX ← reserved;        (* 0 *)
                ECX ← reserved;        (* 0 *)
                EDX ← feature flags;
                break;

            default:    (* EAX > hv *)
                EAX ← reserved, undefined;
                EBX ← reserved, undefined;
                ECX ← reserved, undefined;
                EDX ← reserved, undefined;
                break;
        end-of-switch

Description

The CPUID instruction provides information to software to identify Intel as the vendor,
including family, model, and stepping of microprocessor on which it is executing.  An input
value loaded into the EAX register for this instruction indicates what information should be
returned by the CPUID instruction.

Following execution of the CPUID instruction with a zero in EAX, the EAX register contains
the highest input value understood by the CPUID instruction.  For the Pentium processor, the
value in EAX will be a one.  Also included in the output of this instruction with an input
value of zero in EAX is a vendor identification string contained in the EBX, EDX, and ECX
registers. EBX contains the first four characters, EDX contains the next four characters and
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ECX contains the last four characters. For Intel processors, the vendor identification string is
"GenuineIntel" as follows:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

Following execution of the CPUID instruction with an input value of one loaded into the
EAX register, EAX[3:0] contains the stepping id of the microprocessor, EAX[7:4] contains
the model (the first model will be indicated by 0001B in these bits) and EAX[11:8] contains
the family (5 for the Pentium processor family). EAX[31:12] are reserved, as well as EBX,
and ECX.  The Pentium processor sets the feature register, EDX, to 1BFH indicating which
features the Pentium processor supports. A feature flag set to one indicates that the
corresponding feature is supported.  The feature set register is defined as follows:

EDX[0:0] FPU on chip
EDX[2:2] I/O Breakpoints
EDX[4:4] Time Stamp Counter
EDX[5:5] Pentium-CPU-style model specific registers
EDX[6:1] For more information on these bits, see Appendix H
EDX[7:7] Machine Check Exception
EDX[8:8] CMPXCHG8B Instruction
EDX[31:9]  Reserved

Software should identify Intel as the vendor in order to properly interpret the feature register
flag bits. For more information on the feature set register, see Appendix H.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

Refer to the guidelines in Chapter 2, "Reserved Bits."
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CWD/CDQ—Convert Word to Double/Convert Double to Quad
Opcode Instruction Clocks Description

99 CWD 2 DX ← sign-extend of AX
99 CDQ 2 EDX ← sign-extend of EAX

Operation

IF OperandSize = 16 (* instruction = CWD *)
THEN DX ← SignExtend(AX);
ELSE (* OperandSize = 32, instruction = CDQ *)
    EDX ← SignExtend(EAX);
FI;

Description

CWD and CDQ double the size of the source operand. The CWD instruction copies the sign
(bit 15) of the word in the AX register into every bit position in the DX register. The CDQ
instruction copies the sign (bit 31) of the doubleword in the EAX register into every bit
position in the EDX register. The CWD instruction can be used to produce a doubleword
dividend from a word before a word division, and the CDQ instruction can be used to
produce a quadword dividend from a doubleword before doubleword division.  The CWD
and CDQ instructions are different mnemonics for the same opcode.  Which one gets
executed is determined by whether it is in a 16- or 32-bit segment and the presence of any
operand-size override prefixes.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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CWDE—Convert Word to Doubleword
See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.
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DAA—Decimal Adjust AL after Addition
Opcode Instruction Clocks Description

27 DAA 3 Decimal adjust AL after addition

Operation

IF (((AL AND 0FH) > 09H) or EFLAGS.AF = 1)
THEN

AL← AL + 06H;
FI;
IF ((AL AND 0F0H) > 90H) or EFLAGS.CF = 1)
THEN

AL ←  AL + 60H;
CF  ← 1;

FI;

Description

Execute the DAA instruction only after executing an ADD instruction that leaves a two-
BCD-digit byte result in the AL register. The ADD operands should consist of two packed
BCD digits. The DAA instruction adjusts the AL register to contain the correct two-digit
packed decimal result.

Flags Affected

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal carry;
the SF, ZF and PF flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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DAS—Decimal Adjust AL after Subtraction
Opcode Instruction Clocks Description

2F DAS 3 Decimal adjust AL after subtraction

Operation

tmpCF ←  0;
tmpAL ←  AL;
IF (((tmpAL AND 0FH) > 9H) or AF = 1)
THEN

AF ← 1;
AL ← AL − 6H;
tmpCF ←  (AL < 0) OR CF;

FI;
IF ((tmpAL > 99H) or CF = 1)
THEN

AL ← AL − 60H;
tmpCF ←  1;

FI;
CF ←  tmpCF;

Description

Execute the DAS instruction only after a subtraction instruction that leaves a two-BCD-digit
byte result in the AL register. The operands should consist of two packed BCD digits. The
DAS instruction adjusts the AL register to contain the correct packed two-digit decimal
result.

Flags Affected

The AF and CF flags are set if there is a decimal borrow, cleared if there is no decimal
borrow; the SF, ZF and PF flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.



EE INSTRUCTION SET

25-79

DEC—Decrement by 1
Opcode Instruction Clocks Description

FE /1 DEC r/m8 1/3 Decrement r/m byte by 1
FF /1 DEC r/m16 1/3 Decrement r/m word by 1
FF /1 DEC r/m32 1/3 Decrement r/m dword by 1
48+rw DEC r16 1 Decrement word register by 1
48+rd DEC r32 1 Decrement dword register by 1

Operation

DEST ← DEST – 1;

Description

The DEC instruction subtracts 1 from the operand. The DEC instruction does not change the
CF flag. To affect the CF flag, use the SUB instruction with an immediate operand of 1.

Flags Affected

The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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DIV—Unsigned Divide
Opcode Instruction Clocks Description

F6 /6 DIV AL,r/m8 17 Unsigned divide AX by r/m byte (AL=Quo,
AH=Rem)

F7 /6 DIV AX,r/m16 25 Unsigned divide DX:AX by r/m word (AX=Quo,
DX=Rem)

F7 /6 DIV EAX,r/m32 41 Unsigned divide EDX:EAX by r/m dword
(EAX=Quo, EDX=Rem)

Operation

temp ← dividend / divisor;
IF temp does not fit in quotient
THEN Interrupt 0;
ELSE
    quotient ← temp;
    remainder ← dividend MOD (r/m);
FI;

Note: Divisions are unsigned. The divisor is given by the r/m  operand. The dividend,
quotient, and remainder use implicit registers. Refer to the table under "Description."

Description

The DIV instruction performs an unsigned division. The dividend is implicit; only the divisor
is given as an operand. The remainder is always less than the divisor. The type of the divisor
determines which registers to use as follows:

Size Dividend Divisor Quotient Remainder

byte AX r/m8 AL AH

word DX:AX r/m16 AX DX

dword EDX:EAX r/m32 EAX EDX

Flags Affected

The OF, SF, ZF, AF, PF, CF flags are undefined.

Protected Mode Exceptions

Interrupt 0 if the quotient is too large to fit in the designated register (AL, AX, or EAX), or if
the divisor is 0; #GP(0) for an illegal memory operand effective address in the CS, DS, ES,
FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault; #AC for unaligned memory reference if the current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 0 if the quotient is too big to fit in the designated register (AL, AX, or EAX), or if
the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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ENTER—Make Stack Frame for Procedure Parameters
Opcode Instruction Clocks Description

C8 iw 00 ENTER imm16,0 11 Make procedure stack frame
C8 iw 01 ENTER imm16,1 15 Make stack frame for procedure parameters
C8 iw ib ENTER imm16,imm8 15+2imm8 Make stack frame for procedure parameters

Operation

level ← level MOD 32
2ndOperand <- 2ndOperand MOD 32
IF operand_size = 16 THEN Push(bp) ELSE Push(ebp) FI;
IF stkSize = 16 THEN framePtr = sp ELSE framePtr = esp FI;
IF (level>0)
FOR i ← 1 TO (2ndOperand - 1)
DO

IF  operand_size = 16
THEN

IF stkSize = 16
THEN

bp = bp - 2
Push( [bp] ) (* word push *)

ELSE (* stkSize = 32 *)
ebp = ebp - 2
Push( [ebp] ) (* word push *)

FI;
ELSE (* operand_size = 32 *)

IF stkSize = 16
bp = bp - 4
Push( [bp] ) (* doubleword push *)

ELSE (* stkSize = 32 *)
ebp = ebp - 4
Push( [ebp] ) (* doubleword push *)

FI;
FI;

OD;
IF operand_size = 16
THEN Push(framePtr); (* word push *)
ELSE  Pushd(framePtr); (* doubleword push *)
FI;
FI;
IF stkSize =16
THEN

bp = framePtr
sp = sp - 1stOperand

ELSE
ebp = framePtr
esp = esp - 1stOperand
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FI;

Description

The ENTER instruction creates the stack frame required by most block-structured high-level
languages. The first operand specifies the number of bytes of dynamic storage allocated on
the stack for the routine being entered. The second operand gives the lexical nesting level (0
to 31) of the routine within the high-level language source code. It determines the number of
stack frame pointers copied into the new stack frame from the preceding frame.

Both the operand-size attribute and the stack-size attribute are used to determine whether BP
or EBP is used for the current frame pointer and SP or ESP is used for the stack pointer.

If the operand-size attribute is 16 bits, the processor uses the BP register as the frame pointer
and the SP register as the stack pointer, unless the stack-size attribute is 32 bits in which case
it uses EBP for the frame pointer and ESP for the stack pointer. If the operand-size attribute
is 32 bits, the processor uses the EBP register for the frame pointer and the ESP register for
the stack pointer, unless the stack-size attribute is 16 bits in which case it uses BP for the
frame pointer and SP for the stack pointer.

If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP
register) onto the stack; the ENTER instruction then subtracts the first operand from the stack
pointer and sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an ENTER 12,0
instruction at its entry point and a LEAVE instruction before every RET instruction. The 12
local bytes would be addressed as negative offsets from the frame pointer.

Flags Affected

None.

Protected Mode Exceptions

#SS(0) if the SP or ESP value would exceed the stack limit at any point during instruction
execution; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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F2XM1—Compute 2 x–1
Opcode Instruction Clocks Description

D9 F0 F2XM1 13-57 Replace ST with (2ST–1)

Operation

ST ← (2ST–1);

Description

F2XM1 replaces the contents of ST with (2ST–1). ST must lie in the range –1 < ST < 1.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

If the operand is outside the acceptable range, the result of F2XM1 is undefined.

Values other than 2 can be exponentiated using the formula

xy = 2(y × log
2
x)

The instructions FLDL2T and FLDL2E load the constants log210 and log2e, respectively.
FYL2X can be used to calculate y × log2x for arbitrary positive x.
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FABS—Absolute Value
Opcode Instruction Clocks Description

D9 E1 FABS 1 Replace ST with its absolute value.

Operation

sign bit of ST ← 0

Description

The absolute value instruction clears the sign bit of ST. This operation leaves a positive value
unchanged, or replaces a negative value with a positive value of equal magnitude.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

IS

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

The invalid-operation exception is raised only on stack underflow. No exception is raised if
the operand is a signalling NaN or is in an unsupported format.



INSTRUCTION SET EE

25-86

FADD/FADDP/FIADD— Add
Opcode Instruction Clocks Description

D8 /0 FADD m32 real 3/1 Add m32real to ST.
DC /0 FADD m64real 3/1 Add m64real to ST.
D8 C0+i FADD ST, ST(i) 3/1 Add ST(i) to ST.
DC C0+i FADD ST(i), ST 3/1 Add ST to ST(i).
DE C0+i FADDP ST(i), ST 3/1 Add ST to ST(i) and pop ST.
DE C1 FADDP 3/1 Add ST to ST(1) and pop ST.
DA /0 FIADD m32int 7/4 Add m32int to ST.
DE /0 FIADD m16int 7/4 Add m16int to ST]

Operation
DEST ← DEST +SRC;
If instruction = FADDP THEN pop ST FI;

Description

The addition instructions add the source and destination operands and return the sum to the
destination. The operand at the stack top can be doubled by coding:

FADD ST, ST(0)

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in memory, it is automatically converted to the extended-real format.
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FBLD—Load Binary Coded Decimal
Opcode Instruction Clocks Description

DF /4 FBLD m80 dec 48-58 Push m80dec onto the FPU stack.

Operation

Decrement FPU stack-top pointer;
ST(0) ← SRC;

Description

FBLD converts the BCD source operand into extended-real format, and pushes it onto the
FPU stack. See Figure 6-11 for BCD data layout.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The source is loaded without rounding error. The sign of the source is preserved, including
the case where the value is negative zero.
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The packed decimal digits are assumed to be in the range 0-9. The instruction does not check
for invalid digits (A-FH), and the result of attempting to load an invalid encoding is
undefined.

ST(7) must be empty to avoid causing an invalid-operation exception.
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FBSTP—Store Binary Coded Decimal and Pop
Opcode Instruction Clocks Description

DF /6 FBSTP m80dec 148-154 Store ST in m80dec and pop ST.

Operation

DEST ← ST(0);
 pop ST;

Description

FBSTP converts the value in ST into a packed decimal integer, stores the result at the
destination in memory, and pops ST. Non-integral values are first rounded according to the
RC field of the control word. See Figure 6-10 for BCD data layout.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, I, IS.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF (fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC
for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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FCHS—Change Sign
Opcode Instruction Clocks Description

D9 E0 FCHS 1 Replace ST with a value of opposite sign.

Operation

sign bit of ST ← NOT (sign bit of ST)

Description

The change sign instruction inverts the sign bit of ST. This operation replaces a positive
value with a negative value of equal magnitude, or vice-versa.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

The invalid-operation exception is raised only on stack underflow, even if the operand is a
signalling NaN or is in an unsupported format.
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FCLEX/FNCLEX—Clear Exceptions
Opcode Instruction Clocks Description

9B DB E2 FCLEX 9 + at least 1for
FWAIT

Clear floating-point exception flags after checking
for floating-point error conditions.

DB E2 FNCLEX 9 Clear floating-point exception flags without
checking for floating-point error conditions.*

* For Pentium® processor and Intel486™ processor implementation, please refer to section 23.3.7 of this
document.

Operation

SW[0..7] ← 0;
SW[15] ← 0;

Description

FCLEX clears the exception flags, the exception status flag, and the busy flag of the FPU
status word.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

FCLEX checks for unmasked floating-point error conditions before clearing the exception
flags; FNCLEX does not.
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FCOM/FCOMP/FCOMPP—Compare Real
Opcode Instruction Clocks Description

D8 /2 FCOM m32real 4/1 Compare ST with m32real.
DC /2 FCOM m64real 4/1 Compare ST with m64real.
D8  D0+i FCOM ST(i) 4/1 Compare ST with ST(i).
D8 D1 FCOM 4/1 Compare ST with ST(1).
D8 /3 FCOMP m32real 4/1 Compare ST with m32real and pop ST.
DC /3 FCOMP m64real 4/1 Compare ST with m64real and pop ST.
D8 D8+i FCOMP ST(i) 4/1 Compare ST with ST(i) and pop ST.
D8 D9 FCOMP 4/1 Compare ST with ST(1) and pop ST.
DE D9 FCOMPP 4/1 Compare ST with ST(1) and pop ST twice.

Operation

CASE (relation of operands) OF
        Not comparable: C3, C2, C0 ← 111;
        ST > SRC: C3, C2, C0 ← 000;
        ST < SRC: C3, C2, C0 ← 001;
        ST = SRC: C3, C2, C0 ← 100;
IF instruction = FCOMP THEN pop ST; FI;
IF instruction = FCOMPP THEN pop ST; pop ST; FI;

FPU Flags EFlags

C0 CF

C1 None

C2 PF

C3 ZF

Description

The compare real instructions compare the stack top to the source, which can be a register or
a single- or double-real memory operand. If no operand is encoded, ST is compared to ST(1).
Following the instruction, the condition codes reflect the relation between ST and the source
operand.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.
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Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the invalid-
operation exception is raised, and the condition bits are set to "unordered."

The sign of zero is ignored, so that –0.0 =– +0.0.
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FCOS—Cosine
Opcode Instruction Clocks Description

D9 FF FCOS 18-124 Replace ST with its cosine

Operation

IF operand is in range
THEN
        C2 ← 0;
        ST ← cos(ST);
ELSE
        C2 ← 1;
FI;

Description

The cosine instruction replaces the contents of ST with cos(ST). ST, expressed in radians,
must lie in the range | θ | < 263.

FPU Flags Affected

C1, C2 as described in Chapter 6; C0, C3 undefined.

Numeric Exceptions

P, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged.
It is the programmer’s responsibility to reduce the operand to an absolute value smaller than
263 by subtracting an appropriate integer multiple of 2π. See Chapter 6 for a discussion of the
proper value to use for π in performing such reductions.
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FDECSTP—Decrement Stack-Top Pointer
Opcode Instruction Clocks Description

D9 F6 FDECSTP 1 Decrement top-of-stack pointer for FPU register
stack.

Operation

IF TOP=0
THEN TOP ← 7;
ELSE TOP ← TOP–1;
FI;

Description

FDECSTP subtracts one (without carry) from the three-bit TOP field of the FPU status word.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

The effect of FDECSTP is to rotate the stack. If does not alter register tags or contents, nor
does it transfer data.
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FDIV/FDIVP/FIDIV—Divide
Opcode Instruction Clocks Description

D8 /6 FDIV m32real 39 Divide ST by m32real.
DC /6 FDIV m64real 39 Divide ST by m64real.
D8 F0+i FDIV ST, ST(i) 39 Divide ST by ST(i)
DC F8+i FDIV ST(i), ST 39 Replace ST(i) with ST(i) ÷ ST
DE F8+i FDIVP ST(i), ST 39 Replace ST(i) with ST(i) ÷ ST; pop ST.
DE F9 FDIVP 39 Replace ST(1) with ST(1) ÷ ST; pop ST.
DA /6 FIDIV m32int 42 Divide ST by m32int.
DE /6 FIDIV m16int 42 Divide ST by m16int.

Operation

FDIV        DEST, SCR
DEST ← DEST ÷ SCR
IF instruction = FDIVP THEN pop ST FI;

Description

The division instructions divide the stack top by the other operand and return the quotient to
the destination.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, Z, D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in memory, it is automatically converted to the extended-real format.

The performance of the division instructions depends on the PC (Precision Control) field of
the FPU control word. If PC specifies a precision of 53 bits, the division instructions will
execute in 33 clocks. If the specified precision is 24 bits, the division instructions will take
only 19 clocks.
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FDIVR/FDIVRP/FIDIVR—Reverse Divide
Opcode Instruction Clocks Description

D8 /7 FDIVR m32real 39 Replaces ST with m32real ÷ ST.
DC /7 FDIVR m64real 39 Replace ST with m64real ÷ ST.
D8 F8+i FDIVR ST, ST(i) 39 Replace ST by ST(i) ÷ ST.
DC F0+i FDIVR ST(i), ST 39 Divide ST(i) = ST ÷ ST(i).
DE F0+i FDIVRP ST(i), ST 39 Divide ST(i) = ST ÷ ST(i) and pop ST.
DE F1 FDIVRP 39 Divide ST(1) = ST ÷ ST(1) and pop ST.
DA /7 FIDIVR m32int 42 Replace ST with m32int ÷ ST.
DE /7 FIDIVR m16int 42 Replace ST with m16int ÷ ST.

Operation

FDIVR        DEST, SRC
DEST ← SRC ÷ DEST
IF instruction = FDIVRP THEN pop ST FI;

Description

The division instructions divide the other operand by the stack top and return the quotient to
the destination.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, Z, D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in memory, it is automatically converted to the extended-real format.

The performance of the reverse division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the reverse division
instructions will execute in 33 clocks. If the specified precision is 24 bits, the reverse division
instructions will take only 19 clocks.
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FFREE—Free Floating-Point Register
Opcode Instruction Clocks Description

DD C0+i FFREE ST(i) 1 Tag ST(i) as empty.

Operation

TAG(i) ← 11B;

Description

FFREE tags the destination register as empty.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

FFREE does not affect the contents of the destination register. The floating-point stack-top
pointer (TOP) is also unaffected.
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FICOM/FICOMP—Compare Integer
Opcode Instruction Clocks Description

DE /2 FICOM m16int 8/4 Compare ST with m16int.
DA /2 FICOM m32int 8/4 Compare ST with m32int.
DE /3 FICOMP m16int 8/4 Compare ST with m16int and pop ST.
DA /3 FICOMP m32int 8/4 Compare ST with m32int and pop ST.

Operation

CASE (relation of operands) OF
         Not comparable: C3, C2, C0 ← 111;
        ST > SRC: C3, C2, C0 ← 000;
        ST < SRC: C3, C2, C0 ← 001;
        ST = SRC: C3, C2, C0 ← 100;
IF instruction = FICOMP THEN pop ST; FI;

FPU Flags EFlags

C0 CF

C1 (none)

C2 PF

C3 ZF

Description

The compare integer instructions compare the stack top to the source. Following the
instruction, the condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.
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Real Address Mode Exceptions

Interupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The memory operand is converted to extended-real format before the comparison is
performed.

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the invalid-
operation exception is raised, and the condition bits are set to "unordered."
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FILD—Load Integer
Opcode Instruction Clocks Description

DF /0 FILD m16int 3/1 Push m16int onto the FPU stack.
DB /0 FILD m32int 3/1 Push m32int onto the FPU stack.
DF /5 FILD m64int 3/1 Push m64int onto the FPU stack.

Operation

Decrement FPU stack-top pointer;
ST(0) ← SRC;

Description

FILD converts the source signed integer operand into extended-real format, and pushes it
onto the FPU stack.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

The source is loaded without rounding error.

ST(7) must be empty to avoid causing an invalid-operation exception.
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FINCSTP—Increment Stack-Top Pointer
Opcode Instruction Clocks Description

D9 F7 FINCSTP 1 Increment top-of-stack pointer for FPU register
stack.

Operation

IF TOP =7
THEN TOP ← 0;
ELSE TOP ← TOP + 1;
FI;

Description

FINCSTP adds one (without carry) to the three-bit TOP field of the FPU status word.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM is either EM or TS in CR0 is set.

Notes

The effect of FINCSTP is to rotate the stack. It does not alter register tags or contents, nor
does it transfer data. It is not equivalent to popping the stack, because it does not set the tag
of the old stack-top to empty.
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FINIT/FNINIT—Initialize Floating-Point Unit
Opcode Instruction Clocks Description

9B DB E3 FINIT 16 Initialize FPU after checking for unmasked
floating-point error condition.

DB E3 FNINIT 12 Initialize FPU without checking for unmasked
floating-point error condition.*

* For Pentium® processor and Intel486™ processor implementation, please refer to section 23.3.7 of this
document.

Operation

CW ← 037FH; (* Control word *)
SW ← 0; (* Status word *)
TW ← FFFFH; (* Tag word *)
FEA ← 0; FDS ← 0; (* Data pointer *)
FIP ← 0; FOP ← 0; FCS ← 0; (* Instruction pointer *)

Description

The initialization instructions set the FPU into a known state, unaffected by any previous
activity.

The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, stack register R0=stack-top).
The stack registers are all tagged as empty. The error pointers (both instruction and data) are
cleared.

FPU Flags Affected

C0, C1, C2, C3 cleared.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.



EE INSTRUCTION SET

25-107

Notes

FINIT checks for unmasked floating-point error conditions before performing the
initialization; FNINIT does not.

On the Pentium processor, unlike the Intel387 math coprocessor, FINIT and FNINIT clear
the error pointers.
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FIST/FISTP—Store Integer
Opcode Instruction Clocks Description

DF /2 FIST m16int 6 Store ST in m16int.
DB /2 FIST m32int 6 Store ST in m32int.
DF /3 FISTP m16int 6 Store ST in m16int and pop ST.
DB /3 FISTP m32int 6 Store ST in m32int and pop ST.
DF /7 FISTP m64int 6 Store ST in m64int and pop ST.

Operation

DEST ← ST(0);
IF instruction = FISTP THEN pop ST FI;

Description

FIST converts the value in ST into a signed integer according to the RC field of the control
word and transfers the result to the destination. ST remains unchanged. FIST accepts word
and short integer destinations; FISTP accepts these and long integers as well.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, I, IS.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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FLD—Load Real
Opcode Instruction Clocks Description

D9 /0 FLD m32real 1 Push m32real onto the FPU stack.
DD /0 FLD m64real 1 Push m64real onto the FPU stack.
DB /5 FLD m80real 3 Push m80real onto the FPU stack.
D9 C0+i FLD ST(i) 1 Push ST(i) onto the FPU stack.

Operation

Decrement FPU stack-top pointer;
ST(0) ← SRC;

Description

FLD pushes the source operand onto the FPU stack. If the source is a register, the register
number used is that before the stack-top pointer is decremented. In particular, coding

FLD ST(0)

duplicates the stack top.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in single- or double-real format, it is automatically converted to the
extended-real format. Loading an extended-real operand does not require conversion, so the I
and D exceptions will not occur in this case.

ST(7) must be empty to avoid causing an invalid-operation exception.
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FLD1/FLDL2T/FLDL2E/
FLDPI/FLDLG2/FLDLN2/FLDZ— Load Constant
Opcode Instruction Clocks Description

D9 E8 FLD1 2/2 Push +1.0 onto the FPU Stack.

D9 E9 FLDL2T 5/3 Push log210 onto the FPU Stack.

D9 EA FLDL2E 5/3 Push log2e onto the FPU Stack.

D9 EB FLDPI 5/3 Push π onto the FPU Stack.

D9 EC FLDLG2 5/3 Push log102 onto the FPU Stack.

D9 ED FLDLN2 5/3 Push loge2 onto the FPU Stack.

D9 EE FLDZ 2/2 Push +0.0 onto the FPU Stack.

Operation

Decrement FPU stack-top pointer;
ST(0) ← CONSTANT;

Description

Each of the constant instructions pushes a commonly-used constant (in extended-real format)
onto the FPU stack.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

ST(7) must be empty to avoid an invalid exception.
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An internal 66-bit constant is used and rounded to external-real format (as specified by the
RC bit of the control words). The precision exception is not raised.
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FLDCW—Load Control Word
Opcode Instruction Clocks Description

D9 /5 FNLDCW m2byte 7 Load FPU control word from m2byte.

Operation

CW ← SRC;

Description

FLDCW replaces the current value of the FPU control word with the value contained in the
specified memory word.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None, except for unmasking an existing exception.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FLDCW is typically used to establish or change the FPU’s mode of operation.

If an exception bit in the status word is set, loading a new control word that unmasks that
exception will result in a floating-point error condition. When changing modes, the
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recommended procedure is to clear any pending exceptions before loading the new control
word.
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FLDENV—Load FPU Environment
Opcode Instruction Clocks Description

D9 /4 FLDENV m14/
28byte

rm or vm=37
16 bit pm=32
32 bit pm=33

Load FPU environment from m14byte or m28byte.

Operation

FPU environment ← SRC;

Description

FLDENV reloads the FPU environment from the memory area defined by the source
operand. This data should have been written by previous FSTENV or FNSTENV instruction.

The FPU environment consists of the FPU control word, status word, tag word, and error
pointers (both data and instruction). The environment layout in memory depends on both the
operand size and the current operating mode of the processor. The USE attribute of the
current code segment determines the operand size: the 14-byte operand applies to a USE16
segment, and the 28-byte operand applies to a USE32 segment. See Chapter 6 for figures of
the environment layouts for both operand sizes in both real mode and protected mode. (In
virtual-8086 mode, the real mode layout is used.) FLDENV should be executed in the same
operating mode as the corresponding FSTENV or FNSTENV.

FPU Flags Affected

C0, C1, C2, C3 as loaded.

Numeric Exceptions

None, except for loading an unmasked exception.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If the environment image contains an unmasked exception, loading it will result in a floating-
point error condition.
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FMUL/FMULP/FIMUL— Multiply
Opcode Instruction Clocks Description

D8 /1 FMUL m32real 3/1 Multiply ST by m32real.
DC /1 FMUL m64real 3/1 Multiply ST by m64real.
D8 C8+i FMUL ST, ST(i) 3/1 Multiply ST by ST(i)
DC C8+i FMUL ST(i), ST 3/1 Multiply ST(i) by ST.
DE C8+i FMULP ST(i), ST 3/1 Multiply ST(i) by ST and pop ST.
DE C9 FMULP 3/1 Multiply ST(1) by ST and pop ST.
DA /1 FIMUL m32int 7/4 Multiply ST by m32int.
DE /1 FIMUL m16int 7/4 Multiply ST by m16int.

Operation

DEST ← DEST x SRC;
IF instruction = FMULP THEN pop ST FI;

Description

The multiplication instructions multiply the destination operand by the source operand and
return the product to the destination.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, D, I.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in memory, it is automatically converted to the extended-real format.
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FNOP—No Operation
Opcode Instruction Clocks Description

D9 D0 FNOP 1 No operation is performed.

Description

FNOP performs no operation. It affects nothing except instruction pointers.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.
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FPATAN—Partial Arctangent
Opcode Instruction Clocks Description

D9 F3 FPATAN 17-173 Replace ST(1) with arctan(ST(1) ÷ ST)
and pop ST.

Operation

ST(1) ← arctan(ST(1) ÷ ST);
pop ST;

Description

The partial arctangent instruction computes the arctangent of ST(1) ÷ ST, and returns the
computed value, expressed in radians, to ST(1). It then pops ST. The result has the same sign
as the operand from ST(1), and a magnitude less than π.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

There is no restriction on the range of arguments that FPATAN can accept.

The fact that FPATAN takes two arguments and computes the arctangent of their ratio
simplifies the calculation of other trigonometric functions. For instance, arcsin(x) (which is
the arctangent of x ÷ √(1–x2)) can be computed using the following sequence of operations:
Push x onto the FPU stack; compute √(1–x2) and push the resulting value onto the stack;
execute FPATAN.
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FPREM—Partial Remainder
Opcode Instruction Clocks Description

D9 F8 FPREM 16-64 Replace ST with the remainder obtained on
dividing ST by ST(1).

Operation

EXPDIF ← exponent(ST) – exponent(ST(1));
IF EXPDIF < 64
THEN
        Q ← integer obtained by chopping ST ÷ ST(1) toward zero;
        ST ← ST – (ST(1) x Q);
        C2 ← 0;
        C0, C3, C1 ← three least-significant bits of Q; (* Q2, Q1, Q0 *)
ELSE
        C2 ← 1;
        N ← a number between 32 and 63;
        QQ ← integer obtained by chopping (ST ÷ ST(1)) ÷ 2EXPDIF-N

                toward zero;
        ST ← ST – (ST(1) x QQ x 2EXPDIF-N;
FI;

Description

The partial remainder instruction computes the remainder obtained on dividing ST by ST(1),
and leaves the result in ST. The sign of the remainder is the same as the sign of the original
dividend in ST. The magnitude of the remainder is less than that of the modulus.

FPU Flags Affected

C0, C1, C2, C3 as described in Chapter 6.

Numeric Exceptions

U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

FPREM produces an exact result; the precision (inexact) exception does not occur and the
rounding control has no effect.

The FPREM instruction is not the remainder operation specified in IEEE Std 754. To get that
remainder, the FPREM1 instruction should be used. FPREM is supported for compatibility
with the 8087 and Intel287 math coprocessors.

FPREM works by iterative subtraction, and can reduce the exponent of ST by no more than
63 in one execution. If FPREM succeeds in producing a remainder that is less than the
modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set, and the
result in ST is called the partial remainder. The exponent of the partial remainder is less than
the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST as the dividend) until C2 is cleared. A higher-priority
interrupting routine that needs the FPU can force a context switch between the instructions in
the remainder loop.

An important use of FPREM is to reduce the arguments of periodic functions. When
reduction is complete, FPREM provides the three least-significant bits of the quotient in flags
C3, C1, and C0. This is important in argument reduction for the tangent function (using a
modulus of π/4), because it locates the original angle in the correct one of eight sectors of the
unit circle.
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FPREM1—Partial Remainder
Opcode Instruction Clocks Description

D9 F5 FPREM1 20-70 Replace ST with the remainder obtained on
dividing ST by ST(1).

Operation

EXPDIF ← exponent(ST) – exponent(ST(1));
IF EXPDIF < 64
THEN
        Q ← integer obtained by rounding ST ÷ ST(1) to to the nearest integer;

(*or the nearest even integer if the result is exactly halfway between 2 integers
*)
        ST ← ST – (ST(1) x Q);
        C2 ← 0;
        C0, C3, C1 ← three least-significant bits of Q; (* Q2, Q1, Q0 *)
ELSE
        C2 ← 1;
        N ← a number between 32 and 63;
        QQ ← integer obtained by chopping (ST ÷ ST(1)) ÷ 2EXPDIF-N toward zero;
        ST ← ST – (ST(1) x QQ x 2EXPDIF-N;
FI;

Description

The partial remainder instruction computes the remainder obtained on dividing ST by ST(1),
and leaves the result in ST. The magnitude of the remainder is less than half the magnitude
of the modulus.

FPU Flags Affected

C0, C1, C2, C3 as described in Chapter 6.

Numeric Exceptions

U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

FPREM1 produces an exact result; the precision (inexact) exception does not occur and the
rounding control has no effect.

The FPREM1 instruction is the remainder operation specified in IEEE Std 754. It differs
from FPREM in the way it rounds the quotient of ST and ST(1), when the exponent
difference of exp(ST) − expST(1) is less than 64.

FPREM1 works by iterative subtraction, and can reduce the exponent of ST by no more than
63 in one execution. If FPREM1 succeeds in producing a remainder that is less than one half
the modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set, and
the result in ST is called the partial remainder. The exponent of the partial remainder is less
than the exponent of the original dividend by at least 32. Software can re-execute the
instruction (using the partial remainder in ST as the dividend) until C2 is cleared. A higher-
priority interrupting routine that needs the FPU can force a context switch between the
instructions in the remainder loop.

An important use of FPREM1 is to reduce the arguments of periodic functions. When
reduction is complete, FPREM1 provides the three least-significant bits of the quotient in
flags C3, C1, and C0. This is important in argument reduction for the tangent function (using
a modulus of π/4), because it locates the original angle in the correct one of eight sectors of
the unit circle.
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FPTAN—Partial Tangent
Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST with its tangent and push 1 onto the
FPU stack.

Operation

IF operand is in range
THEN
        C2 ← 0;
        ST ← tan(ST);
        Decrement stack-top pointer;
        ST ← 1.0;
ELSE
        C2 ← 1;
FI;

Description

The partial tangent instruction replaces the contents of ST with tan(ST), and then pushes 1.0
onto the FPU stack. ST, expressed in radians, must lie in the range | θ | < 263.

FPU Flags Affected

C1, C2 as described in Chapter 6; C0, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.
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Notes

If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged.
It is the programmer’s responsibility to reduce the operand to an absolute value smaller than
263 by subtracting an appropriate integer multiple of 2π. See Chapter 6 for a discussion of the
proper value to use for π in performing such reductions.

The fact that FPTAN pushes 1.0 onto the FPU stack after computing tan(ST) maintains
compatibility with the 8087 and Intel287 math coprocessors, and simplifies the calculation of
other trigonometric functions. For instance, the cotangent (which is the reciprocal of the
tangent) can be computed by executing FDIVR after FPTAN.

ST(7) must be empty to avoid an invalid-operation exception.
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FRNDINT—Round to Integer
Opcode Instruction Clocks Description

D9 FC FRNDINT 9-20 Round ST to an integer.

Operation

ST ← rounded ST;

Description

The round to integer instruction rounds the value in ST to an integer according to the RC
field of the FPU control word.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.
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FRSTOR—Restore FPU State
Opcode Instruction Clocks Description

DD /4 FRSTOR m94/
108byte

16 bit rm or vm= 75
32 bit rm or vm= 95
pm = 70

Load FPU state from m94byte or m108byte.

Operation

FPU state ← SRC;

Description

FRSTOR reloads the FPU state (environment and register stack) from the memory area
defined by the source operand. This data should have been written by a previous FSAVE or
FNSAVE instruction.

The FPU environment consists of the FPU control word, status word, tag word, and error
pointers (both data and instruction). The environment layout in memory depends on both the
operand size and the current operating mode of the processor. The USE attribute of the
current code segment determines the operand size: the 14-byte operand applies to a USE16
segment, and the 28-byte operand applies to a USE32 segment. See Chapter 6 for the
environment layouts for both operand sizes in both real mode and protected mode. (In
virtual-8086 mode, the real mode layout is used.) The stack registers, beginning with ST and
ending with ST(7), are in the 80 bytes that immediately follow the environment image.
FRSTOR should be executed in the same operating mode as the corresponding FSAVE or
FNSAVE.

FPU Flags Affected

C0, C1, C2, C3 as loaded.

Numeric Exceptions

None, except for loading an unmasked exception.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

If the state image contains an unmasked exception, loading it will result in a floating-point
error condition.
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FSAVE/FNSAVE—Store FPU State
Opcode Instruction Clocks Description

9B DD /6 FSAVE m94/108byte  6 bit rm or vm=127
32 bit rm or vm=151
pm=124;
+ at least 3 for
FWAIT

Store FPU state to m94byte or m108byte after
checking for unmasked floating-point error
condition. Then re-initialize the FPU.

DD /6 FNSAVE m94/108byte 16 bit rm or vm=127
32 bit rm or vm=151
pm=124

Store FPU state to m94byte or m108byte without
checking for unmasked floating-point error
condition.* Then re-initialize the FPU.

* For Pentium® processor and Intel486™ processor implementation, please refer to section 23.3.7 of this
document.

Operation

DEST ← FPU state;
initialize FPU; (* Equivalent to FNINIT *)

Description

The save instructions write the current FPU state (environment and register stack) to the
specified destination, and then re-initialize the FPU. The environment consists of the FPU
control word, status word, tag word, and error pointers (both data and instruction).

The state layout in memory depends on both the operand size and the current operating mode
of the processor. The USE attribute of the current code segment determines the operand size:
the 94-byte operand applies to USE16 segment, and the 108-byte operand applies to a USE32
segment. Chapter 6 for the environment layouts for both operand sizes in both real mode and
protected mode. (In virtual-8086 mode, the real mode layout is used.) The stack registers,
beginning with ST and ending with ST(7), are stored in the 80 bytes that immediately follow
the environment image.

FPU Flags Affected

C0, C1, C2, C3 cleared.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FINIT/FNINIT must be used to initialize FPU state prior to using FSAVE/FNSAVE in FRC
mode.

FSAVE and FNSAVE do not store the FPU state until all FPU activity is complete. Thus, the
saved image reflects the state of the FPU after any previously decoded instruction has been
executed.

If a program is to read from the memory image of the state following a save instruction, it
must issue an FWAIT instruction to ensure that the storage is complete.

The save instructions are typically used when an operating system needs to perform a context
switch, or an exception handler needs to use the FPU, or an application program wants to
pass a "clean" FPU to a subroutine.
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FSCALE—Scale
Opcode Instruction Clocks Description

D9 FD FSCALE 20-31 Scale ST by ST(1).

Operation

ST ← ST × 2ST(1);

Description

The scale instruction interprets the value in ST(1) as an integer, and adds this integer to the
exponent of ST. Thus, FSCALE provides rapid multiplication or division by integral powers
of 2.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

FSCALE can be used as an inverse to FXTRACT. Since FSCALE does not pop the exponent
part, however, FSCALE must be followed by FSTP ST(1) in order to completely undo the
effect of a preceding FXTRACT.

There is no limit on the range of the scale factor in ST(1). If the value is not integral,
FSCALE uses the nearest integer smaller in magnitude; i.e., it chops the value toward 0. If
the resulting integer is zero, the value in ST is not changed.
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FSIN—Sine
Opcode Instruction Clocks Description

D9 FE FSIN 16-126 Replace ST with its sine.

Operation

IF operand is in range
THEN
        C2 ← 0;
        ST ← sin(ST);
ELSE
        C2 ← 1;
FI:

Description

The sine instruction replaces the contents of ST with sin(ST). ST, expressed in radians, must
lie in the range | θ | < 263.

FPU Flags Affected

C1, C2 as described in Chapter 6; C0, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged.
It is the programmer’s responsibility to reduce the operand to an absolute value smaller than
263 by subtracting an appropriate integer multiple of 2π. See Chapter 6 for a discussion of the
proper value to use for π in performing such reductions.
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FSINCOS—Sine and Cosine
Opcode Instruction Clocks Description

D9 FB FSINCOS 17-137 Compute the sine and cosine of ST; replace ST
with the sine, and then push the cosine onto the
FPU stack.

Operation

IF operand is in range
THEN
        C2 ← 0;
        TEMP ← cos(ST);
        ST ← sin(ST);
        Decrement FPU stack-top pointer;
        ST ← TEMP;
ELSE
        C2 ← 1;
FI:

Description

FSINCOS computes both sin(ST) and cos(ST), replaces ST with the sine and then pushes the
cosine onto the FPU stack. ST, expressed in radians, must lie in the range | θ | < 263.

FPU Flags Affected

C1, C2 as described in Chapter 6; C0, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.
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Notes

If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged.
It is the programmer’s responsibility to reduce the operand to an absolute value smaller than
263 by subtracting an appropriate integer multiple of 2π. See Chapter 6 for a discussion of the
proper value to use for π in performing such reductions.

It is faster to execute FSINCOS than to execute both FSIN and FCOS.
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FSQRT—Square Root
Opcode Instruction Clocks Description

D9 FA FSQRT 70 Replace ST with its square root.

Operation

ST ← square root of ST;

Description

The square root instruction replaces the value in ST with its square root.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

The square root of –0 is –0.
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FST/FSTP—Store Real
Opcode Instruction Clocks Description

D9 /2 FST m32real 2 Copy ST to m32real .
DD /2 FST m64real 2 Copy ST to m64real.
DD D0+i FST ST(i) 1 Copy ST to ST(i).
D9 /3 FSTP m32real 2 Copy ST to m32real and pop ST.
DD /3 FSTP m64real 2 Copy ST to m64real and pop ST.
DB /7 FSTP m80real 3 Copy ST to m80real and pop ST.
DD D8+i FSTP ST(i) 1 Copy ST to ST(i) and pop ST.

Operation

DEST ← ST(0);
IF instruction = FSTP THEN pop ST FI;

Description

FST copies the current value in the ST register to the destination, which can be another
register or a single- or double-real memory operand. FSTP copies and then pops ST; it
accepts extended-real memory operands as well as the types accepted by FST.

If the source is a register, the register number used is that before the stack is popped.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

Register or extended-real destinations: IS
Single- or double-real destinations: P, U, O, I, IS

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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FSTCW/FNSTCW—Store Control Word
Opcode Instruction Clocks Description

9B D9 /7 FSTCW m2byte 2 + at least 1 for
FWAIT

Store FPU control word to m2byte after checking
for unmasked floating-point error condition.

D9 /7 FNSTCW m2byte 2 Store FPU control word to m2byte without
checking for unmasked floating-point
error condition.*

* For Pentium® processor and Intel486™ processor implementation, please refer to section 23.3.7 of this
document.

Operation

DEST ← CW;

Description

FSTCW and FNSTCW write the current value of the FPU control word to the specified
destination.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FSTCW checks for unmasked floating-point error conditions before storing the control word;
FNSTCW does not.
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FSTENV/FNSTENV—Store FPU Environment
Opcode Instruction Clocks Description

9B D9 /6 FSTENV m14/28byte 16 bit rm or vm=50
32 bit rm or vm=48
16 bit pm=49
32 bit pm =50;
+ at least 3 for
FWAIT

Store FPU environment to m14byte or m28byte
after checking for unmasked floating-point error
condition. Then mask all floating-point exceptions.

D9 /6 FNSTENV m14/28byte 16 bit rm or vm=50
32 bit rm or vm=48
16 bit pm=49
32 bit pm=50

Store FPU state to m14byte or m28byte without
checking for unmasked floating-point error
condition.* Then mask all floating-point exceptions.

* For Pentium® processor and Intel486™ processor implementation, please refer to section 23.3.7 of this
document.

Operation

DEST ← FPU environment;
CW[0..5] ← 111111B;
SW[15], SW[7] ← 0;

Description

The store environment instructions write the current FPU environment to the specified
destination, and then mask all floating-point exceptions. The FPU environment consists of
the FPU control word, status word, tag word, and error pointer (both data and instruction).

The environment layout in memory depends on both the operand size and the current
operating mode of the processor. The USE attribute of the current code segment determines
the operand size: the 14-byte operand applies to a USE16 segment, and the 28-byte operand
applies to a USE32 segment. Figures 6-6 through 6-8 show the environment layouts for both
operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode
layout is used.)

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FSTENV and FNSTENV do not store the environment until all FPU activity is complete.
Thus, the saved environment reflects the state of the FPU after any previously decoded
instruction has been executed.

The store environment instructions are often used by exception handlers because they
provide access to the FPU error pointers. The environment is typically saved onto the
memory stack. After saving the environment, FSTENV and FNSTENV sets all the exception
masks in the FPU control word. This prevents floating-point errors from interrupting the
exception handler.

FSTENV checks for unmasked floating-point error conditions before storing the FPU
environment; FNSTENV does not.
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FSTSW/FNSTSW—Store Status Word
Opcode Instruction Clocks Description

9B DD /7 FSTSW m2byte 2 + at least 3 for
FWAIT

Store FPU status word to mbyte after checking for
unmasked floating-point error condition.

9B DF E0 FSTSW AX 2 + at least 3 for
FWAIT

Store FPU status word to AX register after
checking for unmasked floating-point
error condition.

DD /7 FNSTSW m2byte 2 Store FPU status word to m2byte without checking
for unmasked floating-point error condition.

DF E0 FNSTSW AX 2 Store FPU status word to AX register without
checking for unmasked floating-point
error condition.*

* For Pentium® processor and Intel486™ processor implementation, please refer to section 23.3.7 of this
document.

Operation

DEST ← SW;

Description

FSTSW and FNSTSW write the current value of the FPU status word to the specified
destination, which can be either a two-byte location in memory or the AX register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

FSTSW checks for unmasked floating-point error conditions before storing the status word;
FNSTSW does not.

FSTSW and FNSTSW are used primarily in conditional branching (after a comparison,
FPREM, FPREM1, or FXAM instruction). They can also be used to invoke exception
handlers (by polling the exception bits) in environments that do not use interrupts.

When FNSTSW AX is executed, the AX register is updated before the Pentium processor
executes any further instructions. The status stored is that from the completion of the prior
ESC instruction.
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FSUB/FSUBP/FISUB— Subtract
Opcode Instruction Clocks Description

D8 /4 FSUB m32real 3/1 Subtract m32real from ST.
DC /4 FSUB m64real 3/1 Subtract m64real from ST.
D8 E0+i FSUB ST, ST(i) 3/1 Subtract ST(i) from ST→ST0.
DC E8+i FSUB ST(i), ST 3/1 Replace ST(i) with ST –ST(i).
DE E8+i FSUBP ST(i), ST 3/1 Replace ST(i) with ST –ST(i); pop ST.
DE E9 FSUBP 3/1 Replace ST(i) with ST –ST(i); pop ST.
DA /4 FISUB m32int 7/4 Subtract m32int from ST.
DE /4 FISUBm16int 7/4 Subtract m16int from ST.

Operation

DEST ← ST – Other Operand;
IF instruction = FSUBP THEN pop ST FI;

Description

The subtraction instructions subtract the other operand from the stack top and return the
difference to the destination.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in memory, it is automatically converted to the extended-real format.
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FSUBR/FSUBRP/FISUBR— Reverse Subtract
Opcode Instruction Clocks Description

D8 /5 FSUBR m32real 3/1 Replace ST with m32real – ST.
DC /5 FSUBR m64real 3/1 Replace ST with m64real – ST.
D8 E8+i FSUBR ST, ST(i) 3/1 Replace ST with ST(i) – ST.
DC E0+i FSUBR ST(i), ST 3/1 Subtract ST from ST(i)→ST(i).
DE E0+i FSUBRP ST(i), ST 3/1 Subtract ST from ST(i) and pop ST.
DE E1 FSUBRP 3/1 Subtract ST from ST(1) and pop ST.
DA /5 FISUBR m32int 7/4 Replace ST with m32int – ST.
DE /5 FISUBR m16int 7/4 Replace ST with m16int – ST.

Operation

DEST ← Other Operand – ST;
IF instruction = FSUBRP THEN pop ST FI;

Description

The reverse subtraction instructions subtract the stack top from the other operand and return
the difference to the destination.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, D, I, IS.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current
privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH; Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Notes

If the source operand is in memory, it is automatically converted to the extended-real format.
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FTST—TEST
Opcode Instruction Clocks Description

D9 E4 FTST 4/1 Compare ST with 0.0.

Operation

CASE (relation of operands) OF
         Not comparable: C3, C2, C0 ← 111;
        ST > SRC: C3, C2, C0 ← 000;
        ST < SRC: C3, C2, C0 ← 001;
        ST = SRC: C3, C2, C0 ← 100;

FPU Flags EFlags

C0 CF

C1 (none)

C2 PF

C3 ZF

Description

The test instruction compares the stack top to 0.0. Following the instruction, the condition
codes reflect the result of the comparison.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.
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Notes

If ST contains a NaN or an object of undefined format, or if a stack fault occurs, the invalid-
operation exception is raised, and the condition bits are set to "unordered."

The sign of zero is ignored, so that –0.0=–+0.0.
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FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
Opcode Instruction Clocks Description

DD E0+i FUCOM ST(i) 4/1 Compare ST with ST(i).
DD E1 FUCOM 4/1 Compare ST with ST(1).
DD E8+i FUCOMP ST(i) 4/1 Compare ST with ST(i) and pop ST.
DD E9 FUCOMP 4/1 Compare ST with ST(1) and pop ST.
DA E9 FUCOMPP 4/1 Compare ST with ST(1) and pop ST twice.

Operation

CASE (relation of operands) OF
         Not comparable: C3, C2, C0 ← 111;
        ST > SRC: C3, C2, C0 ← 000;
        ST < SRC: C3, C2, C0 ← 001;
        ST = SRC: C3, C2, C0 ← 100;
IF instruction = FUCOMP THEN pop ST; FI;
IF instruction = FUCOMPP THEN pop ST; pop ST; FI;

FPU Flags EFlags

C0 CF

C1 (none)

C2 PF

C3 ZF

Description

The unordered compare real instructions compare the stack top to the source, which must be
a register. If no operand is encoded, ST is compared to ST(1). Following the instruction, the
condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 as specified above.

Numeric Exceptions

D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.
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Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

If either operand is an SNaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits are set to "unordered."

If either operand is a QNaN, the condition bits are set to "unordered." Unlike the ordinary
compare instructions (FCOM, etc.), the unordered compare instructions do not raise the
invalid-operation exception on account of a QNaN operand.

The sign of zero is ignored, so that –0.0=–+0.0.
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FWAIT—Wait
Opcode Instruction Clocks Description

9B FWAIT (1-3) Alias for WAIT.

Description

FWAIT causes the processor to check for pending unmasked numeric exceptions before
proceding.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if both MP and TS in CR0 are set.

Real Address Mode Exceptions

Interrupt 7 if both MP and TS in CR0 are set.

Virtual 8086 Mode Exceptions

#NM if both MP and TS in CR0 are set.

Notes

As its opcode shows, FWAIT is not actually an ESC instruction, but an alternate mnemonic
for WAIT.

Coding FWAIT after an ESC instruction ensures that any unmasked floating-point exceptions
the instruction may cause are handled before the processor has a chance to modify the
instruction’s results.

Information about when to use FWAIT is given in Chapter 6, in the section on "Concurrent
Processing."
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FXAM—Examine
Opcode Instruction Clocks Description

D9 E5 FXAM 21 Report the type of object in the ST register.

Operation

C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)

CASE (type of object in ST) OF
        Unsupported: C3, C2, C0 ← 000;
        NaN: C3, C2, C0 ← 001;
        Normal: C3, C2, C0 ← 010;
        Infinity: C3, C2, C0 ← 011;
        Zero: C3, C2, C0 ← 100;
        Empty: C3, C2, C0 ← 101;
        Denormal: C3, C2, C0 ← 110;

FPU Flags EFlags

C0 CF

C1 (none)

C2 PF

C3 ZF

Description

The examine instruction reports the type of object contained in the ST register by setting the
FPU Flags.

FPU Flags Affected

C0, C1, C2, C3 as shown above.

Numeric Exceptions

None.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.
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Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

C1 bit represents the sign of ST(0) regardless of  whether ST(0) is empty or full.
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FXCH—Exchange Register Contents
Opcode Instruction Clocks Description

D9 C8+i FXCH ST(i) 1 Exchange the contents of ST and ST(i).
D9 C9 FXCH 1 Exchange the contents of ST and ST(1).

Operation

TEMP ← ST;
ST ← DEST;
DEST ← TEMP;

Description

FXCH swaps the contents of the destination and stack-top registers. If the destination is not
coded explicitly, ST(1) is used.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

Many numeric instructions operate only on the stack top; FXCH provides a simple means for
using these instructions on lower stack elements. For example, the following sequence takes
the square root of the third register form the top (assuming that ST is nonempty):

FXCH ST(3)
FSQRT
FXCH ST(3)
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FXCH can be paired with some floating-point instructions (i.e., FADD, FSUB, FMUL, FLD,
FCOM, FUCOM, FCHS, FTST, FABS, FDIV. This set also includes the FADDP, FSUBRP,
etc. instructions.) When paired, the FXCH  gets executed in parallel, and does not take any
additional clocks.
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FXTRACT—Extract Exponent and Significand
Opcode Instruction Clocks Description

D9 F4 FXTRACT 13 Separate ST into its exponent and significand;
replace ST with the exponent and then push the
significand onto the FPU stack.

Operation

TEMP ← significand of ST;
ST ← exponent of ST;
Decrement FPU stack-top pointer;
ST ← TEMP;

Description

FXTRACT splits the value in ST into its exponent and significand. The exponent replaces
the original operand on the stack and the significand is pushed onto the stack. Following
execution of FXTRACT, ST (the new stack top) contains the value of the original significand
expressed as a real number: its sign is the same as the operand’s, its exponent is 0 true
(16,383 or 3FFFH biased), and its significand is identical to the original operand’s. ST(1)
contains the value of the original operand’s true (unbiased) exponent expressed as a real
number.

To illustrate the operation of FXTRACT, assume that ST contains a number whose true
exponent is +4 (i.e., its exponent field contains 4003H). After executing FXTRACT, ST(1)
will contain the real number +4.0; its sign will be positive, its exponent field will contain
4001H (+2 true) and its significand field will contain 1∆00...00B. In other words, the value in
ST(1) will be 1.0 × 22 = 4. If ST contains an operand whose true exponent is –7 (i.e., its
exponent field contains 3FF8H), then FXTRACT will return an "exponent" of –7.0; after the
instruction executes, ST(1)’s sign and exponent fields will contain C001H (negative sign,
true exponent of 2), and its significand will be 1∆1100...00B. In other words, the value in
ST(1) will be –1.75 × 22=–7.0. In both cases, following FXTRACT, ST’s sign and
significand fields will be the same as the original operand’s, and its exponent field will
contain 3FFFH (0 true).

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

Z, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.
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Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

FXTRACT (extract exponent and significand) performs a superset of the IEEE-recommended
logb(x) function.

If the original operand is zero, FXTRACT leaves –∞ in ST(1) (the exponent) while ST is
assigned the value zero with a sign equal to that of the original operand. The zero-divide
exception is raised in this case, as well.

ST(7) must be empty to avoid the invalid-operation exception.

FXTRACT is useful for power and range scaling operations. Both FXTRACT and the base 2
exponential instruction F2XM1 are needed to perform a general power operation. Converting
numbers in extended-real format to decimal representations (e.g., for printing or displaying)
requires not only FBSTP but also FXTRACT to allow scaling that does not overflow the
range of the extended format. FXTRACT can also be useful for debugging, because it allows
the exponent and significand parts of a real number to be examined separately.
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FYL2X—Compute y ×× log 2x
Opcode Instruction Clocks Description

D9 F1 FYL2X 22-111 Replace ST(1) with ST(1) × log2ST and pop ST.

Operation

ST(1) ← ST(1) × log2ST;
pop ST;

Description

FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(1), and returns
the resulting value to ST(1). It then pops ST. The operand in ST must not be negative or
zero.

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, O, Z, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

If the operand in ST is negative, the invalid-operation exception is raised.

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation
of logarithms with arbitrary positive base:

logbx = (log2b)–1 × log2x

The instructions FLDL2T and FLDL2E load the constants log210 and log2e, respectively.
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FYL2XP1—Compute y ×× log 2(x +1)
Opcode Instruction Clocks Description

D9 F9 FYL2XP1 22-103 Replace ST(1) with ST(1) × log2(ST+1.0)

and pop ST.

Operation

ST(1) ← ST(1) × log2(ST+1.0);
pop ST;

Description

FYL2XP1 computes the base-2 logarithm of (ST+1.0), multiplies the logarithm by ST(1),
and returns the resulting value to ST(1). It then pops ST. The operand in ST must be in the
range

–(1–(√2 / 2)) ≤ ST ≤ √2 –1

FPU Flags Affected

C1 as described in Chapter 6; C0, C2, C3 undefined.

Numeric Exceptions

P, U, D, I, IS.

Protected Mode Exceptions

#NM if either EM or TS in CR0 is set.

Real Address Mode Exceptions

Interrupt 7 if either EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM if either EM or TS in CR0 is set.

Notes

If the operand in ST is outside the acceptable range, the result of FYL2XP1 is undefined.

The FYL2XP1 instruction provides improved accuracy over FYL2X when computing the
logarithms of numbers very close to 1. When ε is small, more significant digits can be
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retained by providing ε as an argument to FYL2XP1 than by providing 1+ε as an argument to
FYL2X.
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HLT—Halt
Opcode Instruction Clocks Description

F4 HLT ∞ Halt

Operation

Enter Halt state;

Description

The HLT instruction stops instruction execution and places the processor in a HALT state.
An enabled interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI)
is used to resume execution after an HLT instruction, the saved CS:IP (or CS:EIP) value
points to the instruction following the HLT instruction.

Flags Affected

None.

Protected Mode Exceptions

The HLT instruction is a privileged instruction; #GP(0) if the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0); the HLT instruction is a privileged instruction.
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IDIV—Signed Divide
Opcode Instruction Clocks Description

F6 /7 IDIV AL,r/m8 22 Signed divide AX (where AH must contain sign-
extension of AL) by r/m byte. (Results: AL=Quo,
AH=Rem)

F7 /7 IDIV AX,r/m16 30 Signed divide DX:AX (where DX must contain
sign-extension of AX) by r/m word. (Results:
AX=Quo, DX=Rem)

F7 /7 IDIV EAX,r/m32 46 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m dword. (Results:
EAX=Quo, EDX=Rem)

Operation

temp ← dividend / divisor;
IF temp does not fit in quotient
THEN Interrupt 0;
ELSE
    quotient ← temp;
    remainder ← dividend MOD (r/m);
FI;

Notes: Divisions are signed. The dividend must be sign-extended. The divisor is given by the
r/m  operand. The dividend, quotient, and remainder use implicit registers. Refer to the table
under "Description."

Description

The IDIV instruction performs a signed division. The dividend, quotient, and remainder are
implicitly allocated to fixed registers. Only the divisor is given as an explicit r/m  operand.
The type of the divisor determines which registers to use as follows:

Size Divisor Quotient Remainder Dividend

byte r/m8     AL      AH AX

word r/m16     AX      DX DX:AX

dword r/m32     EAX      EDX EDX:EAX

If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an Interrupt
0 is generated. Nonintegral quotients are truncated toward 0. The remainder has the same
sign as the dividend and the absolute value of the remainder is always less than the absolute
value of the divisor.

Flags Affected

The OF, SF, ZF, AF, PF, CF flags are undefined.
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Protected Mode Exceptions

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if the
divisor is 0; #GP (0) for an illegal memory operand effective address in the CS, DS, ES, FS,
or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if the
divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective address
space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.



EE INSTRUCTION SET

25-165

IMUL—Signed Multiply
Opcode Instruction Clocks Description

F6 /5 IMUL r/m8 11 AX← AL * r/m byte
F7 /5 IMUL r/m16 11 DX:AX ← AX * r/m word
F7 /5 IMUL r/m32 10 EDX:EAX ← EAX * r/m dword
0F AF /r IMUL r16,r/m16 10 word register ← word register * r/m word
0F AF /r IMUL r32,r/m32 10 dword register ← dword register * r/m dword
6B /r ib IMUL r16,r/m16,imm8 10 word register ← r/m16 * sign-extended immediate

byte
6B /r ib IMUL r32,r/m32,imm8 10 dword register ← r/m32 * sign-extended

immediate byte
6B /r ib IMUL r16,imm8 10 word register ← word register * sign-extended

immediate byte
6B /r ib IMUL r32,imm8 10 dword register ← dword register * sign-extended

immediate byte
69 /r iw IMUL r16,r/

m16,imm16
10 word register ← r/m16 * immediate word

69 /r id IMUL r32,r/
m32,imm32

10 dword register ← r/m32 * immediate dword

69 /r iw IMUL r16,imm16 10 word register ← r/m16 * immediate word
69 /r id IMUL r32,imm32 10 dword register ← r/m32 * immediate dword

Operation

result ← multiplicand * multiplier;

Description

The IMUL instruction performs signed multiplication. Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the instruction are
shown in the "Description" column above.

The IMUL instruction clears the OF and CF flags under the following conditions (otherwise
the CF and OF flags are set):

Instruction Form Condition for Clearing CF and OF

r/m8 AL = sign-extend of AL to 16 bits

r/m16 AX = sign-extend of AX to 32 bits

r/m32 EDX:EAX = sign-extend of EAX to 32 bits

r16,r/m16 Result exactly fits within r16

r/32,r/m32 Result exactly fits within r32

r16,r/m16,imm16 Result exactly fits within r16

r32,r/m32,imm32 Result exactly fits within r32

Flags Affected

The OF and CF flags as described in the table in the "Description" section above; the SF, ZF,
AF, and PF flags are undefined.
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Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exeptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

When using the accumulator forms (IMUL r/m8 , IMUL r/m16 , or IMUL r/m32 ), the result of
the multiplication is available even if the overflow flag is set because the result is twice the
size of the multiplicand and multiplier. This is large enough to handle any possible result.
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IN—Input from Port
Opcode Instruction Clocks Description

E4 ib IN AL,imm8 7,pm=4*/
21**,vm=19

Input byte from immediate port into AL

E5 ib IN AX,imm8 7,pm=4*/
21**,vm=19

Input byte from immediate port into AX

E5 ib IN EAX,imm8 7,pm=4*/
21**,vm=19

Input byte from immediate port into EAX

EC IN AL,DX 7,pm=4*/
21**,vm=19

Input byte from port DX into AL

ED IN AX,DX 7,pm=4*/
21**,vm=19

Input word from port DX into AX

ED IN EAX,DX 7,pm=4*/
21**,vm=19

Input dword from port DX into EAX

NOTES:

 *If CPL ≤ IOPL
**If CPL ≥ IOPL

Operation

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL))
THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *)
    IF NOT I-O-Permission (SRC, width(SRC))
    THEN #GP(0);
    FI;
FI;
DEST ← [SRC]; (* Reads from I/O address space *)

Description

The IN instruction transfers a data byte or data word from the port numbered by the second
operand into the register (AL, AX, or EAX) specified by the first operand. Access any port
from 0 to 65535 by placing the port number in the DX register and using an IN instruction
with the DX register as the second parameter. These I/O instructions can be shortened by
using an 8-bit port I/O in the instruction. The upper eight bits of the port address will be 0
when 8-bit port I/O is used.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the current privilege level is larger (has less privilege) than the I/O privilege level
and any of the corresponding I/O permission bits in TSS equals 1.
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Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) fault if any of the corresponding I/O permission bits in TSS equals 1.
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INC—Increment by 1
Opcode Instruction Clocks Description

FE /0 INC r/m8 1/3 Increment r/m byte by 1
FF /0 INC r/m16 1/3 Increment r/m word by 1
FF /0 INC r/m32 1/3 Increment r/m dword by 1
40+ rw INC r16 1 Increment word register by 1
40+ rd INC r32 1 Increment dword register by 1

Operation

DEST ← DEST + 1;

Description

The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the CF
flag, use the ADD instruction with a second operand of 1.

Flags Affected

The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the operand is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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INS/INSB/INSW/INSD—Input from Port to String
Opcode Instruction Clocks Description

6C INS m8,DX 9,pm=6*/
24**,VM=22

Input byte from port DX into ES:(E)DI

6D INS m16,DX 9,pm=6*/
24**,VM=22

Input word from port DX into ES:(E)DI

6D INS m32,DX 9,pm=6*/
24**,VM=22

Input dword from port DX into ES:(E)DI

6C INSB 9,pm=6*/
24**,VM=22

Input byte from port DX into ES:(E)DI

6D INSW 9,pm=6*/
24**,VM=22

Input word from port DX into ES:(E)DI

6D INSD 9,pm=6*/
24**,VM=22

Input dword from port DX into ES:(E)DI

NOTES:

 *If CPL ≤ IOPL
 **If CPL > IOPL

Operation

IF AddressSize = 16
THEN use DI for dest-index;
ELSE (* AddressSize = 32 *)
    use EDI for dest-index;
FI;
IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL))
THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *)
    IF NOT I-O-Permission (SRC, width(SRC))
    THEN #GP(0);
    FI;
FI;
IF byte type of instruction
THEN
    ES:[dest-index] ← [DX]; (* Reads byte at DX from I/O address space *)
    IF DF = 0 THEN IncDec ← 1 ELSE IncDec ← –1; FI;
FI;
IF OperandSize = 16
THEN
    ES:[dest-index] ← [DX]; (* Reads word at DX from I/O address space *)
    IF DF = 0 THEN IncDec ← 2 ELSE IncDec ← –2; FI;
FI;
IF OperandSize = 32
THEN
    ES:[dest-index] ← [DX]; (* Reads dword at DX from I/O address space *)
    IF DF = 0 THEN IncDec ← 4 ELSE IncDec ← –4; FI; FI;
dest-index ← dest-index + IncDec;
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Description

The INS instruction transfers data from the input port numbered by the DX register to the
memory byte or word at ES:dest-index. The memory operand must be addressable from the
ES register; no segment override is possible. The destination register is the DI register if the
address-size attribute of the instruction is 16 bits, or the EDI register if the address-size
attribute is 32 bits.

The INS instruction does not allow the specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load the correct value into
the DX register before executing the INS instruction.

The destination address is determined by the contents of the destination index register. Load
the correct index into the destination index register before executing the INS instruction.

After the transfer is made, the DI or EDI register advances automatically. If the DF flag is 0
(a CLD instruction was executed), the DI or EDI register increments; if the DF flag is 1 (an
STD instruction was executed), the DI or EDI register decrements. The DI register
increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4 if a
doubleword is input.

The INSB, INSW and INSD instructions are synonyms of the byte, word, and doubleword
INS instructions. The INS instruction can be preceded by the REP prefix for block input of
CX bytes or words. Refer to the REP instruction for details of this operation.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the current privilege level is numerically greater than the I/O privilege level and
any of the corresponding I/O permission bits in TSS equals 1; #GP(0) if the destination is in a
nonwritable segment; #GP(0) for an illegal memory operand effective address in the ES,
segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault-code)
for a page fault; #AC for unaligned memory reference if the current privilege level is 3.
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INT/INTO—Call to Interrupt Procedure
Opcode Instruction Clocks Description

CC INT 3 13 Interrupt 3—trap to debugger
CC INT 3 27 Interrupt 3—Protected Mode, same privilege
CC INT 3 44 Interrupt 3—Protected Mode, more privilege
CC INT 3 56 Interrupt 3—from V86 mode to PL 0
CC INT 3 19+TS Interrupt 3—Protected Mode, via task gate
CD    ib INT imm8 16 Interrupt numbered by immediate byte
CD    ib INT imm8 31 Interrupt—Protected Mode, same privilege
CD    ib INT imm8 48 Interrupt—Protected Mode, more privilege
CD    ib INT imm8 82 Interrupt—from V86 mode to PL 0
CD    ib INT imm8 23+TS Interrupt—Protected Mode, via task gate
CE INTO Pass: 13,

Fail: 4
Interrupt 4—if overflow flag is 1

CE INTO Pass: 27,
Fail: 4

Interrupt 4—Protected Mode, same privilege

CE INTO Pass: 44,
Fail: 4

Interrupt 4—Protected Mode, more privilege

CE INTO Pass: 56,
Fail: 4

Interrupt 4—from V86 mode to PL 0

CE INTO Pass: 19+TS, Fail: 4 Interrupt 4—Protected Mode, via task gate

NOTE: Approximate values of TS are given by the following table:

New Task

Old Task To 32-Bit TSS To 16-Bit TSS To VM TSS

V86/32-bit/16-bit TSS 85 87 71

Operation

NOTE: The following operational description applies not only to the above instructions but
also to external interrupts and exceptions.

IF PE = 0
THEN CALL REAL-ADDRESS-MODE;
ELSE

CALL PROTECTED-MODE;
IF task gate
THEN CALL TASK-GATE;
ELSE
CALL TRAP-OR-INT-GATE; (* PE=1, int/trap gate *)

    IF code segment is non-conforming AND DPL < CPL
THEN

IF VM=0
THEN CALL INT-TO-INNER-PRIV; (*PE=1,int/trap gate,DPL<CPL, VM=0*)
ELSE CALL INT-FROM-V86-MODE; (* PE=1, int/trap gate, DPL<CPL, 

   VM=1 *)
FI;

    ELSE (* PE=1, int/trap gate, DPL ≥ CPL *)
      IF code segment is conforming OR code segment DPL = CPL

THEN CALL INT-TO-SAME-PRIV;
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ELSE #GP(CS selector + EXT);  (* PE=1, int/trap gate, DPL>CPL *)
        FI;
    FI;
FI;

FI;
END;

REAL-ADDRESS-MODE PROC
    Push (FLAGS);
    IF ← 0; (* Clear interrupt flag *)
    TF ← 0; (* Clear trap flag *)
    AC ← 0; (*Clear AC flag*)
    Push(CS);
    Push(IP);
    (* No error codes are pushed *)
    CS ← IDT[Interrupt number * 4].selector;
    IP ← IDT[Interrupt number * 4].offset;
(* Start execution in real address mode *)
REAL-ADDRESS-MODE ENDPROC

PROTECTED-MODE PROC
    Interrupt vector must be within IDT table limits,
        else #GP(vector number * 8+2+EXT);
    Descriptor AR byte must indicate interrupt gate, trap gate, or task gate,
        else #GP(vector number * 8+2+EXT);
    IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *)
    THEN
        IF gate descriptor DPL < CPL
        THEN #GP(vector number * 8+2+EXT); (* PE=1, DPL<CPL, software interrupt *)
        FI;
    FI;
    Gate must be present, else #NP(vector number * 8+2+EXT);
PROTECTED-MODE ENDPROC

TRAP-OR-INT-GATE PROC
    Examine CS selector and descriptor given in the gate descriptor;
    Selector must be non-null, else #GP (EXT);
    Selector must be within its descriptor table limits
        ELSE #GP(selector+EXT);
    Descriptor AR byte must indicate code segment
        ELSE #GP(selector + EXT);
    Segment must be present, else #NP(selector+EXT);
TRAP-OR-INT-GATE ENDPROC

INT-TO-INNER-PRIV PROC
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(* PE=1, DPL<CPL and non-conforming, (* PE=1, int/trap gate, DPL<CPL, VM=0 *)
    Check selector and descriptor for new stack in current TSS;
        Selector must be non-null, else #TS(EXT);
        Selector index must be within its descriptor table limits
            ELSE #TS(SS selector+EXT);
        Selector's RPL must equal DPL of code segment, else #TS(SS
            selector+EXT);
        Stack segment DPL must equal DPL of code segment, else #TS(SS
             selector+EXT);
        Descriptor must indicate writable data segment, else #TS(SS
             selector+EXT);
        Segment must be present, else #SS(SS selector+EXT);
    IF 32-bit gate
    THEN New stack must have room for 20 bytes else #SS(0)
    ELSE New stack must have room for 10 bytes else #SS(0)
    FI;
    Instruction pointer must be within CS segment boundaries else #GP(0);

Load new SS and eSP value from TSS;
    IF 32-bit gate

    THEN CS:EIP ← selector:offset from gate;
    ELSE CS:IP ← selector:offset from gate;
    FI;
    Load CS descriptor into invisible portion of CS register;
    Load SS descriptor into invisible portion of SS register;
    IF 32-bit gate
    THEN
        Push (long pointer to old stack) (* 3 words padded to 4 *);
        Push (EFLAGS);
        Push (long pointer to return location) (* 3 words padded to 4*);
    ELSE
        Push (long pointer to old stack) (* 2 words *);
        Push (FLAGS);
        Push (long pointer to return location) (* 2 words *);
    FI;
    Push error code (if needed) 16 bit 2 bytes, 32 bit 4 bytes
    Set CPL to new code segment DPL;
    Set RPL of CS to CPL;
    IF interrupt gate THEN IF ← 0 (* interrupt flag to 0 (disabled) *); FI;
    TF ← 0;
    NT ← 0;
INT-FROM-INNER-PRIV ENDPROC

INT-FROM-V86-MODE PROC
    Check selector and descriptor for new stack in current TSS;
      Selector must be non-null, else #TS(EXT);
      Selector index must be within its descriptor table limits
      ELSE #TS(SS selector+EXT);
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      Selector's RPL must equal DPL of code segment, else #TS(SS
      selector+EXT);
      Stack segment DPL must equal DPL of code segment, else #TS(SS
       selector+EXT);
      Descriptor must indicate writable data segment, else #TS(SS
       selector+EXT);
     Segment must be present, else #SS(SS selector+EXT);
    IF 32-bit gate

    THEN New stack must have room for 20 bytes else #SS(0)
    ELSE New stack must have room for 10 bytes else #SS(0)
    FI;
    Instruction pointer must be within CS segment boundaries else #GP(0);
  IF IOPL < 3

THEN
#GP(0); (*V86 monitor trap: PE=1,int/trap gate, DPL<CPL, VM=1, IOPL<3*)

ELSE (* IOPL=3 *)
IF GATE'S_DPL = 3
THEN

IF TARGET'S_CPL ≠ 0
THEN #GP(0);
ELSE

TempEFlags ← EFLAGS;
VM ← 0;
TF ← 0;
IF service through Interrupt Gate

THEN IF ← 0;
FI;

    TempSS ← SS;
   TempESP ← ESP;

    SS ← TSS.SS0; (* Change to level 0 stack segment *)
    ESP ← TSS.ESP0; (* Change to level 0 stack pointer *)
    Push(GS); (* padded to two words *)
   Push(FS); (* padded to two words *)
    Push(DS); (* padded to two words *)
    Push(ES); (* padded to two words *)
    GS ← 0; (* segment registers nullified - invalid in protected mode *)
   FS ← 0;
    DS ← 0;
    ES ← 0;
    Push(TempSS); (* Padded to two words *)
    Push(TempESP);
    Push(TempEFlags);
    Push(CS); (* Padded to two words *)
    Push(EIP);
   CS:EIP ← selector:offset from interrupt gate;
   (* Starts execution of new routine in Protected Mode *)

FI;
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ELSE (* GATE'S_DPL ≠ 3 *)
#GP(0);

FI;
FI;

INT-FROM-V86-MODE ENDPROC

INT-TO-SAME-PRIV PROC
  (* PE=1, DPL=CPL or conforming segment *)

    IF 32-bit gate
    THEN Current stack limits must allow pushing 10 bytes, else #SS(0);
    ELSE Current stack limits must allow pushing 6 bytes, else #SS(0);
    FI;
    IF interrupt was caused by exception with error code
    THEN Stack limits must allow push of two more bytes in 16-bit gate or 4 more bytes in 

32-bit gate;
    ELSE #SS(0);
    FI;
    Instruction pointer must be in CS limit, else #GP(0);
    IF 32-bit gate
    THEN
        Push (EFLAGS);
        Push (long pointer to return location); (* 3 words padded to 4 *)
        CS:EIP ← selector:offset from gate;
    ELSE (* 16-bit gate *)
        Push (FLAGS);
        Push (long pointer to return location); (* 2 words *)
        CS:IP ← selector:offset from gate;
    FI;
    Load CS descriptor into invisible portion of CS register;
    Set the RPL field of CS to CPL;
    Push (error code); (* if any *)
    IF interrupt gate THEN IF ← 0; FI;
    TF ← 0;
    NT ← 0;
INT-TO-SAME-PRIV ENDPROC

TASK-GATE PROC  (* PE=1, task gate *)
    Examine selector to TSS, given in task gate descriptor;
        Must specify global in the local/global bit, else #TS(TSS selector);
        Index must be within GDT limits, else #TS(TSS selector);
        AR byte must specify available TSS (bottom bits 00001),
            else #TS(TSS selector);
        TSS must be present, else #NP(TSS selector);
    SWITCH-TASKS with nesting to TSS;
    IF interrupt was caused by fault with error code
    THEN
        Stack limits must allow push of two more bytes, else #SS(0);
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        Push error code onto stack;
    FI;
    Instruction pointer must be in CS limit, else #GP(0);
TASK-GATE ENDPROC
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Decision Table

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table.  Each Y in the lower section of the
decision table represents a procedure defined above in the Operation section for this
instruction (except #GP(0)) and the number following the Y indicates the order in which the
procedure is executed.

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL RELATIONSHIP – DPL<
CPL

– DPL>
CPL

DPL=
CPL or

C

DPL<
CPL &

NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Int

Trap or
Int

Trap or
Int

Trap or
Int

Trap or
Int

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y1 Y1 Y1 Y1 Y1 Y1 Y1

TRAP-OR-INT-GATE Y2 Y2 Y2 Y2 Y2

INT-TO-INNER-PRIV Y3

INT-TO-SAME-PRIV Y3

INT-FROM-V86-MODE Y3

TASK-GATE Y2

#GP Y2 Y3 Y3

NOTES:

- Don't Care
Yx Yes, Action Taken, x = the order of execution
Blank Action Not Taken

Description

The INT n instruction generates a call to an interrupt handler. The immediate operand, from
0 to 255, gives the index number into the Interrupt Descriptor Table (IDT) of the interrupt
routine to be called. In protected mode, the IDT consists of an array of eight-byte descriptors;
the descriptor for the interrupt invoked must indicate an interrupt, trap, or task gate. In real-
address mode, the IDT is an array of four byte-long pointers. In protected and real-address
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modes, the base linear address of the IDT is defined by the contents of the IDTR. The initial
value of IDTR is zero upon reset into real-address mode.

When the processor is executing in virtual-8086 mode (VM=1), the IOPL determines
whether the INT n causes a general protection exception (IOPL<3) or executes a protected
mode interrupt to privilege level 0.  The interrupt gate's DPL must be set to three and the
target CPL of the interrupt service routine must be zero to execute the protected mode
interrupt to privilege level 0.

The INTO conditional software instruction is identical to the INT n interrupt instruction
except that the interrupt number is implicitly 4, and the interrupt is made only if the overflow
flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are used
for internally generated exceptions.

The INT n instruction generally behaves like a far call except that the flags register is pushed
onto the stack before the return address. Interrupt procedures return via the IRET instruction,
which pops the flags and return address from the stack.

In Real Address Mode, the INT n instruction pushes the flags, the CS register, and the return
IP onto the stack, in that order, then jumps to the long pointer indexed by the interrupt
number.

Flags Affected

None.

Protected Mode Exceptions

#GP, #NP, #SS, and #TS as indicated under "Operation" above.

Real Address Mode Exceptions

None; if the SP or ESP register is 1, 3, or 5 before executing the INT or INTO instruction, the
processor will shut down due to insufficient stack space.

Virtual 8086 Mode Exceptions

#GP(0) fault if IOPL is less than 3, for the INT n instruction only, to permit emulation;
Interrupt 3 (0CCH) generates a breakpoint exception; the INTO instruction generates an
overflow exception if the OF flag is set.

Notes

For obtaining information on this instruction using virtual mode extensions, see Appendix H.
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INVD—Invalidate Cache
Opcode Instruction Clocks Description

0F 08 INVD 15 Invalidate Entire Cache

Operation

INVALIDATE INTERNAL CACHE
SIGNAL EXTERNAL CACHE TO INVALIDATE

Description

The internal cache is invalidated, and a special-function bus cycle is issued which indicates
that external caches should also be invalidated. Data held in write-back external caches is not
instructed to be written back.

Flags Affected

None.

Protected Mode Exceptions

The INVD instruction is a privileged instruction; #GP(0) if the current privilege level is not
0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0); the INVD instruction is a privileged instruction.

Notes

INVD should be used with care. It does not writeback modified cache lines; therefore, it can
cause the data cache to become inconsistent with other memories in the system.  Unless there
is a specific requirement or benefit to invalidate a cache without writing back the modified
lines (i.e., testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

This instruction is implementation-dependent; its function may be implemented differently
on future Intel processors.

This instruction does not wait for the external cache to complete its invalidation before the
processor proceeds. It is the responsibility of hardware to respond to the external cache
invalidation indication.
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This instruction is not supported on Intel386 processors. See Section Chapter 9 for CPUID
detection at run time. See the WBINVD description to writeback dirty data to memory.

See Chapter 18 on disabling the cache.
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INVLPG—Invalidate TLB Entry
Opcode Instruction Clocks Description

0F 01/7 INVLPG m 25 Invalidate TLB Entry

Operation

INVALIDATE RELEVANT TLB ENTRY(S)

Description

The INVLPG instruction is used to invalidate entries in the TLB.

Flags Affected

None.

Protected Mode Exceptions

The INVLPG instruction is a privileged instruction; #GP(0) if the current privilege level is
not 0. An invalid-opcode exception is generated when used with a register operand.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

An invalid-opcode exception is generated when used with a register operand. #GP(0); the
INVLPG instruction is a privileged instruction.

Notes

This instruction is not supported on Intel386 processors. See Section Chapter 16 for detecting
processor type at run time.

See Chapter 18 for information on disabling the cache.
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IRET/IRETD—Interrupt Return
Opcode Instruction Clocks Description

CF IRET 8 Interrupt return (from real or V86 mode)
CF IRET 10 Interrupt return (far return and pop flags)
CF IRET 27 Interrupt return to lesser privilege
CF IRET TS+10 Interrupt return, different task (NT = 1)
CF IRETD 10 Interrupt return (far return and pop flags)
CF IRETD 27 Interrupt return to lesser privilege
CF IRETD TS+10 Interrupt return, different task (NT = 1)

NOTE: Values of TS are given by the following table:

New Task

Old Task To 32-Bit TSS To 16-Bit TSS To VM TSS

VM/32-bit/16-bit 85 87 71

Operation

IF PE = 0
THEN GOTO REAL_ADDRESS_MODE:;
ELSE GOTO PROTECTED_MODE;
FI;

REAL_ADDRESS_MODE;
IF OperandSize = 32 (* Instruction = IRETD *)
THEN EIP ← Pop( );
ELSE (* Instruction = IRET *)
IP ← Pop( );

FI;
CS ← Pop( );
IF OperandSize = 32 (* Instruction = IRETD *)
THEN Pop( ); EFLAGS ← Pop( );
ELSE (* Instruction = IRET *)
FLAGS ← Pop( );

FI;
END;

PROTECTED_MODE:
IF VM = 1 (* Virtual mode: PE=1, VM=1*)
THEN GOTO STACK_RETURN_FROM_V86; (* PE=1, VM=1 *)
ELSE
IF NT=1
THEN GOTO TASK_RETURN;(* PE=1, VM=1, NT=1 *)
ELSE

IF VM=1 in flags image on stack
THEN GOTO STACK_RETURN_TO_V86; (* PE=1, VM=1 in flags 

    image *)
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ELSE GOTO STACK_RETURN; (* PE=1, VM=0 in flags image *)
FI;

FI;
FI;

STACK_RETURN_FROM_V86:
IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN

IF OperandSize = 16
IP ← Pop(); (* 16 bit pops *)
CS ← Pop();
FLAGS ←Pop();

ELSE (* OperandSize = 32 *)
EIP ← Pop(); (* 32-bit pops *)
CS ← Pop();
EFLAGS ←Pop(); (*VM,IOPL,VIP,and VIF EFLAG bits are not modified by IRETD*)

FI;
ELSE #GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)

    FI;
END;

STACK_RETURN_TO_V86: (* Interrupted procedure was in V86 mode: PE=1, VM=1 in flags
image *)
 IF top 36 bytes of stack not within limits
    THEN #SS(0);
    FI;
    IF instruction pointer not within code segment limit     THEN #GP(0);
    FI;
   EFLAGS ← SS:[ESP + 8]; (* Sets VM in interrupted routine *)
    EIP ← Pop( );
    CS ← Pop( ); (* CS behaves as in 8086, due to VM = 1 *)
    throwaway ← Pop( ); (* pop away EFLAGS already read *)
    TempESP ← Pop( );
    TempSS ← Pop( );
    ES ← Pop( ); (* pop 2 words; throw away high-order word *)
    DS ← Pop( ); (* pop 2 words; throw away high-order word *)
    FS ← Pop( ); (* pop 2 words; throw away high-order word *)
    GS ← Pop( ); (* pop 2 words; throw away high-order word *)
        SS:ESP ← TempSS:TempESP;
    (* Resume execution in Virtual 8086 mode *)
    END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
 Examine Back Link Selector in TSS addressed by the current task
        register:
        Must specify global in the local/global bit, else #TS(new TSS selector);
        Index must be within GDT limits, else #TS(new TSS selector);
        AR byte must specify TSS, else #TS(new TSS selector);
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        New TSS must be busy, else #TS(new TSS selector);
        TSS must be present, else #NP(new TSS selector);
    SWITCH-TASKS without nesting to TSS specified by back link selector;
    Mark the task just abandoned as NOT BUSY;
    Instruction pointer must be within code segment limit ELSE #GP(0);
    END;

STACK-RETURN: (* PE=1, VM=0 in flags image *)
    IF OperandSize=32
    THEN Third word on stack must be within stack limits, else #SS(0);
    ELSE Second word on stack must be within stack limits, else #SS(0);
    FI;
    Return CS selector RPL must be ≥ CPL, else #GP(Return selector);
    IF return selector RPL = CPL
    THEN GOTO RETURN-SAME-LEVEL;
    ELSE GOTO RETURN-OUTER-LEVEL;
    FI;

RETURN-SAME-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
    IF OperandSize=32
    THEN
       Top 12 bytes on stack must be within limits, else #SS(0);
        Return CS selector (at eSP+4) must be non-null, else #GP(0);
    ELSE
        Top 6 bytes on stack must be within limits, else #SS(0);
        Return CS selector (at eSP+2) must be non-null, else #GP(0);
    FI;
    Selector index must be within its descriptor table limits, else #GP
        (Return selector);
    AR byte must indicate code segment, else #GP(Return selector);
    IF non-conforming
    THEN code segment DPL must = CPL;
    ELSE #GP(Return selector); (* PE=1,VM=0 in flags image,RPL=CPL,non-conforming,DPL
≠CPL *)
    FI;
    IF conforming
    THEN IF DPL>CPL
   #GP(Return selector); (* PE=1,VM=0 in flags image,RPL=CPL,conforming,DPL>CPL *)
    Segment must be present, else #NP(Return selector);
    Instruction pointer must be within code segment boundaries, else #GP(0);
    FI;
    IF OperandSize=32
    THEN
        Load CS:EIP from stack;
        Load CS-register with new code segment descriptor;
        Load EFLAGS with third doubleword from stack;
        Increment eSP by 12;
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    ELSE
        Load CS-register with new code segment descriptor;
        Load FLAGS with third word on stack;
        Increment eSP by 6;
    FI;

END;

RETURN-OUTER-LEVEL:
    IF OperandSize=32
    THEN Top 20 bytes on stack must be within limits, else #SS(0);
    ELSE Top 10 bytes on stack must be within limits, else #SS(0);
    FI;
    Examine return CS selector and associated descriptor:
        Selector must be non-null, ELSE #GP(0);
        Selector index must be within its descriptor table limits;
            ELSE #GP(Return selector);
        AR byte must indicate code segment, else #GP(Return selector);
       IF non-conforming
        THEN code segment DPL must = CS selector RPL;
        ELSE #GP(Return selector);
        FI;
        IF conforming
        THEN code segment DPL must be > CPL;
        ELSE #GP(Return selector);
        FI;
        Segment must be present, else #NP(Return selector);
    Examine return SS selector and associated descriptor:
        Selector must be non-null, else #GP(0);
        Selector index must be within its descriptor table limits
            ELSE #GP(SS selector);
        Selector RPL must equal the RPL of the return CS selector
            ELSE #GP(SS selector);
        AR byte must indicate a writable data segment, else #GP(SS selector);
        Stack segment DPL must equal the RPL of the return CS selector
            ELSE #GP(SS selector);
        SS must be present, else #NP(SS selector);
    Instruction pointer must be within code segment limit ELSE #GP(0);
    IF OperandSize=32
    THEN
        Load CS:EIP from stack;
        Load EFLAGS with values at (eSP+8);
    ELSE
        Load CS:IP from stack;
        Load FLAGS with values at (eSP+4);
    FI;
    Load SS:eSP from stack;
    Set CPL to the RPL of the return CS selector;
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    Load the CS register with the CS descriptor;
    Load the SS register with the SS descriptor;
    FOR each of ES, FS, GS, and DS
    DO;
        IF the current value of the register is not valid for the outer level;
        THEN zero the register and clear the valid flag;
        FI;
        To be valid, the register setting must satisfy the following properties:
            Selector index must be within descriptor table limits;
            AR byte must indicate data or readable code segment;
            IF segment is data or non-conforming code,
        THEN DPL must be > CPL, or DPL must be < RPL;
    OD;

END:

Description

In Real Address Mode, the IRET instruction pops the instruction pointer, the CS register, and
the flags register from the stack and resumes the interrupted routine.

In Protected Mode, the action of the IRET instruction depends on the setting of the nested
task flag (NT) bit in the flag register. When the new flag image is popped from the stack, the
IOPL bits in the flag register are changed only when CPL equals 0.

If the NT flag is cleared, the IRET instruction returns from an interrupt procedure without a
task switch. The code returned to must be equally or less privileged than the interrupt routine
(as indicated by the RPL bits of the CS selector popped from the stack). If the destination
code is less privileged, the IRET instruction also pops the stack pointer and SS from the
stack.

If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that
caused a task switch. The updated state of the task executing the IRET instruction is saved in
its task state segment. If the task is reentered later, the code that follows the IRET instruction
is executed.

Flags Affected

All flags are affected; the flags register is popped from stack.

Protected Mode Exceptions

#GP, #NP, or #SS, as indicated under "Operation" above; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand being popped lies beyond address 0FFFFH.
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Virtual 8086 Mode Exceptions

#GP(0) fault occurs if the I/O privilege level is less than 3, to permit emulation; #PF(fault-
code) for a page fault; #AC for unaligned memory reference if the current privilege level is
3.

Notes

For obtaining information on this instruction using virtual mode extensions, see Appendix H.
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Jcc— Jump if Condition is Met
Opcode Instruction Clocks Description

77 cb JA rel8 1 Jump short if above (CF=0 and ZF=0)
73 cb JAE rel8 1 Jump short if above or equal (CF=0)
72 cb JB rel8 1 Jump short if below (CF=1)
76 cb JBE rel8 1 Jump short if below or equal (CF=1 or ZF=1)
72 cb JC rel8 1 Jump short if carry (CF=1)
E3 cb JCXZ rel8 6,5 Jump short if CX register is 0
E3 cb JECXZ rel8 6,5 Jump short if ECX register is 0
74 cb JE rel8 1 Jump short if equal (ZF=1)
7F cb JG rel8 1 Jump short if greater (ZF=0 and SF=OF)
7D cb JGE rel8 1 Jump short if greater or equal (SF=OF)
7C cb JL rel8 1 Jump short if less (SF<>OF)
7E cb JLE rel8 1 Jump short if less or equal (ZF=1 or SF<>OF)
76 cb JNA rel8 1 Jump short if not above (CF=1 or ZF=1)
72 cb JNAE rel8 1 Jump short if not above or equal (CF=1)
73 cb JNB rel8 1 Jump short if not below (CF=0)
77 cb JNBE rel8 1 Jump short if not below or equal (CF=0 and ZF=0)
73 cb JNC rel8 1 Jump short if not carry (CF=0)
75 cb JNE rel8 1 Jump short if not equal (ZF=0)
7E cb JNG rel8 1 Jump short if not greater (ZF=1 or SF<>OF)
7C cb JNGE rel8 1 Jump short if not greater or equal (SF<>OF)
7D cb JNL rel8 1 Jump short if not less (SF=OF)
7F cb JNLE rel8 1 Jump short if not less or equal (ZF=0 and SF=OF)
71 cb JNO rel8 1 Jump short if not overflow (OF=0)
7B cb JNP rel8 1 Jump short if not parity (PF=0)
79 cb JNS rel8 1 Jump short if not sign (SF=0)
75 cb JNZ rel8 1 Jump short if not zero (ZF=0)
70 cb JO rel8 1 Jump short if overflow (OF=1)
7A cb JP rel8 1 Jump short if parity (PF=1)
7A cb JPE rel8 1 Jump short if parity even (PF=1)
7B cb JPO rel8 1 Jump short if parity odd (PF=0)
78 cb JS rel8 1 Jump short if sign (SF=1)
74 cb JZ rel8 1 Jump short if zero (ZF = 1)
0F 87 cw/cd JA rel16/32 1 Jump near if above (CF=0 and ZF=0)
0F 83 cw/cd JAE rel16/32 1 Jump near if above or equal (CF=0)
0F 82 cw/cd JB rel16/32 1 Jump near if below (CF=1)
0F 86 cw/cd JBE rel16/32 1 Jump near if below or equal (CF=1 or ZF=1)
0F 82 cw/cd JC rel16/32 1 Jump near if carry (CF=1)
0F 84 cw/cd JE rel16/32 1 Jump near if equal (ZF=1)
0F 84 cw/cd JZ rel16/32 1 Jump near if 0 (ZF=1)
0F 8F cw/cd JG rel16/32 1 Jump near if greater (ZF=0 and SF=OF)
0F 8D cw/cd JGE rel16/32 1 Jump near if greater or equal (SF=OF)
0F 8C cw/cd JL rel16/32 1 Jump near if less (SF<>OF)
0F 8E cw/cd JLE rel16/32 1 Jump near if less or equal (ZF=1 or SF<>OF)
0F 86 cw/cd JNA rel16/32 1 Jump near if not above (CF=1 or ZF=1)
0F 82 cw/cd JNAE rel16/32 1 Jump near if not above or equal (CF=1)
0F 83 cw/cd JNB rel16/32 1 Jump near if not below (CF=0)
0F 87 cw/cd JNBE rel16/32 1 Jump near if not below or equal (CF=0 and ZF=0)
0F 83 cw/cd JNC rel16/32 1 Jump near if not carry (CF=0)
0F 85 cw/cd JNE rel16/32 1 Jump near if not equal (ZF=0)
0F 8E cw/cd JNG rel16/32 1 Jump near if not greater (ZF=1 or SF<>OF)
0F 8C cw/cd JNGE rel16/32 1 Jump near if not greater or equal (SF<>OF)
0F 8D cw/cd JNL rel16/32 1 Jump near if not less (SF=OF)
0F 8F cw/cd JNLE rel16/32 1 Jump near if not less or equal (ZF=0 and SF=OF)
0F 81 cw/cd JNO rel16/32 1 Jump near if not overflow (OF=0)
0F 8B cw/cd JNP rel16/32 1 Jump near if not parity (PF=0)
0F 89 cw/cd JNS rel16/32 1 Jump near if not sign (SF=0)
0F 85 cw/cd JNZ rel16/32 1 Jump near if not zero (ZF=0)
0F 80 cw/cd JO rel16/32 1 Jump near if overflow (OF=1)
0F 8A cw/cd JP rel16/32 1 Jump near if parity (PF=1)
0F 8A cw/cd JPE rel16/32 1 Jump near if parity even (PF=1)
0F 8B cw/cd JPO rel16/32 1 Jump near if parity odd (PF=0)
0F 88 cw/cd JS rel16/32 1 Jump near if sign (SF=1)
0F 84 cw/cd JZ rel16/32 1 Jump near if 0 (ZF=1)
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NOTES:

Where two clocks counts appear, the first clock count is for the true condition (branch taken); the second
clock count is for the false condition (branch not taken). rel16/32 indicates that these instructions map to two;
one with a 16-bit relative displacement, the other with a 32-bit relative displacement, depending on the
operand-size attribute of the instruction.

Operation

IF condition
THEN
    EIP ← EIP + SignExtend(rel8/16/32);
    IF OperandSize = 16
    THEN EIP ← EIP AND 0000FFFFH;
    FI;
FI;

Description

Conditional jumps (except the JCXZ instruction) test the flags which have been set by a
previous instruction. The conditions for each mnemonic are given in parentheses after each
description above. The terms "less" and "greater" are used for comparisons of signed
integers; "above" and "below" are used for unsigned integers.

If the given condition is true, a jump is made to the location provided as the operand.
Instruction coding is most efficient when the target for the conditional jump is in the current
code segment and within –128 to +127 bytes of the next instruction's first byte. The jump can
also target –32768 thru +32767 (segment size attribute 16) or –231 thru +231–1 (segment size
attribute 32) relative to the next instruction's first byte. When the target for the conditional
jump is in a different segment, use the opposite case of the jump instruction (i.e., the JE and
JNE instructions), and then access the target with an unconditional far jump to the other
segment. For example, you cannot code—

JZ FARLABEL;

You must instead code—

            JNZ BEYOND;
            JMP FARLABEL;
BEYOND:

Because there can be several ways to interpret a particular state of the flags, ASM386
provides more than one mnemonic for most of the conditional jump opcodes. For example, if
you compared two characters in AX and want to jump if they are equal, use the JE
instruction; or, if you ANDed the AX register with a bit field mask and only want to jump if
the result is 0, use the JZ instruction, a synonym for the JE instruction.

The JCXZ instruction differs from other conditional jumps because it tests the contents of the
CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the beginning of a
conditional loop that terminates with a conditional loop instruction (such as LOOPNE
TARGET LABEL. The JCXZ instruction prevents entering the loop with the CX or ECX
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register equal to zero, which would cause the loop to execute 64K or 232 times instead of
zero times.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

The JCXZ instruction takes longer to execute than a two-instruction sequence which
compares the count register to zero and jumps if the count is zero.

All branches are converted into 16-byte code fetches regardless of jump address or
cacheability.
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JMP—Jump
Opcode Instruction Clocks Description

EB cb JMP rel8 1 Jump short
E9 cw JMP rel16 1 Jump near, displacement relative to next

instruction
FF /4 JMP r/m16 2 Jump near indirect
EA cd JMP ptr16:16 3 Jump intersegment, 4-byte immediate address
EA cd JMP ptr16:16 18 Jump to call gate, same privilege
EA cd JMP ptr16:16 19+TS Jump via task state segment
EA cd JMP ptr16:16 20+TS Jump via task gate
FF /5 JMP m16:16 4 Jump r/m16:16 indirect and intersegment
FF /5 JMP m16:16 18 Jump to call gate, same privilege
FF /5 JMP m16:16 19+TS Jump via task state segment
FF /5 JMP m16:16 20+TS Jump via task gate
E9 cd JMP rel32 1 Jump near, displacement relative to next

instruction
FF /4 JMP r/m32 2 Jump near, indirect
EA cp JMP ptr16:32 3 Jump intersegment, 6-byte immediate address
EA cp JMP ptr16:32 18 Jump to call gate, same privilege
EA cp JMP ptr16:32 19+TS Jump via task state segment
EA cp JMP ptr16:32 20+TS Jump via task gate
FF /5 JMP m16:32 4 Jump intersegment, address at r/m dword
FF /5 JMP m16:32 18 Jump to call gate, same privilege
FF /5 JMP m16:32 19+TS Jump via task state segment
FF /5 JMP m16:32 20+TS Jump via task gate

NOTE:  Values of ts  are given by the following table:

New Task

Old Task To 32-Bit TSS To 16-Bit TSS To VM TSS

VM/32-bit/16-bit TSS 85 87 71

Operation

IF instruction = relative JMP     (* i.e. operand is rel8, rel16, or rel32 *)
THEN
    EIP ← EIP + rel8/16/32;
    IF OperandSize = 16
    THEN EIP ← EIP AND 0000FFFFH;
    FI;
FI;

IF instruction = near indirect JMP
    (* i.e. operand is r/m16 or r/m32 *)
THEN
    IF OperandSize = 16
    THEN
        EIP ← [r/m16] AND 0000FFFFH;
    ELSE (* OperandSize = 32 *)
        EIP ← [r/m32];
    FI;
FI;
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IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *)
    AND instruction = far JMP
    (* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *)
THEN GOTO REAL-OR-V86-MODE;
    IF operand type = m16:16 or m16:32
    THEN (* indirect *)
        IF OperandSize = 16
        THEN
            CS:IP ← [m16:16];
            EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)
        ELSE (* OperandSize = 32 *)
            CS:EIP ← [m16:32];
        FI;
    FI;
    IF operand type = ptr16:16 or ptr16:32
    THEN
        IF OperandSize = 16
        THEN
            CS:IP ← ptr16:16;
            EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)
        ELSE (* OperandSize = 32 *)
            CS:EIP ← ptr16:32;
        FI;
    FI;
FI;

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *)
    AND instruction = far JMP
THEN
    IF operand type = m16:16 or m16:32
    THEN (* indirect *)
        check access of EA dword;
        #GP(0) or #SS(0) IF limit violation;
    FI;
    Destination selector is not null ELSE #GP(0)
    Destination selector index is within its descriptor table limits ELSE #GP(selector)
    Depending on AR byte of destination descriptor:
        GOTO CONFORMING-CODE-SEGMENT;
        GOTO NONCONFORMING-CODE-SEGMENT;
        GOTO CALL-GATE;
        GOTO TASK-GATE;
        GOTO TASK-STATE-SEGMENT;
    ELSE #GP(selector); (* illegal AR byte in descriptor *)
FI;

CONFORMING-CODE-SEGMENT:
    Descriptor DPL must be ≤ CPL ELSE #GP(selector);
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    Segment must be present ELSE #NP(selector);
    Instruction pointer must be within code-segment limit ELSE #GP(0);
    IF OperandSize = 32
    THEN Load CS:EIP from destination pointer;
    ELSE Load CS:IP from destination pointer;
    FI;
    Load CS register with new segment descriptor;

NONCONFORMING-CODE-SEGMENT:
    RPL of destination selector must be ≤ CPL ELSE #GP(selector);
    Descriptor DPL must be = CPL ELSE #GP(selector);
    Segment must be present ELSE # NP(selector);
    Instruction pointer must be within code-segment limit ELSE #GP(0);
    IF OperandSize = 32
    THEN Load CS:EIP from destination pointer;
    ELSE Load CS:IP from destination pointer;
    FI;
    Load CS register with new segment descriptor;
    Set RPL field of CS register to CPL;

CALL-GATE:
    Descriptor DPL must be ≥ CPL ELSE #GP(gate selector);
    Descriptor DPL must be ≥ gate selector RPL ELSE #GP(gate selector);
    Gate must be present ELSE #NP(gate selector);
    Examine selector to code segment given in call gate descriptor:
        Selector must not be null ELSE #GP(0);
        Selector must be within its descriptor table limits ELSE
            #GP(CS selector);
        Descriptor AR byte must indicate code segment
            ELSE #GP(CS selector);
        IF non-conforming
        THEN code-segment descriptor DPL must = CPL
        ELSE #GP(CS selector);
        FI;
        IF conforming
        THEN code-segment descriptor DPL must be ≤ CPL;
        ELSE #GP(CS selector);
        FI;
        Code segment must be present ELSE #NP(CS selector);
        Instruction pointer must be within code-segment limit ELSE #GP(0);
        IF OperandSize = 32
        THEN Load CS:EIP from call gate;
        ELSE Load CS:IP from call gate;
        FI;
    Load CS register with new code-segment descriptor;
    Set RPL of CS to CPL

TASK-GATE:
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    Gate descriptor DPL must be ≥ CPL ELSE #GP(gate selector);
    Gate descriptor DPL must be ≥ gate selector RPL ELSE #GP(gate selector);
    Task Gate must be present ELSE #NP(gate selector);
    Examine selector to TSS, given in Task Gate descriptor:
        Must specify global in the local/global bit ELSE #GP(TSS selector);
        Index must be within GDT limits ELSE #GP(TSS selector);
        Descriptor AR byte must specify available TSS (bottom bits 00001);
            ELSE #GP(TSS selector);
        Task State Segment must be present ELSE #NP(TSS selector);
    SWITCH-TASKS (without nesting) to TSS;
    Instruction pointer must be within code-segment limit ELSE #GP(0);

TASK-STATE-SEGMENT:
    TSS DPL must be ≥ CPL ELSE #GP(TSS selector);
    TSS DPL must be ≥ TSS selector RPL ELSE #GP(TSS selector);
    Descriptor AR byte must specify available TSS (bottom bits 00001)
        ELSE #GP(TSS selector);
    Task State Segment must be present ELSE #NP(TSS selector);
    SWITCH-TASKS (without nesting) to TSS;
    Instruction pointer must be within code-segment limit ELSE #GP(0);

Description

The JMP instruction transfers control to a different point in the instruction stream without
recording return information.

The action of the various forms of the instruction are shown below.

Jumps with destinations of type r/m16, r/m32, rel16, and rel32 are near jumps and do not
involve changing the segment register value.

The JMP rel16 and JMP rel32 forms of the instruction add an offset to the address of the
instruction following the JMP to determine the destination. The rel16 form is used when the
instruction's operand-size attribute is 16 bits (segment size attribute 16 only); rel32 is used
when the operand-size attribute is 32 bits (segment size attribute 32 only). The result is
stored in the 32-bit EIP register. With rel16, the upper 16 bits of the EIP register are cleared,
which results in an offset whose value does not exceed 16 bits.

The JMP r/m16 and JMP r/m32 forms specify a register or memory location from which the
absolute offset from the procedure is fetched. The offset fetched from r/m  is 32 bits for an
operand-size attribute of 32 bits (r/m32), or 16 bits for an operand-size attribute of 16 bits
(r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-byte operand as
a long pointer to the destination. The JMP m16:16 and m16:32 forms fetch the long pointer
from the memory location specified (indirection). In Real Address Mode or Virtual 8086
Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits for the EIP
register (depending on the operand-size attribute). In Protected Mode, both long pointer
forms consult the Access Rights (AR) byte in the descriptor indexed by the selector part of
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the long pointer. Depending on the value of the AR byte, the jump will perform one of the
following types of control transfers:

• A jump to a code segment at the same privilege level

• A task switch

For more information on protected mode control transfers, refer to Chapter 12 and
Chapter 13.

Flags Affected

All if a task switch takes place; none if no task switch occurs.

Protected Mode Exceptions

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above.

Near direct jumps: #GP(0) if procedure location is beyond the code segment limits; #AC for
unaligned memory reference if the current privilege level is 3.

Near indirect jumps: #GP(0) for an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments: #SS(0) for an illegal address in the SS segment; #GP if the indirect
offset obtained is beyond the code segment limits; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would be outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as under Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

All branches are converted into 16-byte code fetches regardless of jump address or
cacheability.
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LAHF—Load Flags into AH Register
Opcode Instruction Clocks Description

9F LAHF 2 Load: AH = flags SF ZF xx AF xx PF xx CF

Operation

AH ← SF:ZF:xx:AF:xx:PF:xx:CF;

Description

The LAHF instruction transfers the low byte of the flags word to the AH register. The bits,
from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate, parity,
indeterminate, and carry.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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LAR—Load Access Rights Byte
Opcode Instruction Clocks Description

0F 02 /r LAR r16,r/m16 8 r16 ← r/m16 masked by FF00
0F 02 /r LAR r32,r/m32 8 r32 ← /m32 masked by 00FxFF00

Description

The LAR instruction stores a marked form of the second doubleword of the descriptor for the
source selector if the selector is visible at the current privilege level (modified by the
selector's RPL) and is a valid descriptor type within the descriptor limits. The destination
register is loaded with the high-order doubleword of the descriptor masked by 00FxFF00, and
the ZF flag is set. The x indicates that the four bits corresponding to the upper four bits of the
limit are undefined in the value loaded by the LAR instruction. If the selector is invisible or
of the wrong type, the ZF flag is cleared.

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit
destination register. If the 16-bit operand size is specified, the lower 16-bits of this value are
stored in the 16-bit destination register.

All code and data segment descriptors are valid for the LAR instruction.

The valid special segment and gate descriptor types for the LAR instruction are given in the
following table:

Type Name Valid/Invalid

0 Invalid Invalid

1 Available 16-bit TSS Valid

2 LDT Valid

3 Busy 16-bit  TSS Valid

4 16-bit  call gate Valid

5 16-bit/32-bit task gate Valid

6 16-bit  trap gate Invalid

7 16-bit  interrupt gate Invalid

8 Invalid Invalid

9 Available 32-bit  TSS Valid

A Invalid Invalid

B Busy 32-bit  TSS Valid

C 32-bit call gate Valid

D Invalid Invalid

E 32-bit trap gate Invalid

F 32-bit  interrupt gate Invalid
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Flags Affected

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the ZF
flag is cleared.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the LAR instruction is unrecognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.
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LDS/LES/LFS/LGS/LSS— Load Full Pointer
Opcode Instruction Clocks Description

C5 /r LDS r16,m16:16 4 Load DS:r16 with pointer from memory
C5 /r LDS r32,m16:32 4 Load DS:r32 with pointer from memory
0F B2 /r LSS r16,m16:16 4/pm=8 Load SS:r16 with pointer from memory
0F B2 /r LSS r32,m16:32 4/pm=8 Load SS:r32 with pointer from memory
C4 /r LES r16,m16:16 4 Load ES:r16 with pointer from memory
C4 /r LES r32,m16:32 4 Load ES:r32 with pointer from memory
0F B4 /r LFS r16,m16:16 4 Load FS:r16 with pointer from memory
0F B4 /r LFS r32,m16:32 4 Load FS:r32 with pointer from memory
0F B5 /r LGS r16,m16:16 4 Load GS:r16 with pointer from memory
0F B5 /r LGS r32,m16:32 4 Load GS:r32 with pointer from memory

Operation

CASE instruction OF
    LSS: Sreg is SS; (* Load SS register *)
    LDS: Sreg is DS; (* Load DS register *)
    LES: Sreg is ES; (* Load ES register *)
    LFS: Sreg is FS; (* Load FS register *)
    LGS: Sreg is DS; (* Load GS register *)
ESAC;
IF (OperandSize = 16)
THEN
    r16 ← [Effective Address]; (* 16-bit transfer *)
    Sreg ← [Effective Address + 2]; (* 16-bit transfer *)
    (* In Protected Mode, load the descriptor into the segment register *)
ELSE (* OperandSize = 32 *)
    r32 ← [Effective Address]; (* 32-bit transfer *)
    Sreg ← [Effective Address + 4]; (* 16-bit transfer *)
    (* In Protected Mode, load the descriptor into the segment register *)
FI;

Description

The LGS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and store it
in the selected segment register:register pair. The full pointer loads 16 bits into the segment
register SS, DS, ES, FS, or GS. The other register loads 32 bits if the operand-size attribute is
32 bits, or loads 16 bits if the operand-size attribute is 16 bits. The other 16- or 32-bit register
to be loaded is determined by the r16 or r32 register operand specified.

When an assignment is made to one of the segment registers, the descriptor is also loaded
into the segment register. The data for the register is obtained from the descriptor table entry
for the selector given.

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers without
causing a protection exception. (Any subsequent reference to a segment whose corresponding
segment register is loaded with a null selector to address memory causes a #GP(0) exception.
No memory reference to the segment occurs.)
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The following is a listing of the Protected Mode checks and actions taken in the loading of a
segment register:

IF SS is loaded:
    IF selector is null THEN #GP(0); FI;
    Selector index must be within its descriptor table limits ELSE
        #GP(selector);
    Selector's RPL must equal CPL ELSE #GP(selector);
    AR byte must indicate a writable data segment ELSE #GP(selector);
    DPL in the AR byte must equal CPL ELSE #GP(selector);
    Segment must be marked present ELSE #SS(selector);
    Load SS with selector;
    Load SS with descriptor;

IF DS, ES, FS, or GS is loaded with non-null selector:
    Selector index must be within its descriptor table limits ELSE
        #GP(selector);
    AR byte must indicate data or readable code segment ELSE
        #GP(selector);
    IF data or nonconforming code
    THEN both the RPL and the CPL must be less than or equal to DPL in
        AR byte;
    ELSE #GP(selector);
    Segment must be marked present ELSE #NP(selector);
Load segment register with selector and RPL bits;
Load segment register with descriptor;

IF DS, ES, FS or GS is loaded with a null selector:
    Load segment register with selector;
    Clear descriptor valid bit;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; the second operand must be a
memory operand, not a register—if a register then #UD Fault; #GP(0) if a null selector is
loaded into SS; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

The second operand must be a memory operand, not a register; Interrupt 13 if any part of the
operand would lie outside of the effective address space from 0 to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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LEA—Load Effective Address
Opcode Instruction Clocks Description

8D /r LEA r16,m 1 Store effective address for m in register r16
8D /r LEA r32,m 1 Store effective address for m in register r32
8D /r LEA r16,m 1 Store effective address for m in register r16
8D /r LEA r32,m 1 Store effective address for m in register r32

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN r16 ← Addr(m);
ELSE
    IF OperandSize = 16 AND AddressSize = 32
    THEN
        r16 ← Truncate_to_16bits(Addr(m));         (* 32-bit address *)
    ELSE
        IF OperandSize = 32 AND AddressSize = 16
        THEN
            r32 ← Truncate_to_16bits(Addr(m)) and zero extend;
        ELSE
            IF OperandSize = 32 AND AddressSize = 32
            THEN     r32 ← Addr(m);
            FI;
        FI;
    FI;
FI;

Description

The LEA instruction calculates the effective address (offset part) and stores it in the specified
register. The operand-size attribute of the instruction (represented by OperandSize in the
algorithm under "Operation" above) is determined by the chosen register. The address-size
attribute (represented by AddressSize) is determined by the attribute of the code segment.
(See the "Operand-Size and Address-Size Attributes" section at the beginning of this
chapter.) The address-size and operand-size attributes affect the action performed by the
LEA instruction, as follows:

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit
register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.
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Flags Affected

None.

Protected Mode Exceptions

#UD if the second operand is a register.

Real Address Mode Exceptions

Interrupt 6 if the second operand is a register.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

Notes

Different assemblers may use different algorithms based on the size attribute and symbolic
reference of the second operand.
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LEAVE—High Level Procedure Exit
Opcode Instruction Clocks Description

C9 LEAVE 3 Set SP to BP, then pop BP
C9 LEAVE 3 Set ESP to EBP, then pop EBP

Operation

IF StackAddrSize = 16
THEN
    SP ← BP;
ELSE (* StackAddrSize = 32 *)
    ESP ← EBP;
FI;
IF OperandSize = 16
THEN
    BP ← Pop();
ELSE (* OperandSize = 32 *)
    EBP ← Pop();
FI;

Description

The LEAVE instruction reverses the actions of the ENTER instruction. By copying the frame
pointer to the stack pointer, the LEAVE instruction releases the stack space used by a
procedure for its local variables. The old frame pointer is popped into the BP or EBP register,
restoring the caller's frame. A subsequent RET nn  instruction removes any arguments pushed
onto the stack of the exiting procedure.

Flags Affected

None.

Protected Mode Exceptions

#SS(0) if the BP register does not point to a location within the limits of the current stack
segment.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.
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LES—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.



EE INSTRUCTION SET

25-207

LFS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.
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LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
Opcode Instruction Clocks Description

0F 01 /2 LGDT m16&32 6 Load m into GDTR
0F 01 /3 LIDT m16&32 6 Load m into IDTR

Operation

IF instruction = LIDT
THEN
    IF OperandSize = 16
    THEN IDTR.Limit:Base ← m16:24 (* 24 bits of base loaded *)
    ELSE IDTR.Limit:Base ← m16:32
    FI;
ELSE (* instruction = LGDT *)
    IF OperandSize = 16
    THEN GDTR.Limit:Base ← m16:24 (* 24 bits of base loaded *)
    ELSE GDTR.Limit:Base ← m16:32;
    FI;
FI;

Description

The LGDT and LIDT instructions load a linear base address and limit value from a six-byte
data operand in memory into the GDTR or IDTR, respectively. If a 16-bit operand is used
with the LGDT or LIDT instruction, the register is loaded with a 16-bit limit and a 24-bit
base, and the high-order eight bits of the six-byte data operand are not used. If a 32-bit
operand is used, a 16-bit limit and a 32-bit base is loaded; the high-order eight bits of the six-
byte operand are used as high-order base address bits.

The SGDT and SIDT instructions always store into all 48 bits of the six-byte data operand.
With the 16-bit processors, the upper eight bits are undefined after the SGDT or SIDT
instruction is executed. With the 32-bit processors, the upper eight bits are written with the
high-order eight address bits, for both a 16-bit operand and a 32-bit operand. If the LGDT or
LIDT instruction is used with a 16-bit operand to load the register stored by the SGDT or
SIDT instruction, the upper eight bits are stored as zeros.

The LGDT and LIDT instructions appear in operating system software; they are not used in
application programs. They are the only instructions that directly load a linear address (i.e.,
not a segment relative address) in Protected Mode.

Flags Affected

None.
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Protected Mode Exceptions

#GP(0) if the current privilege level is not 0; #UD if the source operand is a register; #GP(0)
for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments;
#SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH; Interrupt 6 if the source operand is a register.

Note: These instructions are valid in Real Address Mode to allow power-up initialization for
Protected Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.
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LGS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.
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LLDT—Load Local Descriptor Table Register
Opcode Instruction Clocks Description

0F 00 /2 LLDT r/m16 9 Load selector r/m16 into LDTR

Operation

LDTR ← SRC;

Description

The LLDT instruction loads the Local Descriptor Table register (LDTR). The word operand
(memory or register) to the LLDT instruction should contain a selector to the Global
Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If so, then the
LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, GS, and CS are not
affected. The LDT field in the task state segment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor references
(except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault.

The LLDT instruction is used in operating system software; it is not used in application
programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the current privilege level is not 0; #GP(selector) if the selector operand does not
point into the Global Descriptor Table, or if the entry in the GDT is not a Local Descriptor
Table; #NP(selector) if the LDT descriptor is not present; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 6; the LLDT instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode (because the instruction is not recognized, it will
not execute or perform a memory reference).

Note

The operand-size attribute has no effect on this instruction.
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LIDT—Load Interrupt Descriptor Table Register
See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt
Descriptor Table Register.
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LMSW—Load Machine Status Word
Opcode Instruction Clocks Description

0F 01 /6 LMSW r/m16 8 Load r/m16 in machine status word

Operation

MSW ← r/m16; (* 16 bits is stored in the machine status word *)

Description

The LMSW instruction loads the machine status word (part of the CR0 register) from the
source operand. This instruction can be used to switch to Protected Mode; if so, it must be
followed by an intrasegment jump to flush the instruction queue. The LMSW instruction will
not switch back to Real Address Mode.

The LMSW instruction is used only in operating system software. It is not used in application
programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the current privilege level is not 0; #GP(0) for an illegal memory operand effective
address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS
segment; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Protected Mode.

Notes

The operand-size attribute has no effect on this instruction. This instruction is provided for
compatibility with the Intel286 processor; programs for the Intel386, Intel486, and Pentium
processors should use the MOV CR0, ... instruction instead. The LMSW instruction does not
affect the PG, ET, or NE bits, and it cannot be used to clear the PE bit.
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LOCK—Assert LOCK# Signal Prefix
Opcode Instruction Clocks Description

F0 LOCK 1 Assert LOCK# signal for the next instruction

Description

The LOCK prefix causes the LOCK# signal of the Pentium processor to be asserted during
execution of the instruction that follows it. In a multiprocessor environment, this signal can
be used to ensure that the Pentium processor has exclusive use of any shared memory while
LOCK# is asserted. The read-modify-write sequence typically used to implement test-and-set
on the Pentium processor is the BTS instruction.

The LOCK prefix functions only with the following instructions:

BTS, BTR, BTC mem, reg/imm

XCHG reg, mem

XCHG mem, reg

ADD, OR, ADC, SBB, AND, SUB, XOR mem, reg/imm

NOT, NEG, INC, DEC mem

CMPXCHG, XADD

An undefined opcode trap will be generated if a LOCK prefix is used with any instruction not
listed above.

The XCHG instruction always asserts LOCK# regardless of the presence or absence of the
LOCK prefix.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Flags Affected

None.

Protected Mode Exceptions

#UD if the LOCK prefix is used with an instruction not listed in the "Description" section
above; other exceptions can be generated by the subsequent (locked) instruction.

Real Address Mode Exceptions

Interrupt 6 if the LOCK prefix is used with an instruction not listed in the "Description"
section above; exceptions can still be generated by the subsequent (locked) instruction.
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Virtual 8086 Mode Exceptions

#UD if the LOCK prefix is used with an instruction not listed in the "Description" section
above; exceptions can still be generated by the subsequent (locked) instruction.
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LODS/LODSB/LODSW/LODSD— Load String Operand
Opcode Instruction Clocks Description

AC LODS m8 2 Load byte [(E)SI] into AL
AD LODS m16 2 Load word [(E)SI] into AX
AD LODS m32 2 Load dword [(E)SI] into EAX
AC LODSB 2 Load byte DS:[(E)SI] into AL
AD LODSW 2 Load word DS:[(E)SI] into AX
AD LODSD 2 Load dword DS:[(E)SI] into EAX

Operation

AddressSize = 16
THEN use SI for source-index
ELSE (* AddressSize = 32 *)
    use ESI for source-index;
FI;
IF byte type of instruction
THEN
    AL ← [source-index]; (* byte load *)
    IF DF = 0 THEN IncDec ← 1 ELSE IncDec ← –1; FI;
ELSE
    IF OperandSize = 16
    THEN
        AX ← [source-index]; (* word load *)
        IF DF = 0 THEN IncDec ← 2 ELSE IncDec ← –2; FI;
    ELSE (* OperandSize = 32 *)
        EAX ← [source-index]; (* dword load *)
        IF DF = 0 THEN IncDec ← 4 ELSE IncDec ← –4; FI;
    FI;
FI;
source-index ← source-index + IncDec

Description

The LODS instruction loads the AL, AX, or EAX register with the memory byte, word, or
doubleword at the location pointed to by the source-index register. After the transfer is made,
the source-index register is automatically advanced. If the DF flag is 0 (the CLD instruction
was executed), the source index increments; if the DF flag is 1 (the STD instruction was
executed), it decrements. The increment or decrement is 1 if a byte is loaded, 2 if a word is
loaded, or 4 if a doubleword is loaded.

If the address-size attribute for this instruction is 16 bits, the SI register is used for the
source-index register; otherwise the address-size attribute is 32 bits, and the ESI register is
used. The address of the source data is determined solely by the contents of the ESI or SI
register. Load the correct index value into the SI register before executing the LODS
instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte,
word, and doubleword LODS instructions.
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The LODS instruction can be preceded by the REP prefix; however, the LODS instruction is
used more typically within a LOOP construct, because further processing of the data moved
into the EAX, AX, or AL register is usually necessary.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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LOOP/LOOPcond— Loop Control with CX Counter
Opcode Instruction Clocks Description

E2 cb LOOP rel8 5/6 DEC count; jump short if count <> 0
E1 cb LOOPE rel8 7/8 DEC count; jump short if count <> 0 and ZF=1
E1 cb LOOPZ rel8 7/8 DEC count; jump short if count <> 0 and ZF=1
E0 cb LOOPNE rel8 7/8 DEC count; jump short if count <> 0 and ZF=0
E0 cb LOOPNZ rel8 7/8 DEC count; jump short if count <> 0 and ZF=0

Operation

IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI;
CountReg ← CountReg – 1;

IF instruction <> LOOP
THEN
    IF (instruction = LOOPE) OR (instruction = LOOPZ)
    THEN BranchCond ← (ZF = 1) AND (CountReg <> 0);
    FI;
    IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
    THEN BranchCond ← (ZF = 0) AND (CountReg <> 0);
    FI;
FI;

IF BranchCond
THEN
    IF OperandSize = 16
    THEN
        IP ← IP + SignExtend(rel8);
    ELSE (* OperandSize = 32 *)
        EIP ← EIP + SignExtend(rel8);
    FI;
FI;

Description

The LOOP instruction decrements the count register without changing any of the flags.
Conditions are then checked for the form of the LOOP instruction being used. If the
conditions are met, a short jump is made to the label given by the operand to the LOOP
instruction. If the address-size attribute is 16 bits, the CX register is used as the count
register; otherwise the ECX register is used. The operand of the LOOP instruction must be in
the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the
instruction.

The LOOP instructions provide iteration control and combine loop index management with
conditional branching. Use the LOOP instruction by loading an unsigned iteration count into
the count register, then code the LOOP instruction at the end of a series of instructions to be
iterated. The destination of the LOOP instruction is a label that points to the beginning of the
iteration.
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Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the offset jumped to is beyond the limits of the current code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

The unconditional LOOP instruction takes longer to execute than a two-instruction sequence
which decrements the count register and jumps if the count does not equal zero.

All branches are converted into 16-byte code fetches regardless of jump address or
cacheability.
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LSL—Load Segment Limit
Opcode Instruction Clocks Description

0F 03 /r LSL r16,r/m16 8 Load: r16 ← segment limit, selector r/m16 (byte
granular)

0F 03 /r LSL r32,r/m32 8 Load: r32 ← segment limit, selector r/m32 (byte
granular)

0F 03 /r LSL r16,r/m16 8 Load: r16 ← segment limit, selector r/m16 (page
granular)

0F 03 /r LSL r32,r/m32 8 Load: r32 ← segment limit, selector r/m32  (page
granular)

Description

The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF flag,
provided that the source selector is visible at the current privilege level and RPL, within the
descriptor table, and that the descriptor is a type accepted by the LSL instruction. Otherwise,
the ZF flag is cleared, and the destination register is unchanged. The segment limit is loaded
as a byte granular value. If the descriptor has a page granular segment limit, the LSL
instruction will translate it to a byte limit before loading it in the destination register (shift
left 12 the 20-bit “raw” limit from descriptor, then OR with 00000FFFH).

The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 32-bit
destination register.  For 16-bit operand sizes, the limit is computed to form a valid 32-bit
limit. However, the upper 16 bits are chopped and only the low-order 16 bits are loaded into
the destination operand.

Code and data segment descriptors are valid for the LSL instruction.

The valid special segment and gate descriptor types for the LSL instruction are given in the
following table:
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Type Name Valid/Invalid

0 Invalid Invalid

1 Available 16-bit TSS Valid

2 LDT Valid

3 Busy 16-bit TSS Valid

4 16-bit call gate Invalid

5 16-bit/32-bit task gate Invalid

6 16-bit trap gate Invalid

7 16-bit interrupt gate Invalid

8 Invalid Invalid

9 Available 32-bit TSS Valid

A Invalid Invalid

B Busy 32-bit TSS Valid

C 32-bit call gate Invalid

D Invalid Invalid

E 32-bit trap gate Invalid

F 32-bit interrupt gate Invalid

Flags Affected

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the ZF
flag is cleared.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the LSL instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode (because the instruction is not recognized, it will
not execute or perform a memory reference).
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LSS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.
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LTR—Load Task Register
Opcode Instruction Clocks Description

0F 00 /3 LTR r/m16 10 Load EA word into task register

Description

The LTR instruction loads the task register with a selector from the source register or
memory location specified by the operand. The loaded TSS is marked busy. A task switch
does not occur.

The LTR instruction is used only in operating system software; it is not used in application
programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the current privilege
level is not 0; #GP(selector) if the object named by the source selector is not a TSS or is
already busy; #NP(selector) if the TSS is marked "not present"; #PF(fault-code) for a page
fault.

Real Address Mode Exceptions

Interrupt 6; the LTR instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

Notes

The operand-size attribute has no effect on this instruction.
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MOV—Move Data
Opcode Instruction Clocks Description

88 /r MOV r/m8,r8 1 Move byte register to r/m byte
89 /r MOV r/m16,r16 1 Move word register to r/m word
89 /r MOV r/m32,r32 1 Move dword register to r/m dword
8A /r MOV r8,r/m8 1 Move r/m byte to byte register
8B /r MOV r16,r/m16 1 Move r/m word to word register
8B /r MOV r32,r/m32 1 Move r/m dword to dword register
8C /r MOV r/m16,Sreg* 1 Move segment register to r/m word
8E /r MOV Sreg,r/m16 2/3** Move r/m word to segment register
A0 MOV AL,moffs8 1 Move byte at (seg:offset) to AL
A1 MOV AX,moffs16 1 Move word at (seg:offset) to AX
A1 MOV EAX,moffs32 1 Move dword at (seg:offset) to EAX
A2 MOV moffs8,AL 1 Move AL to (seg:offset)
A3 MOV moffs16,AX 1 Move AX to (seg:offset)
A3 MOV moffs32,EAX 1 Move EAX to (seg:offset)
B0+ rb MOV reg8,imm8 1 Move immediate byte to register
B8+ rw MOV reg16,imm16 1 Move immediate word to register
B8+ rd MOV reg32,imm32 1 Move immediate dword to register
C6 /0 MOV r/m8,imm8 1 Move immediate byte to r/m byte
C7 /0 MOV r/m16,imm16 1 Move immediate word to r/m word
C7 /0 MOV r/m32,imm32 1 Move immediate dword to r/m dword

NOTES:

moffs8, moffs16, and moffs32  all consist of a simple offset relative to the segment base. The 8, 16, and 32
refer to the size of the data. The address-size attribute of the instruction determines the size of the offset,
either 16 or 32 bits.

 *In 32-bit mode, use 16-bit operand size prefix (a byte with the value 66H preceding the instruction).
**In protected mode,  MOV SS, rm16/32 takes 7 clocks.

If the destination is a 32-bit register, the Pentium (510\60, 567\66) processor stores an undefined value in the
upper 16 bits of the register. If the destination is a memory location, only a 16-bit value is stored.

Operation

DEST ← SRC;

Description

The MOV instruction copies the second operand to the first operand.

If the destination operand is a segment register (DS, ES, SS, etc.), then data from a descriptor
is also loaded into the shadow portion of the register. The data for the register is obtained
from the descriptor table entry for the selector given. A null selector (values 0000-0003) can
be loaded into the DS, ES, FS, and GS registers without causing an exception; however, use
of these registers causes a #GP(0) exception, and no memory reference occurs.

A MOV into SS instruction inhibits all interrupts until after the execution of the next
instruction (which should be a MOV into ESP instruction).

Loading a segment register under Protected Mode results in special checks and actions, as
described in the following listing:

IF SS is loaded;
THEN
    IF selector is null THEN #GP(0);
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    Selector index must be within its descriptor table limits else #GP(selector);
    Selector's RPL must equal CPL else #GP(selector);
    AR byte must indicate a writable data segment else #GP(selector);
    DPL in the AR byte must equal CPL else #GP(selector);
    Segment must be marked present else #SS(selector);
    Load SS with selector;
    Load SS with descriptor.
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN
    Selector index must be within its descriptor table limits
        else #GP(selector);
    AR byte must indicate data or readable code segment else #GP(selector);
    IF data or nonconforming code segment
    THEN both the RPL and the CPL must be less than or equal to DPL in AR byte;
    ELSE #GP(selector);
    FI;
    Segment must be marked present else #NP(selector);
    Load segment register with selector;
    Load segment register with descriptor;
FI;
IF DS, ES, FS or GS is loaded with a null selector;
THEN
    Load segment register with selector;
    Clear descriptor valid bit;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP, #SS, and #NP if a segment register is being loaded; otherwise, #GP(0) if the destination
is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-
code) for a page fault; #AC for unaligned memory reference if the current privilege level is
3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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MOV—Move to/from Control Registers
Opcode Instruction Clocks Description

0F 22 /r MOV CR0,r32 22 Move (register) to (control register 0)
0F 22 /r MOV CR2,r32 12 Move (register) to (control register 2)
0F 22 /r MOV CR3,r32 21/46 Move (register) to (control register 3)
0F 22 /r MOV CR4,r32 14 Move (register) to (control register 4)
0F 20 /r MOV r32,CR0-4 4 Move (control register) to (register)

Operation

DEST ← SRC;

Description

The above forms of the MOV instruction store or load CR0, CR2, CR3, and CR4 to or from a
general purpose register.

Thirty-two bit operands are always used with these instructions, regardless of the operand-
size attribute.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) if the current privilege level is not 0.  #GP(0) if an attempt is made to write a 1 to any
reserved bits of CR4.

Real Address Mode Exceptions

Interrupt 13 if an attempt is made to write a 1 to any reserved bits of CR4.

Virtual 8086 Mode Exceptions

#GP(0) if instruction execution is attempted.

Notes

The reg field within the ModR/M byte specifies which of the special registers in each
category is involved. The two bits in the mod field are always 11. The r/m field specifies the
general register involved.

Always set undefined or reserved bits to the value previously read.
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MOV—Move to/from Debug Registers
Opcode Instruction Clocks Description

0F 21/r MOV r32, DR0-DR3 11 Move (debug register) to (register)
0F 21/r MOV r32, DR4-DR5 12 Move (debug register) to (register)
0F 21/r MOV r32, DR6-DR7 11 Move (debug register) to (register)
0F 23 /r MOV DR0-DR3, r32 11 Move (register) to (debug register)
0F 23 /r MOV DR4-DR5, r32 12 Move (register) to (debug register)
0F 23 /r MOV DR6-DR7,r32 11 Move (register) to (debug register)

Operation

IF ((DE = 1)  and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

Description

The above forms of the MOV instruction store or load the DR0, DR1, DR2, DR3, DR6 and
DR7 debug registers to or from a general purpose register.

Thirty-two bit operands are always used with these instructions, regardless of the operand-
size attribute.

When the DE (Debug Extension) bit  in CR4 is clear, MOV instructions using debug registers
operate in a manner that is compatible with Intel386 and Intel486 CPU's.  References to DR4
and DR5 refer to DR6 and DR7, respectively.  When the DE bit in CR4 is set, attempts to
execute MOV instructions using DR4 and DR5 result in an Undefined Opcode (#UD)
exception.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) if the current privilege level is not 0.  #UD if the DE (Debug Extensions) bit of CR4
is set and a MOV instruction is executed using DR4 or DR5.

Real Address Mode Exceptions

#GP(0) if an attempt is made to write a 1 to any reserved bits of CR4.  #UD if the DE (Debug
Extensions) bit of CR4 is set and a MOV instruction is executed using DR4 or DR5.
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Virtual 8086 Mode Exceptions

#GP(0) if instruction execution is attempted.

Notes

The instructions must be executed at privilege level 0 or in real-address mode; otherwise, a
protection exception will be raised.

The reg field within the ModR/M byte specifies which of the special registers in each
category is involved. The two bits in the mod field are always 11. The r/m field specifies the
general register involved.

Always set undefined or reserved bits to the value previously read.
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MOVS/MOVSB/MOVSW/MOVSD—Move Data from
String to String
Opcode Instruction Clocks Description

A4 MOVS m8,m8 4 Move byte [(E)SI] to ES:[(E)DI]
A5 MOVS m16,m16 4 Move word [(E)SI] to ES:[(E)DI]
A5 MOVS m32,m32 4 Move dword [(E)SI] to ES:[(E)DI]
A4 MOVSB 4 Move byte DS:[(E)SI] to ES:[(E)DI]
A5 MOVSW 4 Move word DS:[(E)SI] to ES:[(E)DI]
A5 MOVSD 4 Move dword DS:[(E)SI] to ES:[(E)DI]

Operation

IF (instruction = MOVSD) OR (instruction has doubleword operands)
THEN OperandSize ← 32;
ELSE OperandSize ← 16;
IF AddressSize = 16
THEN use SI for source-index and DI for destination-index;
ELSE (* AddressSize = 32 *)
    use ESI for source-index and EDI for destination-index;
FI;
IF byte type of instruction
THEN
    [destination-index] ← [source-index]; (* byte assignment *)
    IF DF = 0 THEN IncDec ← 1 ELSE IncDec ← –1; FI;
ELSE
    IF OperandSize = 16
    THEN
        [destination-index] ← [source-index]; (* word assignment *)
        IF DF = 0 THEN IncDec ← 2 ELSE IncDec ← –2; FI;
    ELSE (* OperandSize = 32 *)
        [destination-index] ← [source-index]; (* doubleword assignment *)
        IF DF = 0 THEN IncDec ← 4 ELSE IncDec ← –4; FI;
    FI;
FI;
source-index ← source-index + IncDec;
destination-index ← destination-index + IncDec;

Description

The MOVS instruction copies the byte or word at [(E)SI] to the byte or word at ES:[(E)DI].
The destination operand must be addressable from the ES register; no segment override is
possible for the destination. A segment override can be used for the source operand; the
default is the DS register.

The addresses of the source and destination are determined solely by the contents of the
(E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI registers
before executing the MOVS instruction. The MOVSB, MOVSW, and MOVSD instructions
are synonyms for the byte, word, and doubleword MOVS instructions.
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After the data is moved, both the (E)SI and (E)DI registers are advanced automatically. If the
DF flag is 0 (the CLD instruction was executed), the registers are incremented; if the DF flag
is 1 (the STD instruction was executed), the registers are decremented. The registers are
incremented or decremented by 1 if a byte was moved, 2 if a word was moved, or 4 if a
doubleword was moved.

The MOVS instruction can be preceded by the REP prefix for block movement of ECX bytes
or words. Refer to the REP instruction for details of this operation.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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MOVSX—Move with Sign-Extend
Opcode Instruction Clocks Description

0F BE /r MOVSX r16,r/m8 3 Move byte to word with sign-extend
0F BE /r MOVSX r32,r/m8 3 Move byte to dword, sign-extend
0F BF /r MOVSX r32,r/m16 3 Move word to dword, sign-extend

Operation

DEST ← SignExtend(SRC);

Description

The MOVSX instruction reads the contents of the effective address or register as a byte or a
word, sign-extends the value to the operand-size attribute of the instruction (16 or 32 bits),
and stores the result in the destination register.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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MOVZX—Move with Zero-Extend
Opcode Instruction Clocks Description

0F B6 /r MOVZX r16,r/m8 3 Move byte to word with zero-extend
0F B6 /r MOVZX r32,r/m8 3 Move byte to dword, zero-extend
0F B7 /r MOVZX r32,r/m16 3 Move word to dword, zero-extend

Operation

DEST ← ZeroExtend(SRC);

Description

The MOVZX instruction reads the contents of the effective address or register as a byte or a
word, zero extends the value to the operand-size attribute of the instruction (16 or 32 bits),
and stores the result in the destination register.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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MUL—Unsigned Multiplication of AL, AX, or EAX
Opcode Instruction Clocks Description

F6 /4 MUL AL,r/m8 11 Unsigned multiply (AX ← AL * r/m byte)
F7 /4 MUL AX,r/m16 11 Unsigned multiply (DX:AX ← AX * r/m word)
F7 /4 MUL EAX,r/m32 10 Unsigned multiply (EDX:EAX ← EAX * r/m dword)

Operation

IF byte-size operation
THEN AX ← AL * r/m8
ELSE (* word or doubleword operation *)
    IF OperandSize = 16
    THEN DX:AX ← AX * r/m16
    ELSE (* OperandSize = 32 *)
        EDX:EAX ← EAX * r/m32
    FI;
FI;

Description

The MUL instruction performs unsigned multiplication. Its actions depend on the size of its
operand, as follows:

• A byte operand is multiplied by the AL value; the result is left in the AX register. The
CF and OF flags are cleared if the AH value is 0; otherwise, they are set.

• A word operand is multiplied by the AX value; the result is left in the DX:AX register
pair. The DX register contains the high-order 16 bits of the product. The CF and OF
flags are cleared if the DX value is 0; otherwise, they are set.

• A doubleword operand is multiplied by the EAX value and the result is left in the
EDX:EAX register. The EDX register contains the high-order 32 bits of the product. The
CF and OF flags are cleared if the EDX value is 0; otherwise, they are set.

Flags Affected

The OF and CF flags are cleared if the upper half of the result is 0; otherwise they are set; the
SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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NEG—Two's Complement Negation
Opcode Instruction Clocks Description

F6 /3 NEG r/m8 1/3 Two's complement negate r/m byte
F7 /3 NEG r/m16 1/3 Two's complement negate r/m word
F7 /3 NEG r/m32 1/3 Two's complement negate r/m dword

Operation

IF r/m = 0 THEN CF ← 0 ELSE CF ← 1; FI;
r/m ← – r/m

Description

The NEG instruction replaces the value of a register or memory operand with its two's
complement. The operand is subtracted from zero, and the result is placed in the operand.

The CF flag is set, unless the operand is zero, in which case the CF flag is cleared.

Flags Affected

The CF flag is set unless the operand is zero, in which case the CF flag is cleared; the OF,
SF, ZF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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NOP—No Operation
Opcode Instruction Clocks Description

90 NOP 1 No operation

Description

The NOP instruction performs no operation. The NOP instruction is a one-byte instruction
that takes up space but affects none of the machine context except the (E)IP register.

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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NOT—One's Complement Negation
Opcode Instruction Clocks Description

F6 /2 NOT r/m8 1/3 Reverse each bit of r/m byte
F7 /2 NOT r/m16 1/3 Reverse each bit of r/m word
F7 /2 NOT r/m32 1/3 Reverse each bit of r/m dword

Operation

r/m ← NOT r/m;

Description

The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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OR—Logical Inclusive OR
Opcode Instruction Clocks Description

0C ib OR AL,imm8 1 OR immediate byte to AL
0D iw OR AX,imm16 1 OR immediate word to AX
0D id OR EAX,imm32 1 OR immediate dword to EAX
80 /1 ib OR r/m8,imm8 1/3 OR immediate byte to r/m byte
81 /1 iw OR r/m16,imm16 1/3 OR immediate word to r/m word
81 /1 id OR r/m32,imm32 1/3 OR immediate dword to r/m dword
83 /1 ib OR r/m16,imm8 1/3 OR sign-extended immediate byte with r/m word
83 /1 ib OR r/m32,imm8 1/3 OR sign-extended immediate byte with r/m dword
08 /r OR r/m8,r8 1/3 OR byte register to r/m byte
09 /r OR r/m16,r16 1/3 OR word register to r/m word
09 /r OR r/m32,r32 1/3 OR dword register to r/m dword
0A /r OR r8,r/m8 1/2 OR byte register to r/m byte
0B /r OR r16,r/m16 1/2 OR word register to r/m word
0B /r OR r32,r/m32 1/2 OR dword register to r/m dword

Operation

DEST ← DEST OR SRC;
CF ← 0;
OF ← 0

Description

The OR instruction computes the inclusive OR of its two operands and places the result in
the first operand. Each bit of the result is 0 if both corresponding bits of the operands are 0;
otherwise, each bit is 1.

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result; the
AF flag is undefined.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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OUT—Output to Port
Opcode Instruction Clocks Description

E6 ib OUT imm8,AL 12,pm=9*/
26**,vm=24

Output byte AL to immediate port number

E7 ib OUT imm8,AX 12,pm=9*/
26**,vm=24

Output word AX to immediate port number

E7 ib OUT imm8,EAX 12,pm=9*/
26**,vm=24

Output dword EAX to immediate port number

EE OUT DX,AL 12,pm=9*/
25**,vm=24

Output byte AL to port number in DX

EF OUT DX,AX 12,pm=9*/
25**,vm=24

Output word AX to port number in DX

EF OUT DX,EAX 12,pm=9*/
25**,vm=24

Output dword EAX to port number in DX

NOTES:

 *If CPL ≤ IOPL
**If CPL > IOPL

Operation

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL))
THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *)
    IF NOT I-O-Permission (DEST, width(DEST))
    THEN #GP(0);
    FI;
FI;
[DEST] ← SRC; (* I/O address space used *)

Description

The OUT instruction transfers a data byte or data word from the register (AL, AX, or EAX)
given as the second operand to the output port numbered by the first operand. Output to any
port from 0 to 65535 is performed by placing the port number in the DX register and then
using an OUT instruction with the DX register as the first operand. If the instruction contains
an eight-bit port ID, that value is zero-extended to 16 bits.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the current privilege level is higher (has less privilege) than the I/O privilege level
and any of the corresponding I/O permission bits in the TSS equals 1.

Real Address Mode Exceptions

None.
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Virtual 8086 Mode Exceptions

#GP(0) fault if any of the corresponding I/O permission bits in the TSS equals 1.

Notes

After the OUT or OUTS instructions are executed, the Pentium processor ensures that the
EWBE# has been sampled active before beginning to execute the next instruction.  Note that
the instruction may be prefetched if EWBE# is not active, but it willl not execute until
EWBE# is sampled active.
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port
Opcode Instruction Clocks Description

6E OUTS DX,r/m8 13,pm=10*/
27**,VM=25

Output byte [(E)SI] to port in DX

6F OUTS DX,r/m16 13,pm=10*/
27**,VM=25

Output word [(E)SI] to port in DX

6F OUTS DX,r/m32 13,pm=10*/
27**,VM=25

Output dword [(E)SI] to port in DX

6E OUTSB 13,pm=10*/
27**,VM=25

Output byte DS:[(E)SI] to port in DX

6F OUTSW 13,pm=10*/
27**,VM=25

Output word DS:[(E)SI] to port in DX

6F OUTSD 13,pm=10*/
27**,VM=25

Output dword DS:[(E)SI] to port in DX

NOTES:

*If CPL ≤ IOPL
**If CPL > IOPL

Operation

IF AddressSize = 16
THEN use SI for source-index;
ELSE (* AddressSize = 32 *)
    use ESI for source-index;
FI;

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL))
THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *)
    IF NOT I-O-Permission (DEST, width(DEST))
    THEN #GP(0);
    FI;
FI;
IF byte type of instruction
THEN
    [DX] ← [source-index]; (* Write byte at DX I/O address *)
    IF DF = 0 THEN IncDec ← 1 ELSE IncDec ← –1; FI;
FI;
IF OperandSize = 16
THEN
    [DX] ← [source-index]; (* Write word at DX I/O address *)
    IF DF = 0 THEN IncDec ← 2 ELSE IncDec ← –2; FI;
FI;
IF OperandSize = 32
THEN
    [DX] ← [source-index]; (* Write dword at DX I/O address *)
    IF DF = 0 THEN IncDec ← 4 ELSE IncDec ← –4; FI;
    FI;
FI;
source-index ← source-index + IncDec;



INSTRUCTION SET EE

25-244

Description

The OUTS instruction transfers data from the memory byte, word, or doubleword at the
source-index register to the output port addressed by the DX register. If the address-size
attribute for this instruction is 16 bits, the SI register is used for the source-index register;
otherwise, the address-size attribute is 32 bits, and the ESI register is used for the source-
index register.

The OUTS instruction does not allow specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load the correct value into
the DX register before executing the OUTS instruction.

The address of the source data is determined by the contents of source-index register. Load
the correct index value into the SI or ESI register before executing the OUTS instruction.

After the transfer, source-index register is advanced automatically. If the DF flag is 0 (the
CLD instruction was executed), the source-index register is incremented; if the DF flag is 1
(the STD instruction was executed), it is decremented. The amount of the increment or
decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword is output.

The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and
doubleword OUTS instructions. The OUTS instruction can be preceded by the REP prefix for
block output of ECX bytes or words. Refer to the REP instruction for details on this
operation.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the current privilege level is greater than the I/O privilege level and any of the
corresponding I/O permission bits in TSS equals 1; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault-code)
for a page fault; #AC for unaligned memory reference if the current privilege level is 3.
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Notes

After the OUT or OUTS instructions are executed, the Pentium processor ensures that the
EWBE# has been sampled active before beginning to execute the next instruction.  Note that
the instruction may be prefetched if EWBE# is not active, but it will not execute until
EWBE# is sampled active.
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POP—Pop a Word from the Stack
Opcode Instruction Clocks Description

8F /0 POP m16 3 Pop top of stack into memory word
8F /0 POP m32 3 Pop top of stack into memory dword
58+ rw POP r16 1 Pop top of stack into word register
58+ rd POP r32 1 Pop top of stack into dword register
1F POP DS 3 Pop top of stack into DS
07 POP ES 3 Pop top of stack into ES
17 POP SS 3 Pop top of stack into SS
0F A1 POP FS 3 Pop top of stack into FS
0F A9 POP GS 3 Pop top of stack into GS

Operation

IF StackAddrSize = 16
THEN
    IF OperandSize = 16
    THEN
        DEST ← (SS:SP); (* copy a word *)
        SP ← SP + 2;
    ELSE (* OperandSize = 32 *)
        DEST ← (SS:SP); (* copy a dword *)
        SP ← SP + 4;
    FI;
ELSE (* StackAddrSize = 32 * )
    IF OperandSize = 16
    THEN
        DEST ← (SS:ESP); (* copy a word *)
        ESP ← ESP + 2;
    ELSE (* OperandSize = 32 *)
        DEST ← (SS:ESP); (* copy a dword *)
        ESP ← ESP + 4;
    FI;
FI;

Description

The POP instruction replaces the previous contents of the memory, the register, or the
segment register operand with the word on the top of the Pentium processor stack, addressed
by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute of 32 bits). The
stack pointer SP is incremented by 2 for an operand-size of 16 bits or by 4 for an operand-
size of 32 bits. It then points to the new top of stack.

The POP CS instruction is not a Pentium processor instruction. Popping from the stack into
the CS register is accomplished with a RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value popped
must be a selector. In protected mode, loading the selector initiates automatic loading of the
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descriptor information associated with that selector into the hidden part of the segment
register; loading also initiates validation of both the selector and the descriptor information.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing
a protection exception. An attempt to reference a segment whose corresponding segment
register is loaded with a null value causes a #GP(0) exception. No memory reference occurs.
The saved value of the segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after execution of the next
instruction. This allows sequential execution of POP SS and MOV eSP, eBP instructions
without danger of having an invalid stack during an interrupt. However, use of the LSS
instruction is the preferred method of loading the SS and eSP registers.

A POP-to-memory instruction, which uses the stack pointer (ESP) as a base register,
references memory after the POP. The base used is the value of the ESP after the instruction
executes.

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing:

IF SS is loaded:
    IF selector is null THEN #GP(0);
    Selector index must be within its descriptor table limits ELSE
        #GP(selector);
    Selector's RPL must equal CPL ELSE #GP(selector);
    AR byte must indicate a writable data segment ELSE #GP(selector);
    DPL in the AR byte must equal CPL ELSE #GP(selector);
    Segment must be marked present ELSE #SS(selector);
    Load SS register with selector;
    Load SS register with descriptor;

IF DS, ES, FS or GS is loaded with non-null selector:
    AR byte must indicate data or readable code segment ELSE
        #GP(selector);
    IF data or nonconforming code
    THEN both the RPL and the CPL must be less than or equal to DPL in
        AR byte
    ELSE #GP(selector);
    FI;
    Segment must be marked present ELSE #NP(selector);
    Load segment register with selector;
    Load segment register with descriptor;

IF DS, ES, FS, or GS is loaded with a null selector:
    Load segment register with selector
    Clear valid bit in invisible portion of register

Flags Affected

None.
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Protected Mode Exceptions

#GP, #SS, and #NP if a segment register is being loaded; #SS(0) if the current top of stack is
not within the stack segment; #GP(0) if the result is in a nonwritable segment; #GP(0) for an
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for
an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned
memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

Back-to-back PUSH/POP instruction sequences are allowed without incurring an additional
clock.

The stack segment descriptor's B bit will determine the size of Stack Addr Size.

Pop ESP instructions increments the stack pointer (ESP) before data at the old top of stack is
written into the destination.

When POP SS is used to switch from a 32-bit stack to a 16-bit stack, the Pentium processor
updates ESP[15:0] (or the SP register), based on the new value of the B bit (B = '0') of the
stack segment descriptor. In the case where the value in ESP before the switch contains a
boundary condition (e.g., ESP[31:0] = 07ffffffch), the new value in ESP after the switch will
only be reflected on the lower 16 bits (i.e., ESP[31:0] = 07fff0000h). Therefore, code that
switches from a 32-bit stack to a 16-bit stack via the POP SS instruction must not rely on
ESP[31:16].

Similar considerations apply when switching from 16-bit to 32-bit stacks. When executing
POP SS to switch from 16-bit stack to 32-bit stack, only SP (the old stack size) is used to
increment the stack pointer, instead of ESP (the new stack size, 32-bit).
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POPA/POPAD—Pop all General Registers
Opcode Instruction Clocks Description

61 POPA 5 Pop DI, SI, BP, BX, DX, CX, and AX
61 POPAD 5 Pop EDI, ESI, EBP, EDX, ECX, and EAX

Operation

IF OperandSize = 16 (* instruction = POPA *)
THEN
    DI ←Pop();
    SI ← Pop();
    BP ← Pop();
    increment ESP by 2 (* skip next 2 bytes of stack *)
    BX ← Pop();
    DX ← Pop();
    CX ← Pop();
    AX ← Pop();
ELSE (* OperandSize = 32, instruction = POPAD *)
    EDI ← Pop();
    ESI ← Pop();
    EBP ← Pop();
    increment ESP by 4 (* skip next 4 bytes of stack *)
    EBX ← Pop();
    EDX ← Pop();
    ECX ← Pop();
    EAX ← Pop();
FI;

Description

The POPA instruction pops the eight 16-bit general registers. However, the SP value is
discarded instead of loaded into the SP register. The POPA instruction reverses a previous
PUSHA instruction, restoring the general registers to their values before the PUSHA
instruction was executed. The first register popped is the DI register.

The POPAD instruction pops the eight 32-bit general registers. The ESP value is discarded
instead of loaded into the ESP register. The POPAD instruction reverses the previous
PUSHAD instruction, restoring the general registers to their values before the PUSHAD
instruction was executed. The first register popped is the EDI register.

Flags Affected

None.
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Protected Mode Exceptions

#SS(0) if the starting or ending stack address is not within the stack segment; #PF(fault-code)
for a page fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault.
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POPF/POPFD—Pop Stack into FLAGS or EFLAGS Register
Opcode Instruction Clocks Description

9D POPF pm= 4,rm and vm= 6 Pop top of stack FLAGS
9D POPFD pm= 4,rm and vm= 6 Pop top of stack into EFLAGS

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF OperandSize=32;
THEN EFLAGS ← Pop() AND 277FD7H;
ELSE FLAGS ← Pop();
FI;

ELSE  (* In Virtual-8086 Mode *)
IF IOPL=3
THEN

IF OperandSize=32
THEN

TempEflags ← Pop();
EFLAGS ← ((EFLAGS AND 1B3000H) OR (TempEflags AND ~1B3000H))

(* VM, RF, IOPL, VIP, and VIF of EFLAGS bits are not modified
     by POPFD *)

ELSE
FLAGS ← Pop()

FI;
ELSE

#GP(0);  (* trap to virtual-8086 monitor *)
FI;

FI;

Description

The POPF and POPFD instructions pop the word or doubleword on the top of the stack and
store the value in the FLAGS register. If the operand-size attribute of the instruction is 16
bits, then a word is popped and the value is stored in the FLAGS register. If the operand-size
attribute is 32 bits, then a doubleword is popped and the value is stored in the EFLAGS
register.

When the IOPL is less than 3 in virtual-8086 mode, the POPF instruction causes a general
protection exception.  When the IOPL is equal to 3 while executing in virtual-8086 mode,
POPF pops a word into the FLAGS register.

Refer to Chapter 3 and Chapter 10 for information about the FLAGS and EFLAGS registers.
Note that bits 16 and 17 of the EFLAGS register, called the VM and RF flags, respectively,
are not affected by the POPF or POPFD instruction.

The I/O privilege level is altered only when executing at privilege level 0. The interrupt flag
is altered only when executing at a level at least as privileged as the I/O privilege level.
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(Real-address mode is equivalent to privilege level 0.) If a POPF instruction is executed with
insufficient privilege, an exception does not occur, but the privileged bits do not change.

Flags Affected

All flags except the VM, RF, IOPL, VIF and VIP flags.

Protected Mode Exceptions

#SS(0) if the top of stack is not within the stack segment.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) fault if the I/O privilege level is less than 3 in order to permit emulation.  #GP(0) if
an attempt is made to execute POPF with an operand-size override prefix.

Notes

For information on the effect of POPF and POPFD when using virtual mode extensions, see
Appendix H.



EE INSTRUCTION SET

25-253

PUSH—Push Operand onto the Stack
Opcode Instruction Clocks Description

FF /6 PUSH r/m16 1/2 Push reg/mem word
FF /6 PUSH r/m32 1/2 Push reg/mem dword
50+rw PUSH r16 1 Push register word
50+rd PUSH r32 1 Push register dword
6A PUSH imm8 1 Push immediate byte
68 PUSH imm16 1 Push immediate word
68 PUSH imm32 1 Push immediate dword
0E PUSH CS 1 Push CS
16 PUSH SS 1 Push SS
1E PUSH DS 1 Push DS
06 PUSH ES 1 Push ES
0F A0 PUSH FS 1 Push FS
0F A8 PUSH GS 1 Push GS

Operation

IF StackAddrSize = 16
THEN
    IF OperandSize = 16 THEN
        SP ← SP – 2;
        (SS:SP) ← (SOURCE); (* word assignment *)
    ELSE
        SP ← SP – 4;
        (SS:SP) ← (SOURCE); (* dword assignment *)
    FI;
ELSE (* StackAddrSize = 32 *)
    IF OperandSize = 16
    THEN
        ESP ← ESP – 2;
        (SS:ESP) ← (SOURCE); (* word assignment *)
    ELSE
        ESP ← ESP – 4;
        (SS:ESP) ← (SOURCE); (* dword assignment *)
    FI;
FI;

Description

The PUSH instruction decrements the stack pointer by 2 if the operand-size attribute of the
instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH instruction
then places the operand on the new top of stack, which is pointed to by the stack pointer.

The PUSH ESP instruction pushes the value of the ESP register as it existed before the
instruction. This differs from the 8086, where the PUSH SP instruction pushes the new value
(decremented by 2).
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Likewise, a PUSH-from-memory instruction, which uses the stack pointer (ESP) as a base
register, references memory before the PUSH. The base used is the value of the ESP before
the instruction executes.

Flags Affected

None.

Protected Mode Exceptions

#SS(0) if the new value of the SP or ESP register is outside the stack segment limit; #GP(0)
for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments;
#SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

None; if the SP or ESP register is 1, the processor shuts down due to a lack of stack space.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

When used with an operand in memory, the PUSH instruction takes longer to execute than a
two-instruction sequence which moves the operand through a register.

Back-to-back PUSH/POP instruction sequences are allowed without incurring an additional
clock.

Selective pushes write only the top of the stack.
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PUSHA/PUSHAD—Push all General Registers
Opcode Instruction Clocks Description

60 PUSHA 5 Push AX, CX, DX, BX, original SP, BP, SI, and DI
60 PUSHAD 5 Push EAX, ECX, EDX, EBX, original ESP, EBP,

ESI, and EDI

Operation

IF OperandSize = 16 (* PUSHA instruction *)
THEN     Temp ← (SP);
    Push(AX);
    Push(CX);
    Push(DX);
    Push(BX);
    Push(Temp);
    Push(BP);
    Push(SI);
    Push(DI);
ELSE (* OperandSize = 32, PUSHAD instruction *)
    Temp ← (ESP);
    Push(EAX);
    Push(ECX);
    Push(EDX);
    Push(EBX);
    Push(Temp);
    Push(EBP);
    Push(ESI);
    Push(EDI);
FI;

Description

The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers,
respectively, on the Pentium processor stack. The PUSHA instruction decrements the stack
pointer (SP) by 16 to hold the eight word values. The PUSHAD instruction decrements the
stack pointer (ESP) by 32 to hold the eight doubleword values. Because the registers are
pushed onto the stack in the order in which they were given, they appear in the 16 or 32 new
stack bytes in reverse order. The last register pushed is the DI or EDI register.

Flags Affected

None.
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Protected Mode Exceptions

#SS(0) if the starting or ending stack address is outside the stack segment limit; #PF(fault-
code) for a page fault.

Real Address Mode Exceptions

Before executing the PUSHA or PUSHAD instruction, the Pentium processor shuts down if
the SP or ESP register equals 1, 3, or 5; if the SP or ESP register equals 7, 9, 11, 13, or 15,
exception 13 occurs.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault-code) for a page fault.
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PUSHF/PUSHFD—Push Flags Register onto the Stack
Opcode Instruction Clocks Description

9C PUSHF pm=3, rm and vm=4 Push FLAGS
9C PUSHFD pm=3,rm and vm=4 Push EFLAGS

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF OperandSize = 32
THEN push(EFLAGS AND 0FCFFFFH); (* VM and RF EFLAG bits are cleared *)
ELSE push(FLAGS);
FI;

ELSE (* In Virtual-8086 Mode *)
IF IOPL=3
THEN

IF OperandSize = 32
THEN push(EFLAGS AND 0FCFFFFH); (* VM and RF EFLAGS bits are cleared *)
ELSE push(FLAGS);
FI;

ELSE
#GP(0); (* Trap to virtual-8086 monitor *)

FI;
FI;

Description

The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS register to
the new top of stack; the PUSHFD instruction decrements the stack pointer by 4, and the
EFLAGS register is copied to the new top of stack which is pointed to by SS:ESP.  Refer to
Chapter 3 and Chapter 10 for information on the EFLAGS register.

Flags Affected

None.

Protected Mode Exceptions

#SS(0) if the new value of the ESP register is outside the stack segment boundaries.

Real Address Mode Exceptions

None; the processor shuts down due to a lack of stack space.
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Virtual 8086 Mode Exceptions

#GP(0) fault if the I/O privilege level is less than 3, to permit emulation.

Notes

For information on this instruction when using virtual mode extensions, see Appendix H.
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RCL/RCR/ROL/ROR-—Rotate
Opcode Instruction Clocks Description

D0 /2 RCL r/m8,1 1/3 Rotate 9 bits (CF,r/m byte) left once
D2 /2 RCL r/m8,CL 7-24/9-26 Rotate 9 bits (CF,r/m byte) left CL times
C0 /2 ib RCL r/m8,imm8 8-25/10-27 Rotate 9 bits (CF,r/m byte) left imm8 times
D1 /2 RCL r/m16,1 1/3 Rotate 17 bits (CF,r/m word) left once
D3 /2 RCL r/m16,CL 7-24/9-26 Rotate 17 bits (CF,r/m word) left CL times
C1 /2 ib RCL r/m16,imm8 8-25/10-27 Rotate 17 bits (CF,r/m word) left imm8 times
D1 /2 RCL r/m32,1 1/3 Rotate 33 bits (CF,r/m dword) left once
D3 /2 RCL r/m32,CL 7-24/9-26 Rotate 33 bits (CF,r/m dword) left CL times
C1 /2 ib RCL r/m32,imm8 8-25/10-27 Rotate 33 bits (CF,r/m dword) left imm8 times
D0 /3 RCR r/m8,1 1/3 Rotate 9 bits (CF,r/m byte) right once
D2 /3 RCR r/m8,CL 7-24/9-26 Rotate 9 bits (CF,r/m byte) right CL times
C0 /3 ib RCR r/m8,imm8 8-25/10-27 Rotate 9 bits (CF,r/m byte) right imm8 times
D1 /3 RCR r/m16,1 1/3 Rotate 17 bits (CF,r/m word) right once
D3 /3 RCR r/m16,CL 7-24/9-26 Rotate 17 bits (CF,r/m word) right CL times
C1 /3 ib RCR r/m16,imm8 8-25/10-27 Rotate 17 bits (CF,r/m word) right imm8 times
D1 /3 RCR r/m32,1 1/3 Rotate 33 bits (CF,r/m dword) right once
D3 /3 RCR r/m32,CL 7-24/9-26 Rotate 33 bits (CF,r/m dword) right CL times
C1 /3 ib RCR r/m32,imm8 8-25/10-27 Rotate 33 bits (CF,r/m dword) right imm8 times
D0 /0 ROL r/m8,1 1/3 Rotate 8 bits r/m byte left once
D2 /0 ROL r/m8,CL 4 Rotate 8 bits r/m byte left CL times
C0 /0 ib ROL r/m8,imm8 1/3 Rotate 8 bits r/m byte left imm8 times
D1 /0 ROL r/m16,1 1/3 Rotate 16 bits r/m word left once
D3 /0 ROL r/m16,CL 4 Rotate 16 bits r/m word left CL times
C1 /0 ib ROL r/m16,imm8 1/3 Rotate 16 bits r/m word left imm8 times
D1 /0 ROL r/m32,1 1/3 Rotate 32 bits r/m dword left once
D3 /0 ROL r/m32,CL 4 Rotate 32 bits r/m dword left CL times
C1 /0 ib ROL r/m32,imm8 1/3 Rotate 32 bits r/m dword left imm8 times
D0 /1 ROR r/m8,1 1/3 Rotate 8 bits r/m byte right once
D2 /1 ROR r/m8,CL 4 Rotate 8 bits r/m byte right CL times
C0 /1 ib ROR r/m8,imm8 1/3 Rotate 8 bits r/m word right imm8 times
D1 /1 ROR r/m16,1 1/3 Rotate 16 bits r/m word right once
D3 /1 ROR r/m16,CL 4 Rotate 16 bits r/m word right CL times
C1 /1 ib ROR r/m16,imm8 1/3 Rotate 16 bits r/m word right imm8 times
D1 /1 ROR r/m32,1 1/3 Rotate 32 bits r/m dword right once
D3 /1 ROR r/m32,CL 4 Rotate 32 bits r/m dword right CL times
C1 /1 ib ROR r/m32,imm8 1/3 Rotate 32 bits r/m dword right imm8 times

Operation

(* ROL - Rotate Left *)
temp ← COUNT;
WHILE (temp <> 0)
DO
    tmpcf ← high-order bit of (r/m);
    r/m ← r/m * 2 + (tmpcf);
    temp ← temp – 1;
OD;
IF COUNT = 1
THEN
    IF high-order bit of r/m <> CF
    THEN OF ← 1;
    ELSE OF ← 0;
    FI;
ELSE OF ← undefined;
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FI;
(* ROR - Rotate Right *)
temp ← COUNT;
WHILE (temp <> 0 )
DO
    tmpcf ← low-order bit of (r/m);
    r/m ← r/m / 2 + (tmpcf * 2width(r/m));
    temp ← temp – 1;
DO;
IF COUNT = 1
THEN
    IF (high-order bit of r/m) <> (bit next to high-order bit of r/m)
    THEN OF ← 1;
    ELSE OF ← 0;
    FI;
ELSE OF ← undefined;
FI;

Description

Each rotate instruction shifts the bits of the register or memory operand given. The left rotate
instructions shift all the bits upward, except for the top bit, which is returned to the bottom.
The right rotate instructions do the reverse: the bits shift downward until the bottom bit
arrives at the top.

For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL
instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag; the
RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the CF flag.
For the ROL and ROR instructions, the original value of the CF flag is not a part of the
result, but the CF flag receives a copy of the bit that was shifted from one end to the other.

The rotate is repeated the number of times indicated by the second operand, which is either
an immediate number or the contents of the CL register. To reduce the maximum instruction
execution time, the Pentium processor does not allow rotation counts greater than 31. If a
rotation count greater than 31 is attempted, only the bottom five bits of the rotation are used.
The 8086 does not mask rotation counts. The Pentium processor in Virtual 8086 Mode does
mask rotation counts.

The OF flag is defined only for the single-rotate forms of the instructions (second operand is
a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the shift is
XORed with the high-order result bit. For right shifts/rotates, the high-order two bits of the
result are XORed to get the OF flag.

Flags Affected

The OF flag is affected only for single-bit rotates; the OF flag is undefined for multi-bit
rotates; the CF flag contains the value of the bit shifted into it; the SF, ZF, AF, and PF flags
are not affected.
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Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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RDMSR—Read from Model Specific Register
Opcode Instruction Clocks Description

0F 32 RDMSR 20-24 Read Model Specific Register indicated by ECX
into EDX:EAX

Operation

EDX:EAX ← MSR[ECX];

Description

The value in ECX specifies one of the 64-bit Model Specific Registers of the Pentium
processor.  The content of that Model-Specific Register is copied into EDX:EAX.  EDX is
loaded with the high-order 32 bits, and EAX is loaded with the low-order 32 bits.

The following values are used to select model specific registers on the Pentium processor:

Value (in Hex) Register Name Description

00H Machine Check Address Stores address of cycle causing the exception

01H Machine Check Type Stores cycle type of cycle causing the exception

For other values used to perform cache, TLB, and BTB testing and performance monitoring,
see Pentium® Family User’s Manual Chapter 33.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if either the current privilege level is not 0 or the value in ECX does not specify a
Model-Specific Register that is implemented in the Pentium processor.

Real Address Mode Exceptions

#GP(0) if the value in ECX does not specify a Model-Specific Register that is implemented
in the Pentium processor.

Virtual 8086 Mode Exceptions

#GP(0) if instruction execution is attempted.
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Notes

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
protection exception will be generated.

If less than 64 bits are implemented in a model specific register, the value returned to
EDX:EAX, in the locations corresponding to the unimplemented bits, is unpredictable.

RDMSR is used to read the content of Model-Specific Registers that control functions for
testability, execution tracing, performance monitoring and machine check errors.  Refer to
the Pentium™ Processor Data Book for more information.

The values 3H, 0FH, and values above 13H are reserved. Do not execute RDMSR with
reserved values in ECX.

The CPUID instruction should be used to determine whether the CPU-style model
specific registers are supported (ADX[5]=1) before using this instruction.  A #GP will
occur if this feature is not supported.
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RDTSC—Read from Time Stamp Counter
Opcode Instruction Clocks Description

0F 31 RDTSC 6-11* Read Time Stamp Counter into  EDX:EAX

NOTES: 6 clocks at PL0, 11 clocks at PL1-3.

Operation

EDX:EAX ← Time Stamp Counter;

Description

The Pentium processor maintains a 64-bit Time Stamp Counter (EDX[4:4]} that increments
every clock cycle. The RDTSC instruction copies the content of the Time Stamp Counter
into EDX:EAX. EDX is loaded with the high-order 32 bits, and EAX is loaded with the low-
order 32 bits. When the Current Privilege Level (CPL) is 0, the state of the TSD bit in CR4
does not affect the operation of this instruction. When the CPL>0, the Time Stamp Counter
can be read only if CR4.TSD = 0. Only a supervisor level program (CPL = 0) may modify
the value of the Time Stamp Counter.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the TSD bit in CR4 is set to 1 and the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) if instruction execution is attempted.

Notes

The Time Stamp Counter is the same counter that is part of the Pentium processor’s
performance monitor features. The function of the RDTSC instruction is equivalent to that of
the RDMSR instruction, but is available at the application level in an implementation
independent manner. The privileged RDMSR instruction takes longer to execute than the
RDTSC instruction because of the instruction checks that are performed for the RDMSR
instruction. Because of this, sampling of the time setup counter occurs at different points in
instruction execution. This results in a different absolute count depending on whether the
RDTSC or RDMSR instruction is used. However, the difference in absolute count obtained
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from these two instructions is constant from event to event. The recommended method for
counting the number of elapsed clocks is to use the difference in the time stamp counter
value before and after the event.

The CPUID instruction should be used to determine whether Pentium processor-style
model specific registers are supported (EDX[5] = 1) before using this instruction. A
general protection exception will occur if the feature is not supported.
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REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String
Operation
Opcode Instruction Clocks Description

F3 6C REP INS r/m8, DX 11+3(E)CX,

pm=8+3(E)CX*1/25+

3(E)CX*2,

VM=23+3(E)CX

Input (E)CX bytes from port DX into ES:[(E)DI]

F3 6D REP INS r/m16,DX 11+3(E)CX,

pm=8+3(E)CX*1/25+

3(E)CX*2,

VM=23+3(E)CX

Input (E)CX words from port DX into ES:[(E)DI]

F3 6D REP INS r/m32,DX 11+3(E)CX,

pm=8+3(E)CX*1/25+

3(E)CX*2,

VM=23+3(E)CX

Input (E)CX dwords from port DX into ES:[(E)DI]

F3 A4 REP MOVS m8,m8 6*3,13*4,

13+(E)CX*5
Move (E)CX bytes from [(E)SI] to ES:[(E)DI]

F3 A5 REP MOVS m16,m16 6*3,13*4,

13+(E)CX*5

Move (E)CX words from [(E)SI] to ES:[(E)DI]

F3 A5 REP MOVS m32,m32 6*3,13*4,

13+(E)CX*5
Move (E)CX dwords from [(E)SI] to ES:[(E)DI]

F3 6E REP OUTS DX,r/m8 13+4(E)CX,

pm=10+4(E)CX*127

+4(E)CX*2

vm=25+4(E)CX

Output (E)CX bytes from [(E)SI] to port DX

F3 6F REP OUTS DX,r/m16 13+4(E)CX,

pm=10+4(E)CX*127

+4(E)CX*2

vm=25+4(E)CX

Output (E)CX words from [(E)SI] to port DX

F3 6F REP OUTS DX,r/m32 13+4(E)CX,

pm=10+4(E)CX*127

+4(E)CX*2

vm=25+4(E)CX

Output (E)CX dwords from [(E)SI] to port DX

F3 AC REP LODS AL 7*
3
,7+3(E)CX*6 Load (E)CX bytes from [(E)SI] to AL

F3 AD REP LODS AX 7*
3
,7+3(E)CX*6 Load (E)CX words from [(E)SI] to AX

F3 AD REP LODS EAX 7*
3
,7+3(E)CX*6 Load (E)CX dwords from [(E)SI] to EAX

F3 AA REP STOS m8 6*
3
,9(E)CX*6 Fill (E)CX bytes at ES:[(E)DI] with AL

F3 AB REP STOS m16 6*
3
,9(E)CX*6 Fill (E)CX words at ES:[(E)DI] with AX

F3 AB REP STOS m32 6*
3
,9(E)CX*6 Fill (E)CX dwords at ES:[(E)DI] with EAX

F3 A6 REPE CMPS m8,m8 7*
3
,9+4(E)CX*6 Find nonmatching bytes in ES:[(E)DI] and [(E)SI]

F3 A7 REPE CMPS m16,m16 7*
3
,9+4(E)CX*6 Find nonmatching words in ES:[(E)DI] and [(E)SI]

F3 A7 REPE CMPS m32,m32 7*
3
,9+4(E)CX*6 Find nonmatching dwords in ES:[(E)DI] and [(E)SI]

F3 AE REPE SCAS m8 7*
3
,9+4(E)CX*6 Find non-AL byte starting at ES:[(E)DI]

F3 AF REPE SCAS m16 7*
3
,9+4(E)CX*6 Find non-AX word starting at ES:[(E)DI]

F3 AF REPE SCAS m32 7*
3
,9+4(E)CX*6 Find non-EAX dword starting at ES:[(E)DI]

F2 A6 REPNE CMPS m8,m8 7*
3
,8+4(E)CX*6 Find matching bytes in ES:[(E)DI] and [(E)SI]
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Opcode Instruction Clocks Description

F2 A7 REPNE CMPS

m16,m16
7*

3
,8+4(E)CX*6 Find matching words in ES:[(E)DI] and [(E)SI]

F2 A7 REPNE CMPS

m32,m32
7*

3
,8+4(E)CX*6 Find matching dwords in ES:[(E)DI] and [(E)SI]

F2 AE REPNE SCAS m8 7*
3
,9+4(E)CX*6 Find AL, starting at ES:[(E)DI]

F2 AF REPNE SCAS m16 7*
3
,9+4(E)CX*6 Find AX, starting at ES:[(E)DI]

F2 AF REPNE SCAS m32 7*
3
,9+4(E)CX*6 Find EAX, starting at ES:[(E)DI]

NOTES:

*1 If CPL ≤ IOPL

*2 If CPL > IOPL

*3 (E) CX=0

*4 (E) CX =1

*5 (E) CX > 1

*6 (E) CX > 0

Operation

IF AddressSize = 16
THEN use CX for CountReg;
ELSE (* AddressSize = 32 *) use ECX for CountReg;
FI;
WHILE CountReg <> 0
DO
    service pending interrupts (if any);
    perform primitive string instruction;
    CountReg ← CountReg – 1;
    IF primitive operation is CMPSB, CMPSW, CMPSD, SCASB, SCASW, or SCASD
    THEN
        IF (instruction is REP/REPE/REPZ) AND (ZF=0)
        THEN exit WHILE loop
        ELSE
            IF (instruction is REPNZ or REPNE) AND (ZF=1)
            THEN exit WHILE loop;
            FI;
        FI;
    FI;
OD;

Description

The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes are
applied to string operation. Each prefix causes the string instruction that follows to be
repeated the number of times indicated in the count register or (for the REPE and REPNE
prefixes) until the indicated condition in the ZF flag is no longer met.
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Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ prefixes,
respectively.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct.

The precise action for each iteration is as follows:

1. If the address-size attribute is 16 bits, use the CX register for the count register; if the
address-size attribute is 32 bits, use the ECX register for the count register.

2. Check the count register. If it is zero, exit the iteration, and move to the next instruction.

3. Acknowledge any pending interrupts.

4. Perform the string operation once.

5. Decrement the CX or count register by one; no flags are modified.

6. Check the ZF flag if the string operation is a SCAS or CMPS instruction. If the repeat
condition does not hold, exit the iteration and move to the next instruction. Exit the
iteration if the prefix is REPE and the ZF flag is 0 (the last comparison was not equal),
or if the prefix is REPNE and the ZF flag is one (the last comparison was equal).

7. Return to step 2 for the next iteration.

Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the ZF
flag fails the repeat condition. These two cases can be distinguished by using either the JCXZ
instruction, or by using the conditional jumps that test the ZF flag (the JZ, JNZ, and JNE
instructions).

Flags Affected

The ZF flag is affected by the REP CMPS and REP SCAS as described above.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Notes

Not all I/O ports can handle the rate at which the REP INS and REP OUTS instructions
execute.
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Do not use the REP prefix with the LOOP instruction. Proper LOOP operation is not
guaranteed when used with the REP prefix and the effect of this combination is
unpredictable.

The behavior of the REP prefix is undefined when used with non-string instructions.

When a page fault occurs during CMPS or SCAS instructions that are prefixed with REPNE,
the EFLAGS value is restored to the state prior to the execution of the instruction. Since
SCAS and CMPS do not use EFLAGS as an input, the processor can resume the instruction
after the page fault handler.
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RET—Return from Procedure
Opcode Instruction Clocks Description

C3 RET 2 Return (near) to caller
CB RET 4 Return (far) to caller, same privilege
CB RET 23 Return (far), lesser privilege, switch stacks
C2 iw RET imm16 3 Return (near), pop imm16 bytes of parameters
CA iw RET imm16 4 Return (far), same privilege, pop imm16 bytes
CA iw RET imm16 23 Return (far), lesser privilege, pop imm16 bytes

Operation

IF instruction = near RET
THEN;
    IF OperandSize = 16
    THEN
        IP ← Pop();
        EIP ← EIP AND 0000FFFFH;
    ELSE (* OperandSize = 32 *)
        EIP ← Pop();
    FI;
    IF instruction has immediate operand THEN eSP ← eSP + imm16; FI;
FI;

IF (PE = 0 OR (PE = 1 AND VM = 1))
    (* real mode or virtual 8086 mode *)
    AND instruction = far RET
THEN;
    IF OperandSize = 16
    THEN
        IP ← Pop();
        EIP ← EIP AND 0000FFFFH;
        CS ← Pop(); (* 16-bit pop *)
    ELSE (* OperandSize = 32 *)
        EIP ← Pop();
        CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
    FI;
    IF instruction has immediate operand THEN eSP ← eSP + imm16; FI;
FI;

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *)
    AND instruction = far RET
THEN
    IF OperandSize=32
    THEN Third word on stack must be within stack limits else #SS(0);
    ELSE Second word on stack must be within stack limits else #SS(0);
    FI;
    Return selector RPL must be ≥ CPL ELSE #GP(return selector)
    IF return selector RPL = CPL
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    THEN GOTO SAME-LEVEL;
    ELSE GOTO OUTER-PRIVILEGE-LEVEL;
    FI;
FI;

SAME-LEVEL:
    Return selector must be non-null ELSE #GP(0)
    Selector index must be within its descriptor table limits ELSE
        #GP(selector)
    Descriptor AR byte must indicate code segment ELSE #GP(selector)
    IF non-conforming
    THEN code segment DPL must equal CPL;
    ELSE #GP(selector);
    FI;
    IF conforming
    THEN code segment DPL must be ≤ CPL;
    ELSE #GP(selector);
    FI;
    Code segment must be present ELSE #NP(selector);
    Top word on stack must be within stack limits ELSE #SS(0);
    IP must be in code segment limit ELSE #GP(0);
    IF OperandSize=32
    THEN
        Load CS:EIP from stack
        Load CS register with descriptor
        Increment eSP by 8 plus the immediate offset if it exists
    ELSE (* OperandSize=16 *)
        Load CS:IP from stack
        Load CS register with descriptor
        Increment eSP by 4 plus the immediate offset if it exists
    FI;

OUTER-PRIVILEGE-LEVEL:
    IF OperandSize=32
    THEN Top (16+immediate) bytes on stack must be within stack limits
        ELSE #SS(0);
    ELSE Top (8+immediate) bytes on stack must be within stack limits ELSE
        #SS(0);
    FI;
    Examine return CS selector and associated descriptor:
        Selector must be non-null ELSE #GP(0);
        Selector index must be within its descriptor table limits ELSE
            #GP(selector)
        Descriptor AR byte must indicate code segment ELSE #GP(selector);
        IF non-conforming
        THEN code segment DPL must equal return selector RPL
        ELSE #GP(selector);
        FI;
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        IF conforming
        THEN code segment DPL must be ≤ return selector RPL;
        ELSE #GP(selector);
        FI;
        Segment must be present ELSE #NP(selector)
    Examine return SS selector and associated descriptor:
        Selector must be non-null ELSE #GP(0);
        Selector index must be within its descriptor table limits
            ELSE #GP(selector);
        Selector RPL must equal the RPL of the return CS selector ELSE
            #GP(selector);
        Descriptor AR byte must indicate a writable data segment ELSE
            #GP(selector);
        Descriptor DPL must equal the RPL of the return CS selector ELSE
            #GP(selector);
        Segment must be present ELSE #NP(selector);
    IP must be in code segment limit ELSE #GP(0);
    Set CPL to the RPL of the return CS selector;
    IF OperandSize=32
    THEN
        Load CS:EIP from stack;
        Set CS RPL to CPL;
        Increment eSP by 8 plus the immediate offset if it exists;
        Load SS:eSP from stack;
    ELSE (* OperandSize=16 *)
        Load CS:IP from stack;
        Set CS RPL to CPL;
        Increment eSP by 4 plus the immediate offset if it exists;
        Load SS:eSP from stack;
    FI;
    Load the CS register with the return CS descriptor;
    Load the SS register with the return SS descriptor;
    For each of ES, FS, GS, and DS
    DO
        IF the current register setting is not valid for the outer level,
            set the register to null (selector ← AR ← 0);
        To be valid, the register setting must satisfy the following properties:
            Selector index must be within descriptor table limits;
            Descriptor AR byte must indicate data or readable code segment;
            IF segment is data or non-conforming code, THEN
                DPL must be ≥ CPL, or DPL must be ≥ RPL;
            FI;
    OD;
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Description

The RET instruction transfers control to a return address located on the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction
that follows the CALL instruction.

The optional numeric parameter to the RET instruction gives the number of stack bytes
(OperandMode=16) or words (OperandMode=32) to be released after the return address is
popped. These items are typically used as input parameters to the procedure called.

For the intrasegment (near) return, the address on the stack is a segment offset, which is
popped into the instruction pointer. The CS register is unchanged. For the intersegment (far)
return, the address on the stack is a long pointer. The offset is popped first, followed by the
selector.

In real mode, the CS and IP registers are loaded directly. In Protected Mode, an intersegment
return causes the processor to check the descriptor addressed by the return selector. The AR
byte of the descriptor must indicate a code segment of equal or lesser privilege (or greater or
equal numeric value) than the current privilege level. Returns to a lesser privilege level cause
the stack to be reloaded from the value saved beyond the parameter block.

The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during an
interlevel transfer. If these registers refer to segments that cannot be used by the new
privilege level, they are cleared to prevent unauthorized access from the new privilege level.

Flags Affected

None.

Protected Mode Exceptions

#GP, #NP, or #SS, as described under "Operation" above; #PF(fault-code) for a page fault.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would be outside the effective address space from 0 to
0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.
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ROL/ROR—Rotate
See entry for RCL/RCR/ROL/ROR.
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RSM—Resume from System Management Mode
Opcode Instruction Clocks Description

0F AA RSM 83 Resume operation of interrupted program

Operation

Resume operation of a program interrupted by a System Management Mode interrupt

Description

The processor state is restored from the dump created upon entrance to SMM.  Note,
however, that the contents of the model-specific registers are not affected.  The processor
leaves SMM and returns control to the interrupted application or operating system. If the
processor detects any invalid state information, it enters the shutdown state.  This happens in
any of the following situations:

• The value stored in the State Dump Base field is not a 32-Kbyte aligned address.

• Any reserved bit of CR4 is set to 1.

• Any combination of bits in CR0 is illegal; namely, (PG=1 and PE=0) or (NW=1 and
CD=0).

Flags Affected

All.

Protected Mode Exceptions

#UD if an attempt is made to execute this instruction when the processor is not in System
Management Mode.

Real Address Mode Exceptions

#UD if an attempt is made to execute this instruction when the processor is not in System
Management Mode.

Virtual 8086 Mode Exceptions

#UD if an attempt is made to execute this instruction when the processor is not in System
Management Mode.

Notes

Please refer to Chapter 20 for more information about System Management Mode and the
behavior of the RSM instruction.
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SAHF—Store AH into Flags
Opcode Instruction Clocks Description

9E SAHF 2 Store AH into flags SF ZF xx AF xx PF xx CF

Operation

SF:ZF:xx:AF:xx:PF:xx:CF ← AH;

Description

The SAHF instruction loads the SF, ZF, AF, PF, and CF flags with values from the AH
register, from bits 7, 6, 4, 2, and 0, respectively.

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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SAL/SAR/SHL/SHR— Shift Instructions
Opcode Instruction Clocks Description

D0 /4 SAL r/m8,1 1/3 Multiply r/m byte by 2, once
D2 /4 SAL r/m8,CL 4 Multiply r/m byte by 2, CL times
C0 /4 ib SAL r/m8,imm8 1/3 Multiply r/m byte by 2, imm8 times
D1 /4 SAL r/m16,1 1/3 Multiply r/m word by 2, once
D3 /4 SAL r/m16,CL 4 Multiply r/m word by 2, CL times
C1 /4 ib SAL r/m16,imm8 1/3 Multiply r/m word by 2, imm8 times
D1 /4 SAL r/m32,1 1/3 Multiply r/m dword by 2, once
D3 /4 SAL r/m32,CL 4 Multiply r/m dword by 2, CL times
C1 /4 ib SAL r/m32,imm8 1/3 Multiply r/m dword by 2, imm8 times
D0 /7 SAR r/m8,1 1/3 Signed divide1 r/m byte by 2, once
D2 /7 SAR r/m8,CL 4 Signed divide1 r/m byte by 2, CL times
C0 /7 ib SAR r/m8,imm8 1/3 Signed divide1 r/m byte by 2, imm8 times
D1 /7 SAR r/m16,1 1/3 Signed divide1 r/m word by 2, once
D3 /7 SAR r/m16,CL 4 Signed divide1 r/m word by 2, CL times
C1 /7 ib SAR r/m16,imm8 1/3 Signed divide1 r/m word by 2, imm8 times
D1 /7 SAR r/m32,1 1/3 Signed divide1 r/m dword by 2, once
D3 /7 SAR r/m32,CL 4 Signed divide1r/m dword by 2, CL times
C1 /7 ib SAR r/m32,imm8 1/3 Signed divide1r/m dword by 2, imm8 times
D0 /4 SHL r/m8,1 1/3 Multiply r/m byte by 2, once
D2 /4 SHL r/m8,CL 4 Multiply r/m byte by 2, CL times
C0 /4 ib SHL r/m8,imm8 1/3 Multiply r/m byte by 2, imm8 times
D1 /4 SHL r/m16,1 1/3 Multiply r/m word by 2, once
D3 /4 SHL r/m16,CL 4 Multiply r/m word by 2, CL times
C1 /4 ib SHL r/m16,imm8 1/3 Multiply r/m word by 2, imm8 times
D1 /4 SHL r/m32,1 1/3 Multiply r/m dword by 2, once
D3 /4 SHL r/m32,CL 4 Multiply r/m dword by 2, CL times
C1 /4 ib SHL r/m32,imm8 1/3 Multiply r/m dword by 2, imm8 times
D0 /5 SHR r/m8,1 1/3 Unsigned divide r/m byte by 2, once
D2 /5 SHR r/m8,CL 4 Unsigned divide r/m byte by 2, CL times
C0 /5 ib SHR r/m8,imm8 1/3 Unsigned divide r/m byte by 2, imm8 times
D1 /5 SHR r/m16,1 1/3 Unsigned divide r/m word by 2, once
D3 /5 SHR r/m16,CL 4 Unsigned divide r/m word by 2, CL times
C1 /5 ib SHR r/m16,imm8 1/3 Unsigned divide r/m word by 2, imm8 times
D1 /5 SHR r/m32,1 1/3 Unsigned divide r/m dword by 2, once
D3 /5 SHR r/m32,CL 4 Unsigned divide r/m dword by 2, CL times
C1 /5 ib SHR r/m32,imm8 1/3 Unsigned divide r/m dword by 2, imm8 times

NOTES:
1Not the same division as IDIV; rounding is toward negative infinity.

Operation

(* COUNT is the second parameter *)
(temp) ← COUNT;
WHILE (temp <> 0)
DO
    IF instruction is SAL or SHL
    THEN CF ← high-order bit of r/m;
    FI;
    IF instruction is SAR or SHR
    THEN CF ← low-order bit of r/m;
    FI;
    IF instruction = SAL or SHL
    THEN r/m ← r/m * 2;
    FI;
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    IF instruction = SAR
    THEN r/m ← r/m /2 (*Signed divide, rounding toward negative infinity*);
    FI;
    IF instruction = SHR
    THEN r/m ← r/m / 2; (* Unsigned divide *);
    FI;
    temp ← temp – 1;
OD;
* Determine overflow for the various instructions *)
IF COUNT = 1
THEN
    IF instruction is SAL or SHL
    THEN OF ← high-order bit of r/m <> (CF);
    FI;
    IF instruction is SAR
    THEN OF ← 0;
    FI;
    IF instruction is SHR
    THEN OF ← high-order bit of operand;
    FI;
ELSE OF ← undefined;
FI;

Description

The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The high-
order bit is shifted into the CF flag, and the low-order bit is cleared.

The SAR and SHR instructions shift the bits of the operand downward. The low-order bit is
shifted into the CF flag. The effect is to divide the operand by two. The SAR instruction
performs a signed divide with rounding toward negative infinity (not the same as the IDIV
instruction); the high-order bit remains the same. The SHR instruction performs an unsigned
divide; the high-order bit is cleared.

The shift is repeated the number of times indicated by the second operand, which is either an
immediate number or the contents of the CL register. To reduce the maximum execution
time, the Pentium processor does not allow shift counts greater than 31. If a shift count
greater than 31 is attempted, only the bottom five bits of the shift count are used. (The 8086
uses all eight bits of the shift count.)

The OF flag is affected only if the single-shift forms of the instructions are used. For left
shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the CF
flag (i.e., the top two bits of the original operand were the same); the OF flag is set if they
are different. For the SAR instruction, the OF flag is cleared for all single shifts. For the SHR
instruction, the OF flag is set to the high-order bit of the original operand.
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Flags Affected

If count = 0, the flags are not affected.

The CF flag contains the value of the last bit shifted out.  The CF flag is undefined for SHL
and SHR instructions in which the shift lengths are greater than or equal to the size of the
operand to be shifted.

The OF flag is affected for single shifts; the OF flag is undefined for multiple shifts; the CF,
ZF, PF, and SF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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SBB—Integer Subtraction with Borrow
Opcode Instruction Clocks Description

1C ib SBB AL,imm8 1 Subtract with borrow immediate byte from AL
1D iw SBB AX,imm16 1 Subtract with borrow immediate word from AX
1D id SBB EAX,imm32 1 Subtract with borrow immediate dword from EAX
80 /3 ib SBB r/m8,imm8 1/3 Subtract with borrow immediate byte from r/m byte
81 /3 iw SBB r/m16,imm16 1/3 Subtract with borrow immediate word from r/m

word
81 /3 id SBB r/m32,imm32 1/3 Subtract with borrow immediate dword from r/m

dword
83 /3 ib SBB r/m16,imm8 1/3 Subtract with borrow sign-extended immediate

byte from r/m word
83 /3 ib SBB r/m32,imm8 1/3 Subtract with borrow sign-extended immediate

byte from r/m dword
18 /r SBB r/m8,r8 1/3 Subtract with borrow byte register from r/m byte
19 /r SBB r/m16,r16 1/3 Subtract with borrow word register from r/m word
19 /r SBB r/m32,r32 1/3 Subtract with borrow dword register from r/m

dword
1A /r SBB r8,r/m8 1/2 Subtract with borrow r/m byte from byte register
1B /r SBB r16,r/m16 1/2 Subtract with borrow r/m word from word register
1B /r SBB r32,r/m32 1/2 Subtract with borrow r/m dword from dword

register

Operation

F SRC is a byte and DEST is a word or dword
THEN DEST = DEST – (SignExtend(SRC) + CF)
ELSE DEST ← DEST – (SRC + CF);

Description

The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the result
from the first operand (DEST). The result of the subtraction is assigned to the first operand
(DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the immediate value is
first sign-extended.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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SCAS/SCASB/SCASW/SCASD— Compare String Data
Opcode Instruction Clocks Description

AE SCAS m8 4 Compare bytes AL-ES:[(E)DI], update (E)DI
AF SCAS m16 4 Compare words AX-ES:[(E)DI], update (E)DI
AF SCAS m32 4 Compare dwords EAX-ES:[(E)DI], update (E)DI
AE SCASB 4 Compare bytes AL-ES:[(E)DI], update (E)DI
AF SCASW 4 Compare words AX-ES:[(E)DI], update (E)DI
AF SCASD 4 Compare dwords EAX-ES:[(E)DI], update (E)DI

Operation

IF AddressSize = 16
THEN use DI for dest-index;
ELSE (* AddressSize = 32 *) use EDI for dest-index;
FI;
IF byte type of instruction
THEN
    AL – [dest-index]; (* Compare byte in AL and dest *)
    IF DF = 0 THEN IncDec ← 1 ELSE IncDec ← –1; FI;
ELSE
    IF OperandSize = 16
    THEN
        AX – [dest-index]; (* compare word in AL and dest *)
        IF DF = 0 THEN IncDec ← 2 ELSE IncDec ← –2; FI;
    ELSE (* OperandSize = 32 *)
        EAX – [dest-index];(* compare dword in EAX and dest *)
        IF DF = 0 THEN IncDec ← 4 ELSE IncDec ← –4; FI;
    FI;
FI;
dest-index = dest-index + IncDec

Description

The SCAS instruction subtracts the memory byte or word at the destination register from the
AL, AX or EAX register. The result is discarded; only the flags are set. The operand must be
addressable from the ES segment; no segment override is possible.

If the address-size attribute for this instruction is 16 bits, the DI register is used as the
destination register; otherwise, the address-size attribute is 32 bits and the EDI register is
used.

The address of the memory data being compared is determined solely by the contents of the
destination register, not by the operand to the SCAS instruction. The operand validates ES
segment addressability and determines the data type. Load the correct index value into the DI
or EDI register before executing the SCAS instruction.

After the comparison is made, the destination register is automatically updated. If the
direction flag is 0 (the CLD instruction was executed), the destination register is
incremented; if the direction flag is 1 (the STD instruction was executed), it is decremented.
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The increments or decrements are by 1 if bytes are compared, by 2 if words are compared, or
by 4 if doublewords are compared.

The SCASB, SCASW, and SCASD instructions are synonyms for the byte, word and
doubleword SCAS instructions that don't require operands. They are simpler to code, but
provide no type or segment checking.

The SCAS instruction can be preceded by the REPE or REPNE prefix for a block search of
CX or ECX bytes or words. Refer to the REP instruction for further details.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the ES segment; #PF(fault-code)
for a page fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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SETcc—Byte Set on Condition
Opcode Instruction Clocks Description

0F 97 SETA r/m8 1/2 Set byte if above (CF=0 and ZF=0)
0F 93 SETAE r/m8 1/2 Set byte if above or equal (CF=0)
0F 92 SETB r/m8 1/2 Set byte if below (CF=1)
0F 96 SETBE r/m8 1/2 Set byte if below or equal (CF=1 or (ZF=1)
0F 92 SETC r/m8 1/2 Set if carry (CF=1)
0F 94 SETE r/m8 1/2 Set byte if equal (ZF=1)
0F 9F SETG r/m8 1/2 Set byte if greater (ZF=0 and SF=OF)
0F 9D SETGE r/m8 1/2 Set byte if greater or equal (SF=OF)
0F 9C SETL r/m8 1/2 Set byte if less (SF<>OF)
0F 9E SETLE r/m8 1/2 Set byte if less or equal (ZF=1 or SF<>OF)
0F 96 SETNA r/m8 1/2 Set byte if not above (CF=1 or ZF=1)
0F 92 SETNAE r/m8 1/2 Set byte if not above or equal (CF=1)
0F 93 SETNB r/m8 1/2 Set byte if not below (CF=0)
0F 97 SETNBE r/m8 1/2 Set byte if not below or equal (CF=0 and ZF=0)
0F 93 SETNC r/m8 1/2 Set byte if not carry (CF=0)
0F 95 SETNE r/m8 1/2 Set byte if not equal (ZF=0)
0F 9E SETNG r/m8 1/2 Set byte if not greater (ZF=1 or SF<>OF)
0F 9C SETNGE r/m8 1/2 Set if not greater or equal (SF<>OF)
0F 9D SETNL r/m8 1/2 Set byte if not less (SF=OF)
0F 9F SETNLE r/m8 1/2 Set byte if not less or equal (ZF=0 and SF=OF)
0F 91 SETNO r/m8 1/2 Set byte if not overflow (OF=0)
0F 9B SETNP r/m8 1/2 Set byte if not parity (PF=0)
0F 99 SETNS r/m8 1/2 Set byte if not sign (SF=0)
0F 95 SETNZ r/m8 1/2 Set byte if not zero (ZF=0)
0F 90 SETO r/m8 1/2 Set byte if overflow (OF=1)
0F 9A SETP r/m8 1/2 Set byte if parity (PF=1)
0F 9A SETPE r/m8 1/2 Set byte if parity even (PF=1)
0F 9B SETPO r/m8 1/2 Set byte if parity odd (PF=0)
0F 98 SETS r/m8 1/2 Set byte if sign (SF=1)
0F 94 SETZ r/m8 1/2 Set byte if zero (ZF=1)

Operation

IF condition THEN r/m8 ← 1 ELSE r/m8 ← 0; FI;

Description

The SETcc instruction stores a 1 byte at the destination specified by the effective address or
register if the condition is met, or a 0 byte if the condition is not met.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a non-writable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.
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Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.
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SGDT/SIDT—Store Global/Interrupt Descriptor Table Register
Opcode Instruction Clocks Description

0F 01 /0 SGDT m 4 Store GDTR to m
0F 01 /1 SIDT m 4 Store IDTR to m

Operation

DEST ← 48-bit BASE/LIMIT register contents;

Description

The SGDT and SIDT instructions copy the contents of the descriptor table register to the six
bytes of memory indicated by the operand. The LIMIT field of the register is assigned to the
first word at the effective address. If the operand-size attribute is 16 bits, the next three bytes
are assigned the BASE field of the register, and the fourth byte is undefined. Otherwise, if
the operand-size attribute is 32 bits, the next four bytes are assigned the 32-bit BASE field of
the register.

The SGDT and SIDT instructions are used only in operating system software; they are not
used in application programs.

Flags Affected

None.

Protected Mode Exceptions

Interrupt 6 if the destination operand is a register; #GP(0) if the destination is in a
nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
a page fault; #AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the operand
would lie outside of the effective address space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Compatibility Note

The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286
processor, if the value in the upper eight bits is not referenced. The Intel 286 processor stores
1's in these upper bits, whereas the 32-bit processors store 0's if the operand-size attribute is
16 bits. These bits were specified as undefined by the SGDT and SIDT instructions in the
80286 Programming Reference Manual (Order No. 210498).
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SHL/SHR—Shift Instructions
See entry for SAL/SAR/SHL/SHR.



EE INSTRUCTION SET

25-289

SHLD—Double Precision Shift Left
Opcode Instruction Clocks Description

0F A4 SHLD r/m16,r16,imm8 4 r/m16 gets SHL of r/m16 concatenated with r16
0F A4 SHLD r/m32,r32,imm8 4 r/m32 gets SHL of r/m32 concatenated with r32
0F A5 SHLD r/m16,r16,CL 4/5 r/m16 gets SHL of r/m16 concatenated with r16
0F A5 SHLD r/m32,r32,CL 4/5 r/m32 gets SHL of r/m32 concatenated with r32

Operation

(* count is an unsigned integer corresponding to the last operand of the instruction, either an
immediate byte or the byte in register CL *)
ShiftAmt ← count MOD 32;
inBits ← register; (* Allow overlapped operands *)
IF ShiftAmt = 0
THEN no operation
ELSE
    IF ShiftAmt ≥ OperandSize
    THEN (* Bad parameters *)
        r/m ← UNDEFINED;
        CF, OF, SF, ZF, AF, PF ← UNDEFINED;
    ELSE (* Perform the shift *)
        CF ← BIT[Base, OperandSize – ShiftAmt];
            (* Last bit shifted out on exit *)
        FOR i ← OperandSize – 1 DOWNTO ShiftAmt
        DO
            BIT[Base, i] ← BIT[Base, i – ShiftAmt];
        OF;
        FOR i ← ShiftAmt – 1 DOWNTO 0
        DO
            BIT[Base, i] ← BIT[inBits, i – ShiftAmt + OperandSize];
        OD;
        Set SF, ZF, PF (r/m);
            (* SF, ZF, PF are set according to the value of the result *)
        AF ← UNDEFINED;
    FI;
FI;

Description

The SHLD instruction shifts the first operand provided by the r/m  field to the left as many
bits as specified by the count operand. The second operand (r16 or r32) provides the bits to
shift in from the right (starting with bit 0). The result is stored back into the r/m  operand. The
register remains unaltered.
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The count operand is provided by either an immediate byte or the contents of the CL register.
These operands are taken MODULO 32 to provide a number between 0 and 31 by which to
shift. Because the bits to shift are provided by the specified registers, the operation is useful
for multiprecision shifts (64 bits or more). The SF, ZF and PF flags are set according to the
value of the result. The CF flag is set to the value of the last bit shifted out. The OF and AF
flags are left undefined.

Flags Affected

If count = 0, the flags are not affected.

The SF, ZF, and PF, flags are set according to the result; the CF flag is set to the value of the
last bit shifted out; after a shift of one bit position, the OF flag is set if a sign change
occurred, otherwise it is cleared; after a shift of more than one bit position, the OF flag is
undefined; the AF flag is undefined, except for a shift count of zero, which does not affect
any flags.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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SHRD—Double Precision Shift Right
Opcode Instruction Clocks Description

0F AC SHRD r/m16,r16,imm8 4 r/m16 gets SHR of r/m16 concatenated with r16
0F AC SHRD r/m32,r32,imm8 4 r/m32 gets SHR of r/m32 concatenated with r32
0F AD SHRD r/m16,r16,CL 4/5 r/m16 gets SHR of r/m16 concatenated with r16
0F AD SHRD r/m32,r32,CL 4/5 r/m32 gets SHR of r/m32 concatenated with r32

Operation

(* count is an unsigned integer corresponding to the last operand of the instruction, either an
immediate byte or the byte in register CL *)
ShiftAmt ← count MOD 32;
inBits ← register; (* Allow overlapped operands *)
IF ShiftAmt = 0
THEN no operation
ELSE
    IF ShiftAmt ≥ OperandSize
    THEN (* Bad parameters *)
        r/m ← UNDEFINED;
        CF, OF, SF, ZF, AF, PF ← UNDEFINED;
    ELSE (* Perform the shift *)
        CF ← BIT[r/m, ShiftAmt – 1]; (* last bit shifted out on exit *)
        FOR i ← 0 TO OperandSize – 1 – ShiftAmt
        DO
            BIT[r/m, i] ← BIT[r/m, i – ShiftAmt];
        OD;
        FOR i ← OperandSize – ShiftAmt TO OperandSize–1
        DO
            BIT[r/m,i] ← BIT[inBits,i+ShiftAmt – OperandSize];
        OD;
            (* SF, ZF, PF are set according to the value of the result *)
        Set SF, ZF, PF (r/m);
        AF ←UNDEFINED;
    FI;
FI;

Description

The SHRD instruction shifts the first operand provided by the r/m field to the right as many
bits as specified by the count operand. The second operand (r16 or r32) provides the bits to
shift in from the left (starting with bit 31). The result is stored back into the r/m operand. The
register remains unaltered.

The count operand is provided by either an immediate byte or the contents of the CL register.
These operands are taken MODULO 32 to provide a number between 0 and 31 by which to
shift. Because the bits to shift are provided by the specified register, the operation is useful
for multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set according to the
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value of the result. The CF flag is set to the value of the last bit shifted out. The OF and AF
flags are left undefined.

Flags Affected

If count = 0, the flags are not affected.

The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value of the
last bit shifted out; after a shift of one bit position, the OF flag is set if a sign change
occurred, otherwise it is cleared; after a shift of more than one bit position, the OF flag is
undefined; the AF flag is undefined, except for a shift count of zero, which does not affect
any flags.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3.
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SIDT—Store Interrupt Descriptor Table Register
See entry for SGDT/SIDT.
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SLDT—Store Local Descriptor Table Register
Opcode Instruction Clocks Description

0F 00 /0 SLDT r/m16 2 Store LDTR to EA word
0F 00 /0 SLDT r/m32 2 Store LDTR to low 16 bits of r/m32

High 16 bits are undefined

Operation

r/m16 ← LDTR;

Description

The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two-byte
register or memory location indicated by the effective address operand. This register is a
selector that points into the Global Descriptor Table.

The SLDT instruction is used only in operating system software. It is not used in application
programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the SLDT instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode (because the instruction is not recognized, it will
not execute or perform a memory reference).

Notes

When the destination is a 32-bit register, the 16-bit source operand is copied into the lower
16 bits of the destination register, and the upper 16 bits of the register are undefined.  With a
16-bit register operand, only the lower 16 bits of the destination are affected (the upper 16
bits remain unchanged). With a memory operand, the source is written to memory as a 16-bit
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quantity, regardless of operand size. As a result, 32-bit software should always treat the
destination as 16-bits and mask bits 16-31, if necessary.
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SMSW—Store Machine Status Word
Opcode Instruction Clocks Description

0F 01 /4 SMSW r/m16 4 Store machine status word to EA word

Operation

r/m16 ← MSW;

Description

The SMSW instruction stores the machine status word (part of the CR0 register) in the two-
byte register or memory location indicated by the effective address operand.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

This instruction is provided for compatibility with the Intel 286 processor; programs for the
Pentium processor should use the MOV ..., CR0 instruction.

When the destination is a 32-bit register, the 16-bit source operand is copied into the lower
16 bits of the destination register, and the upper 16 bits of the register are undefined. With a
16-bit register operand, only the lower 16 bits of the destination are affected (the upper 16
bits remain unchanged). With a memory operand, the source is written to memory as a 16-bit
quantity, regardless of operand size. As a result, 32-bit software should always treat the
destination as 16-bits and mask bits 16-31, if necessary.
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STC—Set Carry Flag
Opcode Instruction Clocks Description

F9 STC 2 Set carry flag

Operation

CF ← 1;

Description

The STC instruction sets the CF flag.

Flags Affected

The CF flag is set.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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STD—Set Direction Flag
Opcode Instruction Clocks Description

FD STD 2 Set direction flag so (E)SI and/or (E)DI decrement

Operation

DF ← 1;

Description

The STD instruction sets the direction flag, causing all subsequent string operations to
decrement the index registers, (E)SI and/or (E)DI, on which they operate.

Flags Affected

The DF flag is set.

Protected Mode Exceptions

None.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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STI—Set Interrupt Flag
Opcode Instruction Clocks Description

FB STI 7 Set interrupt flag; interrupts enabled at the end of
the next instruction

Operation

IF PE=0  (* Executing in real-address mode *)
THEN

IF ← 1;  (* Set Interrupt Flag *)
ELSE  (* Executing in protected mode or virtual-8086 mode *)

IF VM=0  (* Executing in protected mode*)
THEN

IF IOPL=3
THEN IF ← 1;  (* Set Interrupt Flag *)
ELSE IF  CPL ≤IOPL

THEN IF ← 1;
   ELSE #GP(0);

FI;
FI;

ELSE  (* Executing in Virtual-8086 mode *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;
FI;

Decision Table

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table.

PE = 0 1 1 1

VM = – 0 0 1

CPL – ≤ IOPL > IOPL =3

IOPL – – – =3

IF ←← 1 Y Y Y

#GP(0) Y

NOTES:

– Don't care

Blank Action not taken

Y Action in Column 1 taken
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Description

The STI instruction sets the IF.  The processor then responds to external interrupts after
executing the next instruction if the next instruction allows the IF flag to remain enabled. If
external interrupts are disabled and the STI instruction is followed by the RET instruction
(such as at the end of a subroutine), the RET instruction is allowed to execute before external
interrupts are recognized. Also, if external interrupts are disabled and  the STI instruction is
followed by a CLI instruction which clears the IF flag, then external interrupts are not
recognized because the CLI instruction clears the IF flag during its execution.

Flags Affected

The IF flag is set.

Protected Mode Exceptions

#GP(0) if the current privilege level is greater (has less privilege) than the I/O privilege level.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) as for protected mode.

Notes

In case of an NMI, trap, or fault following STI the interrupt will be taken before executing
the next sequential instruction in the code.

For information on this instruction when using virtual mode extensions, see Appendix H.
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STOS/STOSB/STOSW/STOSD—Store String Data
Opcode Instruction Clocks Description

AA STOS m8 3 Store AL in byte ES:[(E)DI], update (E)DI
AB STOS m16 3 Store AX in word ES:[(E)DI], update (E)DI
AB STOS m32 3 Store EAX in dword ES:[(E)DI], update (E)DI
AA STOSB 3 Store AL in byte ES:[(E)DI], update (E)DI
AB STOSW 3 Store AX in word ES:[(E)DI], update (E)DI
AB STOSD 3 Store EAX in dword ES:[(E)DI], update (E)DI

Operation

IF AddressSize = 16
THEN use ES:DI for DestReg
ELSE (* AddressSize = 32 *) use ES:EDI for DestReg;
FI;
IF byte type of instruction
THEN
    (ES:DestReg) ← AL;
    IF DF = 0
    THEN DestReg ← DestReg + 1;
    ELSE DestReg ← DestReg – 1;
    FI;
ELSE IF OperandSize = 16
    THEN
        (ES:DestReg) ← AX;
        IF DF = 0
        THEN DestReg ← DestReg + 2;
        ELSE DestReg ← DestReg – 2;
        FI;
    ELSE (* OperandSize = 32 *)
        (ES:DestReg) ← EAX;
        IF DF = 0
        THEN DestReg ← DestReg + 4;
        ELSE DestReg ← DestReg – 4;
        FI;
    FI;
FI;

Description

The STOS instruction transfers the contents of the AL, AX, or EAX register to the memory
byte or word given by the destination register relative to the ES segment. The destination
register is the DI register for an address-size attribute of 16 bits or the EDI register for an
address-size attribute of 32 bits.

The destination operand must be addressable from the ES register. A segment override is not
possible.



INSTRUCTION SET EE

25-302

The address of the destination is determined by the contents of the destination register, not by
the explicit operand of the STOS instruction. This operand is used only to validate ES
segment addressability and to determine the data type. Load the correct index value into the
destination register before executing the STOS instruction.

After the transfer is made, the (E)DI register is automatically updated. If the DF flag is 0 (the
CLD instruction was executed), the (E)DI register is incremented; if the DF flag is 1 (the
STD instruction was executed), the (E)DI register is decremented. The (E)DI register is
incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a
doubleword is stored.

The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and
doubleword STOS instructions, that do not require an operand. They are simpler to use, but
provide no type or segment checking.

The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX
bytes, words, or doublewords. Refer to the REP instruction for further details.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the ES segment; #PF(fault-code) for a page fault; #AC for unaligned
memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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STR—Store Task Register
Opcode Instruction Clocks Description

0F 00 /1 STR r/m16 2 Store task register to EA word

Operation

r/m ← task register;

Description

The contents of the task register are copied to the two-byte register or memory location
indicated by the effective address operand.

The STR instruction is used only in operating system software. It is not used in application
programs.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the STR instruction is not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

Notes

When the destination is a 32-bit register, the 16-bit source operand is copied into the lower
16 bits of the destination register, and the upper 16 bits of the register are undefined.  With a
16-bit register operand, only the lower 16 bits of the destination are affected (the upper 16
bits remain unchanged). With a memory operand, the source is written to memory as a 16-bit
quantity, regardless of operand size. As a result, 32-bit software should always treat the
destination as 16-bits and mask bits 16-31, if necessary.
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SUB—Integer Subtraction
Opcode Instruction Clocks Description

2C ib SUB AL,imm8 1 Subtract immediate byte from AL
2D iw SUB AX,imm16 1 Subtract immediate word from AX
2D id SUB EAX,imm32 1 Subtract immediate dword from EAX
80 /5 ib SUB r/m8,imm8 1/3 Subtract immediate byte from r/m byte
81 /5 iw SUB r/m16,imm16 1/3 Subtract immediate word from r/m word
81 /5 id SUB r/m32,imm32 1/3 Subtract immediate dword from r/m dword
83 /5 ib SUB r/m16,imm8 1/3 Subtract sign-extended immediate byte from r/m

word
83 /5 ib SUB r/m32,imm8 1/3 Subtract sign-extended immediate byte from r/m

dword
28 /r SUB r/m8,r8 1/3 Subtract byte register from r/m byte
29 /r SUB r/m16,r16 1/3 Subtract word register from r/m word
29 /r SUB r/m32,r32 1/3 Subtract dword register from r/m dword
2A /r SUB r8,r/m8 1/2 Subtract r/m byte from byte register
2B /r SUB r16,r/m16 1/2 Subtract r/m word from word register
2B /r SUB r32,r/m32 1/2 Subtract r/m dword from dword register

Operation

IF SRC is a byte and DEST is a word or dword
THEN DEST = DEST – SignExtend(SRC);
ELSE DEST ← DEST – SRC;
FI;

Description

The SUB instruction subtracts the second operand (SRC) from the first operand (DEST). The
first operand is assigned the result of the subtraction, and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the immediate value is
first sign-extended to the size of the destination operand.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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TEST—Logical Compare
Opcode Instruction Clocks Description

A8  ib TEST AL,imm8 1 AND immediate byte with AL
A9 iw TEST AX,imm16 1 AND immediate word with AX
A9 id TEST EAX,imm32 1 AND immediate dword with EAX
F6 /0 ib TEST r/m8,imm8 1/2 AND immediate byte with r/m byte
F7 /0 iw TEST r/m16,imm16 1/2 AND immediate word with r/m word
F7 /0 id TEST r/m32,imm32 1/2 AND immediate dword with r/m dword
84 /r TEST r/m8,r8 1/2 AND byte register with r/m byte
85 /r TEST r/m16,r16 1/2 AND word register with r/m word
85 /r TEST r/m32,r32 1/2 AND dword register with r/m dword

Operation

DEST : = LeftSRC AND RightSRC;
CF ← 0;
OF ← 0;

Description

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit of the
result is 1 if both of the corresponding bits of the operands are 1; otherwise, each bit is 0. The
result of the operation is discarded and only the flags are modified.

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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VERR, VERW—Verify a Segment for Reading or Writing
Opcode Instruction Clocks Description

0F 00 /4 VERR r/m16 7 Set ZF=1 if segment can be read, selector in
r/m16

0F 00 /5 VERW r/m16 7 Set ZF=1 if segment can be written, selector in
r/m16

Operation

IF segment with selector at (r/m) is accessible
    with current protection level
    AND ((segment is readable for VERR) OR
        (segment is writable for VERW))
THEN ZF ← 1;
ELSE ZF ← 0;
FI;

Description

The two-byte register or memory operand of the VERR and VERW instructions contains the
value of a selector. The VERR and VERW instructions determine whether the segment
denoted by the selector is reachable from the current privilege level and whether the segment
is readable (VERR) or writable (VERW). If the segment is accessible, the ZF flag is set; if
the segment is not accessible, the ZF flag is cleared. To set the ZF flag, the following
conditions must be met:

• The selector must denote a descriptor within the bounds of the table (GDT or LDT); the
selector must be "defined."

• The selector must denote the descriptor of a code or data segment (not that of a task state
segment, LDT, or a gate).

• For the VERR instruction, the segment must be readable. For the VERW instruction, the
segment must be a writable data segment.

• If the code segment is readable and conforming, the descriptor privilege level (DPL) can
be any value for the VERR instruction. Otherwise, the DPL must be greater than or equal
to (have less or the same privilege as) both the current privilege level and the selector's
RPL.

The validation performed is the same as if the segment were loaded into the DS, ES, FS, or
GS register, and the indicated access (read or write) were performed. The ZF flag receives
the result of the validation. The selector's value cannot result in a protection exception,
enabling the software to anticipate possible segment access problems.

Flags Affected

The ZF flag is set if the segment is accessible, cleared if it is not.
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Protected Mode Exceptions

Faults generated by illegal addressing of the memory operand that contains the selector; the
selector is not loaded into any segment register, and no faults attributable to the selector
operand are generated.

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 6; the VERR and VERW instructions are not recognized in Real Address Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3.
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WAIT—Wait
Opcode Instruction Clocks Description

9B WAIT 1 Causes processor to check for
numeric exceptions.

Description

WAIT causes the processor to check for pending unmasked numeric exceptions before
proceding.

Flags Affected

None.

Protected Mode Exceptions

#NM if both MP and TS in CR0 are set.

Real Address Mode Exceptions

Interrupt 7 if both MP and TS in CR0 are set.

Virtual 8086 Mode Exceptions

#NM if both MP and TS in CR0 are set.

Notes

Coding WAIT after an ESC instruction ensures that any unmasked floating-point exceptions
the instruction may cause are handled before the processor has a chance to modify the
instruction’s results.

FWAIT is an alternate mnemonic for WAIT.

Information about when to use WAIT (FWAIT) is given in Chapter 6, in the section on
"Concurrent Processing."
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WBINVD—Write-Back and Invalidate Cache
Opcode Instruction Clocks Description

0F 09 WBINVD 2000+ Write-Back and Invalidate Entire Cache

Operation

FLUSH INTERNAL CACHE
SIGNAL EXTERNAL CACHE TO WRITE-BACK
SIGNAL EXTERNAL CACHE TO FLUSH

Description

The internal cache is flushed, and a special-function bus cycle is issued which indicates that
external cache should write-back its contents to main memory. Another special-function bus
cycle follows, directing the external cache to flush itself.

Flags Affected

None.

Protected Mode Exceptions

The WBINVD instruction is a privileged instruction; #GP(0) if the current privilege level is
not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0); the WBINVD instruction is a privileged instruction.

Notes

INVD should be used with care. It does not writeback modified cache lines; therefore, it can
cause the data cache to become inconsistent with other memories in the system.  Unless there
is a specific requirement or benefit to invalidate a cache without writing back the modified
lines (i.e., testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

This instruction is implementation-dependent; its function may be implemented differently
on future Intel processors.

It is the responsibility of hardware to respond to the external cache write-back and flush
indications.
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This instruction is not supported on Intel386 processors. See Chapter 16 for detecting
processor type at runtime. See Chapter 18 on disabling the cache.
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WRMSR—Write to Model Specific Register
Opcode Instruction Clocks Description

0F 30 WRMSR 30-45 Write the value in EDX:EAX to Model Specific
Register indicated by ECX

Operation

MSR[ECX] ← EDX:EAX;

Description

The value in ECX specifies one of the 64-bit Model Specific Registers of the Pentium
processor.  The contents of EDX:EAX is copied into that Model-Specific Register. The high-
order 32 bits are copied from EDX and the low-order 32 bits are copied from EAX.

The following values are used to select model specific registers on the Pentium processor:

Value (in Hex)
Register Name Description

00H Machine Check Address Stores address of cycle causing the exception

01H Machine Check Type Stores cycle type of cycle causing the exception

For other values used to perform cache, TLB, and BTB testing and performance monitoring,
see Pentium® Processor User’s Manual Chapter 33.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if either the current privilege level is not 0 or the value in ECX does not specify a
Model-Specific Register that is implemented in the Pentium processor.

Real Address Mode Exceptions

#GP(0) if the value in ECX does not specify a Model-Specific Register that is implemented
in the Pentium processor.  No error code is pushed.

Virtual 8086 Mode Exceptions

#GP(0) if instruction execution is attempted.
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Notes

Always set undefined or reserved bits to the value previously read.

The CPUID instruction should be used to determine whether the Pentium processor-
style model specific registers are supported (ADX[5]=1) before using this instruction.  A
general protection exception will occur if this feature is not supported.

WRMSR is used to write the content of Model-Specific Registers that control functions for
testability, execution tracing, performance monitoring, and machine check errors. Refer to
the Pentium™ Processor Data Book for more information.

The values 3H, 0FH, and values above 13H are reserved.  Do not execute WRMSR with
reserved values in ECX.
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XADD—Exchange and Add
Opcode Instruction Clocks Description

0F C0/r XADD r/m8,r8 3/4 Exchange byte register and r/m byte; load sum
into r/m byte.

0F C1/r XADD r/m16,r16 3/4 Exchange word register and r/m word; load sum
into r/m word.

0F C1/r XADD r/m32,r32 3/4 Exchange dword register and r/m dword; load sum
into r/m dword.

Operation

TEMP ← SRC + DEST
SRC ← DEST
DEST ← TEMP

Description

The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the
original value of SRC into DEST.

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are affected as if an ADD instruction had been
executed.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for
unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to
0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Notes

This instruction can be used with a LOCK prefix. The Intel386 DX microprocessor does not
implement this instruction. If this instruction is used, you should provide an equivalent code
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sequence that runs on an Intel386 DX processor as well. See Section Chapter 9 for detecting
a Pentium processor at run time.
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XCHG—Exchange Register/Memory with Register
Opcode Instruction Clocks Description

90+rw XCHG AX,r16 2 Exchange word register with AX
90+rw XCHG r16,AX 2 Exchange word register with AX
90+rd XCHG EAX,r32 2 Exchange dword register with EAX
90+rd XCHG r32,EAX 2 Exchange dword register with EAX
86 /r XCHG r/m8,r8 3 Exchange byte register with EA byte
86 /r XCHG r8,r/m8 3 Exchange byte register with EA byte
87 /r XCHG r/m16,r16 3 Exchange word register with EA word
87 /r XCHG r16,r/m16 3 Exchange word register with EA word
87 /r XCHG r/m32,r32 3 Exchange dword register with EA dword
87 /r XCHG r32,r/m32 3 Exchange dword register with EA dword

Operation

temp ← DEST
DEST ← SRC
SRC ← temp

Description

The XCHG instruction exchanges two operands. The operands can be in either order. If a
memory operand is involved, the LOCK# signal is asserted for the duration of the exchange,
regardless of the presence or absence of the LOCK prefix or of the value of the IOPL.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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Note

XCHG can be used for BSWAP for 16-bit data.
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XLAT/XLATB— Table Look-up Translation
Opcode Instruction Clocks Description

D7 XLAT m8 4 Set AL to memory byte DS:[(E)BX + unsigned AL]
D7 XLATB 4 Set AL to memory byte DS:[(E)BX + unsigned AL]

Operation

IF AddressSize = 16
THEN
    AL ← (BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)
    AL ← (EBX + ZeroExtend(AL));
FI;

Description

The XLAT instruction changes the AL register from the table index to the table entry. The
AL register should be the unsigned index into a table addressed by the DS:BX register pair
(for an address-size attribute of 16 bits) or the DS:EBX register pair (for an address-size
attribute of 32 bits).

The operand to the XLAT instruction allows for the possibility of a segment override. The
XLAT instruction uses the contents of the BX register even if they differ from the offset of
the operand. The offset of the operand should have been moved into the BX or EBX register
with a previous instruction.

The no-operand form, the XLATB instruction, can be used if the BX or EBX table will
always reside in the DS segment.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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XOR—Logical Exclusive OR
Opcode Instruction Clocks Description

34 ib XOR AL,imm8 1 Exclusive-OR immediate byte to AL
35 iw XOR AX,imm16 1 Exclusive-OR immediate word to AX
35 id XOR EAX,imm32 1 Exclusive-OR immediate dword to EAX
80 /6 ib XOR r/m8,imm8 1/3 Exclusive-OR immediate byte to r/m byte
81 /6 iw XOR r/m16,imm16 1/3 Exclusive-OR immediate word to r/m word
81 /6 id XOR r/m32,imm32 1/3 Exclusive-OR immediate dword to r/m dword
83 /6 ib XOR r/m16,imm8 1/3 XOR sign-extended immediate byte with r/m word
83 /6 ib XOR r/m32,imm8 1/3 XOR sign-extended immediate byte with r/m

dword
30 /r XOR r/m8,r8 1/3 Exclusive-OR byte register to r/m byte
31 /r XOR r/m16,r16 1/3 Exclusive-OR word register to r/m word
31 /r XOR r/m32,r32 1/3 Exclusive-OR dword register to r/m dword
32 /r XOR r8,r/m8 1/2 Exclusive-OR byte register to r/m byte
33 /r XOR r16,r/m16 1/2 Exclusive-OR word register to r/m word
33 /r XOR r32,r/m32 1/2 Exclusive-OR dword register to r/m dword

Operation

DEST ← LeftSRC XOR RightSRC
CF ← 0
OF ← 0

Description

The XOR instruction computes the exclusive OR of the two operands. Each bit of the result
is 1 if the corresponding bits of the operands are different; each bit is 0 if the corresponding
bits are the same. The answer replaces the first operand.

Flags Affected

The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the result; the
AF flag is undefined.

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space from 0
to 0FFFFH.
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Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.
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APPENDIX A
OPCODE MAP

The opcode tables in this section aid in interpreting Pentium processor object code.  Use the
high-order four bits of the opcode as an index to a row of the opcode table; use the low-order
four bits as an index to a column of the table. If the opcode is 0FH, refer to the two-byte
opcode table and use the second byte of the opcode to index the rows and columns of that
table.

All blanks in the OPCODE map are reserved and should not be used. Do not depend on
the operation of unspecified OPCODEs. 0F0Bh or 0FB9h should be used when
deliberately generating an illegal opcode exception.

The  escape opcode tables for floating-point instructions identify the high-order eight bits of
the opcode at the top of each page.  If the accompanying modR/M byte is in the range
00h-BFh, bits 3 through 5 identified along the top row of the third table on each page, along
with the REG bits of the modR/M, determine the opcode.  ModR/M bytes outside the range
00h-BFh are mapped by the bottom two tables on each page.

A.1. KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, an
uppercase letter, specifies the addressing method; the second character, a lowercase letter,
specifies the type of operand.

A.2. CODES FOR ADDRESSING METHOD

A Direct address; the instruction has no modR/M byte; the address of the operand is
encoded in the instruction; no base register, index register, or scaling factor can be
applied; e.g., far JMP (EA).

C The reg field of the modR/M byte selects a control register; e.g., MOV (0F20, 0F22).

D The reg field of the modR/M byte selects a debug register; e.g., MOV (0F21,0F23).

E A modR/M byte follows the opcode and specifies the operand. The operand is either a
general register or a memory address. If it is a memory address, the address is computed
from a segment register and any of the following values: a base register, an index register,
a scaling factor, a displacement.

F Flags Register.

G The reg field of the modR/M byte selects a general register; e.g., AX (000).

I Immediate data. The value of the operand is encoded in subsequent bytes of the
instruction.
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J The instruction contains a relative offset to be added to the instruction pointer register;
e.g., JMP short, LOOP.

M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS, LGS,
CMPXCHG8B.

O The instruction has no modR/M byte; the offset of the operand is coded as a word or
double word (depending on address size attribute) in the instruction. No base register,
index register, or scaling factor can be applied; e.g., MOV (A0–A3).

R The mod field of the modR/M byte may refer only to a general register; e.g., MOV
(0F20-0F24, 0F26).

S The reg field of the modR/M byte selects a segment register; e.g., MOV (8C,8E).

T The reg field of the modR/M byte selects a test register; e.g., MOV (0F24,0F26).

X Memory addressed by the DS:SI register pair; e.g., MOVS, CMPS, OUTS, LODS.

Y Memory addressed by the ES:DI register pair; e.g., MOVS, CMPS, INS, STOS, SCAS.

A.3. CODES FOR OPERAND TYPE

a Two one-word operands in memory or two double-word operands in memory, depending
on operand size attribute (used only by BOUND).

b Byte (regardless of operand size attribute).

c Byte or word, depending on operand size attribute.

d Double word (regardless of operand size attribute).

p Thirty-two bit or 48-bit pointer, depending on operand size attribute.

q Quad word (regardless of operand size attribute).

s Six-byte pseudo-descriptor.

v Word or double word, depending on operand size attribute.

w Word (regardless of operand size attribute).

A.4. REGISTER CODES
When an operand is a specific register encoded in the opcode, the register is identified by its
name; e.g., AX, CL, or ESI. The name of the register indicates whether the register is 32-,
16-, or 8-bits wide. A register identifier of the form eXX is used when the width of the
register depends on the operand size attribute; for example, eAX indicates that the AX
register is used when the operand size attribute is 16 and the EAX register is used when the
operand size attribute is 32.



EE OPCODE MAP

A-3

A.5. OPCODE LOOK-UP EXAMPLES
This section provides several examples to demonstrate how the following opcode maps are
used.  See Chapter 25 for detailed information on the modR/M byte, register values and the
various addressing forms.

A.5.1. One-Byte Opcode Integer Instructions
Given the hexadecimal opcode, the instruction and its operands can be determined:

Opcode:  030500000000H
LSB address MSB address

03 05 00 00 00 00

Looking at the one-byte opcode map, the first digit (0) of the opcode indicates the row and
the second digit (3) indicates the column.  The instruction located at row 0, column 3 is an
ADD instruction using the operand types Gv, Ev.  The first operand of type Gv indicates a
general register that is a word or doubleword depending on the operand size attribute. The
second operand (Ev) indicates that a modR/M byte follows specifying whether the operand is
a word or doubleword general register or a memory address. The modR/M byte for this
instruction is 05H indicating (see Chapter 25) that a 32-bit displacement follows
(00000000H). The reg/opcode portion of the modR/M byte (bits 3-5) is 000 indicating the
EAX register. Thus, it can be determined that the instruction for this opcode is ADD EAX,
mem_op and the offset of mem_op is 00000000H.

A.5.2. Two-Byte Opcode Integer Instructions
Instructions that begin with 0FH can be found in the two-byte opcode map. The second
opcode byte is then used to reference a particular row and column.  For example, the opcode
0FA4050000000003H, is located on the first page of the two-byte opcode map in row A,
column 4.  This indicates a SHLD instruction with the operands EvGvIb. These operands are
defined as follows:

Ev = modR/M byte follows opcode to specify word or doubleword operand

Gv = reg field of modR/M byte selects a general register

Ib = immediate data encoded in subsequent byte of instruction.

The third byte is the modR/M byte (05H).  The mod and opcode/reg fields indicate that a
32-bit displacement follows and the EAX register is the source (see Chapter 25 for
information on the modR/M byte).

The next part of the opcode is the 32-bit displacement for the destination memory operand
(00000000H) and finally the immediate byte representing the count of the  shift (03H).

By this breakdown, it has been shown that this opcode represents the instruction:

SHLD DS:00000000H, EAX, 3



OPCODE MAP EE

A-4

A.5.3. Escape Opcodes
The escape opcode maps are slightly different than the integer opcode maps.  For instructions
that have a modR/M byte in the range of 00H-BFH, bits 3-5 of the modR/M byte are used to
determine the opcode.  ModR/M bytes outside the range 00H-BFH are mapped by the tables
at the bottom of each page.

A.5.3.1. OPCODES WITH MODR/M BYTES IN THE 00H-BFH RANGE

The opcode DD0504000000 can be interpreted as follows. This instruction can be located on
the page indicating DD as the first byte.  Since the modR/M byte is in the 00H-BFH range
(05H or 00000101B), bits 3-5 (000) of this byte indicate the opcode to be an FLD double-real
instruction. The double-real to be loaded is at 00000004H which is the following 32-bit
displacement in this opcode.

A.5.3.2. OPCODES WITH MODR/M BYTES OUTSIDE THE 00H-BFH RANGE

Since the opcode of D8C1 has a modR/M byte outside the range 00H-BFH, the bottom two
tables are used to determine this escape instruction on the page with D8 as the first byte.  C1
indicates row C, column 1 which is an FADD instruction using ST, ST(1) as the operands.
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One-Byte Opcode Map

0 1 2 3 4 5 6 7

0 ADD PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv ES ES

1 ADC PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv SS SS

2 AND SEG DAA

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =ES

3 XOR SEG AAA

Eb,Gb Ev,Gv Gb,Eb Gb,Ev AL,Ib eAX,Iv =SS

4 INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSHA POPA BOUND ARPL SEG SEG Operand Address

PUSHAD POPAD Gv,Ma Ew,Gw =FS =GS Size Size

7 Short-displacement jump on condition (Jb)

JO JNO JB/JNAE/J
C

JNB/JAE/J
NC

JZ JNZ JBE JNBE

8 Immediate Grpl Immediate Grpl Grpl TEST XCHG

Eb,Ib Ev,Iv Ev,Ib Eb,lb Eb,Gb Ev,Gv Eb,Gb Ev,Gv

9 NOP XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

A MOV MOVSB MOVSW CMPSB CMPSW

AL,Ob eAX,Ov Ob,AL Ov,eAX Xb,Yb Xv,Yv Xb,Yb Xv,Yv

B MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

C Shift Grp2a RET near LES LDS MOV

Eb,Ib Ev,Ib Iw Gv,Mp Gv,Mp Eb,Ib Ev,Iv

D Shift Grp2 AAM AAD XLAT

Eb,1 Ev,1 Eb,CL Ev,CL

E LOOPN LOOPE LOOP JCXZ/JEC
XZ

IN OUT

Jb Jb Jb Jb AL,Ib eAX,Ib Ib,AL Ib,eAX

F LOCK REPNE REP HLT CMC Unary Grp3

REPE Eb Ev
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One-Byte Opcode Map

8 9 A B C D E F

0 OR PUSH 2-byte

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv CS escape

1 SBB PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv DS DS

2 SUB SEG DAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =CS

3 CMP SEG AAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =DS

4 DEC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 POP into general register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D

lv Gv,Ev,lv lb Gv,Ev,lb Yb,DX Yv,DX      Dx,Xb DX,Xv

7 Short-displacement jump on condition (Jb)

JS JNS JP JNP JL JNL JLE JNLE

8 MOV MOV LEA MOV POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev Ew,Sw Gv,M Sw,Ew Ev

9 CBW CWD/CDQ CALL WAIT PUSHF POP SAHF LAHF

aP Fv Fv

A TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D

AL,Ib eAX,Iv Yb,AL Yv,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv

B MOV immediate word or double into word or double register

eAX eCX eDX eBX eSP eBP eSI eDI

C ENTER LEAVE RET far RET far INT INT INTO IRET

Iw, Ib Iw 3 lb

D ESC (Escape to coprocessor instruction set)

E CALL JMP IN OUT

Jv Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp4 Grp5
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Two Byte Opcode Map (First byte is 0FH)

0 1 2 3 4 5 6 7

0 Grp6 LAR
Gv,Ew

LSL Gv,Ew CLTS

1 * * * *

2 MOV
Rd,Cd

MOV
Rd,Dd

MOV
Cd,Rd

MOV
Dd,Rd

3 WRMSR RDTSC RDMSR

4

5

6

7

8 Long-displacement jump on condition (Jv)

JO JNO JB JNB JZ JNZ JBE JNBE

9 Byte Set on condition (Eb)

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE

A PUSH
FS

POP
FS

CPUID BT
Ev,Gv

SHLD
Ev,Gv,Ib

SHLD
Ev,Gv,CL

B CMPXCH
G

CMPXCH
G

LSS BTR LFS LGS MOVZX

Eb,Gb Ev,Gv Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew

C XADD
Eb,Gb

XADD
Ev,Gv

Group 9

D

E

F
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Two-Byte Opcode Map (First byte is 0FH)

8 9 A B C D E F

0 INVD WBINVD Illegal
opcode

1

2

3

4

5

6

7

8 Long-displacement jump on condition (Jv)

JS JNS JP JNP JL JNL JLE JNLE

Byte set on condition (Eb)

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

A PUSH
GS

POP
GS

RSM BTS
Ev,Gv

SHRD
Ev,Gv,Ib

SHRD
Ev,Gv,CL

IMUL
Gv,Ev

B Illegal Grp-8 BTC BSF BSR MOVSX

opcode Ev,lb Ev,Gv Gv,Ev Gv,Ev Gv,Eb Gv,Ew

C BSWAP
EAX

BSWAP
ECX

BSWAP
EDX

BSWAP
EBX

BSWAP
ESP

BSWAP
EBP

BSWAP
ESI

BSWAP
EDI

D

E

F
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A.5.3.2.1. Opcodes Determined by Bits 5,4,3 of ModR/M Byte

mod nnn R/M

Group 000 001 010 011 100 101 110 111

1 ADD OR ADC SBB AND SUB XOR CMP

2 ROL ROR RCL RCR SHL SAL SHR SAR

3 TEST
Ib/Iv

NOT NEG MUL
AL/eAX

IMUL
AL/eAX

DIV
AL/eAX

IDIV
AL/eAX

4 INC
Eb

DEC
Eb

5 INC
Ev

DEC
Ev

CALL
Ev

CALL
Ep

JMP
Ev

JMP
Ep

PUSH
Ev

6 SLDT
Ew

STR
Ew

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

7 SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Ew

LMSW
Ew

INVLPG

8 BT BTS BTR BTC

9 CMPXCH
8BMq
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A.5.3.2.2. Escape Opcodes with D8 as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FADD
single-real

FMUL
single-real

FCOM
single-real

FCOMP
single-real

FSUB
single-real

FSUBR
single-real

FDIV  single-
real

FDIVR
single-real

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C FADD

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

D FCOM

ST,ST(0) ST,ST(1) ST,T(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

E FSUB

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

F FDIV

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

8 9 A B C D E F

C FMUL

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

D FCOMP

ST,ST(0) ST,ST(1) ST,T(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

E FSUBR

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

F FDIVR

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)
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A.5.3.2.3. Escape Opcodes with D9 as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FLD

single-real

FST

single-real

FSTP

single-real

FLDENV

14/28

FLDCW

2 bytes

FSTENV

14/28

FSTCW

2 bytes

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 7

C FLD

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST,ST(0) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS
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A.5.3.2.4. Escape Opcodes with DA as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FIADD

short-int*

FIMUL

short-int*

FICOM

short-int*

FICOMP

short-int*

FISUB

short-int*

FISUBR

short-int*

FIDIV

short-int*

FIDIVR

short-int*

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C

D

E

F

8 9 A B C D E F

C

D

E FUCOMPP

F

NOTE:  *Short-int = 32 bit integer.
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A.5.3.2.5. Escape Opcodes with DB as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FILD

short-int*

FIST

short-int*

FISTP

short-int*

FLD

ext-real

FSTP

ext-real

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C

D

E FCLEX FINIT

F

8 9 A B C D E F

C

D

E

F

NOTE:  *Short-int = 32 bit integer.
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A.5.3.2.6. Escape Opcodes with DC as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FADD
double-real

FMUL
double-real

FCOM
double-real

FCOMP
double-real

FSUB
double-real

FSUBR
double-real

FDIV
double-real

FDIVR
double-real

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C FADD

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D

E FSUBR

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIVR

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

8 9 A B C D E F

C FMUL

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D

E FSUB

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIV

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST
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A.5.3.2.7. Escape Opcodes with DD as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FLD
double-real

FST
double-real

FSTP
double-real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW
2 bytes

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F
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A.5.3.2.8. Escape Opcodes with DE as First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FIADD
word-int

FIMUL
word-int

FICOM
word-int

FICOMP
word-int

FISUB
word-int

FISUBR
word-int

FIDIV
word-int

FIDIVR
word-int

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C FADDP

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D

E FSUBRP

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIVRP

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

8 9 A B C D E F

C FMULP

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D FCOMPP

E FSUBP

ST(0),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIVP

ST(0),ST ST(1),ST ST(2),ST. ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST
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A.5.3.2.9. Escape Opcodes with DF As First Byte

mod nnn R/M

ModR/M bytes in range of 00h-BFh, nnn are mapped according to the following table
(opcode is determined by bits 5,4,3 of modR/M byte).

000 001 010 011 100 101 110 111

FILD
word-int

FIST
word-int

FISTP
word-int

FBLD
packed-

BCD

FILD
long-int

FBSTP
packed-

BCD

FISTP
long-int

ModR/M bytes outside the range 00h-BFh are mapped by the tables below:

0 1 2 3 4 5 6 7

C

D

E FSTSW

AX

F

8 9 A B C D E F

C

D

E

F
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APPENDIX B
FLAG CROSS-REFERENCE

This flag cross-reference is a summary of the flags affected by each instruction.  For detailed
information on how flags are affected for different modes of operation on the Pentium
processor, see Chapter 25.

B.1. Key to Codes
T =  instruction tests flag

M =  instruction modifies flag (either sets or resets depending on operands)

0 =  instruction resets flag

1 =  instruction sets flag

– =  instruction's effect on flag is undefined

R =  instruction restores prior value of flag<xin>

blank =  instruction does not affect flag

Instruction OF SF ZF AF PF CF TF IF DF NT RF
AAA — — — TM — M
AAD — M M — M —
AAM — M M — M —
AAS — — — TM — M

ADC M M M M M TM
ADD M M M M M M
AND 0 M M — M 0
ARPL M

BOUND
BSF/BSR — — M — — —
BSWAP
BT/BTS/BTR/BTC — — — — — M

CALL
CBW
CLC 0
CLD 0

CLI 0
CLTS
CMC M
CMP M M M M M M
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Instruction OF SF ZF AF PF CF TF IF DF NT RF
CMPS M M M M M M T
CMPXCHG M M M M M M
CMPXCHG8B M
CPUID

CWD
DAA — M M TM M TM
DAS — M M TM M TM
DEC M M M M M

DIV — — — — — —
ENTER
ESC
HLT

IDIV — — — — — —
IMUL M — — — — M
IN
INC M M M M M

INS T
INT 0 0
INTO T 0 0
INVD

INVLPG
IRET R R R R R R R R R T
Jcond T T T T T
JCXZ

JMP
LAHF
LAR M
LDS/LES/LSS/LFS/LGS

LEA
LEAVE
LGDT/LIDT/LLDT/LMSW
LOCK

LODS T
LOOP
LOOPE/LOOPNE T
LSL M

LTR
MOV
MOV control, debug, test — — — — — —
MOVS T

MOVSX/MOVZX
MUL M — — — — M
NEG M M M M M M
NOP
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Instruction OF SF ZF AF PF CF TF IF DF NT RF
NOT
OR 0 M M — M 0
OUT
OUTS T

POP/POPA
POPF R R R R R R R R R R
PUSH/PUSHA/PUSHF
RCL/RCR 1 M TM

RCL/RCR count — TM
RDMSR
RDTSC
REP/REPE/REPNE

RET
ROL/ROR 1 M M
ROL/ROR count — M
RSM M M M M M M M M M M M

SAHF R R R R R
SAL/SAR/SHL/SHR 1 M M M — M M
SAL/SAR/SHL/SHR count — M M — M M
SBB M M M M M TM

SCAS M M M M M M T
SET cond T T T T T
SGDT/SIDT/SLDT/SMSW
SHLD/SHRD — M M — M M

STC 1
STD 1
STI 1
STOS T

STR
SUB M M M M M M
TEST 0 M M — M 0
VERR/VERRW M

WAIT
WBINVD
WRMSR
XADD M M M M M M

XCHG
XLAT
XOR 0 M M — M 0
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APPENDIX C
STATUS FLAG SUMMARY

C.1. STATUS FLAGS FUNCTIONS

Bit Name Function

 0 CF Carry Flag—Set on high-order bit carry or borrow; cleared
otherwise.

 2 PF Parity Flag—Set if low-order eight bits of result contain an even
number of 1 bits; cleared otherwise.

 4 AF Adjust Flag—Set on carry from or borrow to the low order four bits
of AL; cleared otherwise. Used for decimal arithmetic.

 6 ZF Zero Flag—Set if result is zero; cleared otherwise.

 7 SF Sign Flag—Set equal to high-order bit of result (0 is positive, 1 if
negative).

11 OF Overflow Flag—Set if result is too large a positive number or too
small a negative number (excluding sign-bit) to fit in destination
operand; cleared otherwise.

C.2. KEY TO CODES

T = instruction tests flag

M = instruction modifies flag either sets or resets depending on operands)

0 = instruction resets flag

 — = instruction’s effect on flag is undefined

blank = instruction does not affect flag
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Instruction OF SF ZF AF PF CF

AAA — — — TM — M

AAS — — — TM — M

AAD — M M — M —

AAM — M M — M —

DAA — M M TM M TM

DAS — M M TM M TM

ADC M M M M M TM

ADD M M M M M M

XADD M M M M M M

SBB M M M M M TM

SUB M M M M M M

CMP M M M M M M

CMPS M M M M M M

CMPXCHG M M M M M M

CMPXCHG8B M

SCAS M M M M M M

NEG M M M M M M

DEC M M M M M

INC M M M M M

IMUL M — — — — M

MUL M — — — — M

RCL/RCR 1 M TM

RCL/RCR count — TM

ROL/ROR 1 M M

ROL/ROR count — M

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR count — M M — M M

SHLD/SHRD — M M — M M

BSF/BSR — — M — — —

BT/BTS/BTR/BTC — — — — — M

AND 0 M M — M 0

OR 0 M M — M 0

TEST 0 M M — M 0

XOR 0 M M — M 0
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APPENDIX D
CONDITION CODES

Note: The terms "above" and "below" refer to the relation between two unsigned values
(neither the SF flag nor the OF flag is tested). The terms "greater" and "less" refer to the
relation between two signed values (the SF and OF flags are tested).

D.1. DEFINITION OF CONDITIONS

For Conditional Instructions Jcond and SETcond

Mnemonic Meaning
Instruction
Subcode Condition Tested

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF or ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF or ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF xor OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF xor OF) = 0
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For Conditional Instructions Jcond and SETcond (Contd)

Mnemonic Meaning
Instruction
Subcode Condition Tested

LE
NG

Less or equal
Not greater

1110 ((SF xor OF) or ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF xor OF) or ZF) = 0



E
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APPENDIX E
NUMERIC EXCEPTION SUMMARY

The following table lists the instruction mnemonics in alphabetical order. For each
mnemonic, it summarizes the exceptions that the instruction may cause. When writing
numeric programs that may be used in an environment that employs numerics exception
handlers, assembly-language programmers should be aware of the possible exceptions for
each instruction in order to determine the need for exception synchronization. Chapter 18
explains the need for exception synchronization.

Mnemonic Instruction IS I D Z O U P

F2XM1 2X–1 Y Y Y Y Y
FABS Absolute value Y
FADD(P) Add real Y Y Y Y Y Y
FBLD BCD load Y
FBSTP BCD store and pop Y Y Y
FCHS Change sign Y
FCLEX Clear exceptions
FCOM(P)(P) Compare real Y Y Y
FCOS Cosine Y Y Y Y Y
FDECSTP Decrement stack pointer
FDIV(R)(P) Divide real Y Y Y Y Y Y Y
FFREE Free register
FIADD Integer add Y Y Y Y Y Y
FICOM(P) Integer compare Y Y Y
FIDIV Integer divide Y Y Y Y Y Y
FIDIVR Integer divide reversed Y Y Y Y Y Y Y
FILD Integer load Y
FIMUL Integer multiply Y Y Y Y Y Y
FINCSTP Increment stack pointer
FINIT Initialize processor
FIST(P) Integer store Y Y Y
FISUB(R) Integer subtract Y Y Y Y Y Y
FLD extended or stack Load real Y
FLD single or double Load real Y Y Y
FLD1 Load + 1.0 Y
FLDCW Load Control word Y Y Y Y Y Y Y
FLDENV Load environment Y Y Y Y Y Y Y
FLDL2E Load log2e Y
FLDL2T Load log210 Y
FLDLG2 Load log102 Y
FLDLN2 Load loge2 Y
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Mnemonic Instruction IS I D Z O U P

FLDPI Load π Y
FLDZ Load + 0.0 Y
FMUL(P) Multiply real Y Y Y Y Y Y
FNOP No operation
FPATAN Partial arctangent Y Y Y Y Y
FPREM Partial remainder Y Y Y Y
FPREM1 IEEE partial remainder Y Y Y Y
FPTAN Partial tangent Y Y Y Y Y
FRNDINT Round to integer Y Y Y Y
FRSTOR Restore state Y Y Y Y Y Y Y
FSAVE Save state
FSCALE Scale Y Y Y Y Y Y
FSIN Sine Y Y Y Y Y
FSINCOS Sine and cosine Y Y Y Y Y
FSQRT Square root Y Y Y Y
FST(P) stack or extended Store real Y
FST(P) single or double Store real Y Y Y Y Y Y
FSTCW Store control word
FSTENV Store environment
FSTSW (AX) Store status word
FSUB(R)(P) Subtract real Y Y Y Y Y Y
FTST Test Y Y Y
FUCOM(P)(P) Unordered compare real Y Y Y
FWAIT CPU Wait
FXAM Examine
FXCH Exchange registers Y
FXTRACT Extract Y Y Y Y
FYL2X Y ⋅ log2X Y Y Y Y Y Y Y
FYL2XP1 Y ⋅ log2(X + 1) Y Y Y Y Y

IS — Invalid operand due to stack overflow/underflow

I — Invalid operand due to other cause

D — Denormal operand

Z — Zero-divide

O — Overflow

U — Underflow

P — Inexact result (precision)
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APPENDIX F
INSTRUCTION FORMAT AND TIMING

Table F-16, Table F-17, and Table F-Error! Bookmark not defined.  list all instructions
along with instruction encoding diagrams and clock counts.

F.1. INTEGER INSTRUCTION FORMAT AND TIMING
The following sections explain how to use each of the columns of Table F-16.

Format

All instruction encodings are subsets of the general instruction format shown in Figure F-1.
Instructions consist of one or two primary opcode bytes, possibly an address specifier
consisting of the mod r/m byte and scale-index-base byte, a displacement if required, and an
immediate data field if required.

APM128

mod TTT r/m ss index base d32 | 16 | 8 | none data32 | 16 | 8 | noneT T T T T T T T T T T T T T T T

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 - 6 5 - 3 2 - 0 7 - 6 5 - 3 2 - 0

opcode
(one or two bytes)
(T represents an

opcode bit.)

mod r/m
byte

s-i-b
byte

register and address
mode specifier

address
displacement
(4,2,1 bytes

or none)

immediate
data

(4,2,1 bytes
or none)

Figure F-1.  General Instruction Format

Within the primary opcode or opcodes, smaller encoding fields may be defined. These fields
vary according to the class of operation. The fields define such information as direction of
the operation, size of displacements, register encoding, or sign extension.

Almost all instructions referring to an operand in memory have an addressing mode byte
following the primary opcode byte(s). This byte, the mod r/m byte, specifies the address
mode to be used. Certain encodings of the mod r/m byte indicate that a second addressing
byte, the scale-index-base byte, follows the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement immediately following the mod r/m byte or
scale-index-base byte. If a displacement is present, the possible sizes are 8, 16, or 32 bits.
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If the instruction specifies an immediate operand, the immediate operand follows any
displacement bytes. The immediate operand, if specified, is always the last field of the
instruction.

Figure F-1 illustrates several of the fields that can appear in an instruction, such as the mod
field and the r/m  field, but the figure does not show all fields. Several smaller fields also
appear in certain instructions, sometimes within the opcode bytes themselves. Table F-1 is a
complete list of all fields appearing in the instruction set. Subsequent tables list the values for
each of the fields.

Table F-1.  Fields within Instructions

Field Name Description Number of Bits

d Specifies direction of data operation 1

eee Specifies a special-purpose (test, debug, or control) register

reg General register specifier 3

s Specifies if an immediate data field must be sign-extended 1

sreg2 Segment register specifier for CS, SS, DS, ES 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS 3

tttn For conditional instructions, specifies a condition asserted or a condition
negated

4

w Specifies if data is byte of full-sized (full-sized is either 16 or 32 bits) 1

In many two-operand instructions, the d field indicates which operand is considered the
source and which is the destination.

Encoding of Operation Direction (d) Field

d Source Destination

0 reg  field mod r/m  or mod ss index base  field

1 mod r/m  or mod ss index base  field reg  field
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Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register

000 CR0 DR0

001 reserved DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 reserved

101 reserved reserved

110 reserved DR6

111 reserved DR7

NOTE: Do not use reserved encodings.

Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI
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Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
during 16-Bit Data Operations

Register Specified by reg Field
during 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

The s field occurs primarily in instructions with immediate data fields. The s field has an
effect only if the size of the immediate data is 8 bits and is being placed in a 16-bit or 32-bit
destination.

Encoding of Sign-Extend (s) Field

s
Effect on

Immediate Data8
Effect on

Immediate Data16 or Data32

0 None None

1 Sign-extend data8 to fill 16-bit or 32-bit destination None

Encoding of the Segment Register (sreg) Field

2-Bit sreg2 Field
Segment Register

Selected 3-Bit sreg3 Field
Segment Register

Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 do not use

111 do not use
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For the conditional instructions (conditional jumps and set on condition), tttn  is encoded
such that ttt  gives the condition to test and n indicates whether to use the condition (n = 0) or
its negation (n = 1).

Encoding of Conditional Test (tttn) Field

t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

For any given instruction performing a data operation, the instruction is executing as a 32-bit
operation or a 16-bit operation. Within the constraints of the operation size, the w field
encodes the operand size as either one byte or the full operation size, as shown in the
following table.

Encoding of Operand Length (w) Field

w Field
Operand Size during

16-Bit Data Operations
Operand Size during

32-Bit Data Operations

0 8 bits 8 bits

1 16 bits 32 bits

Clock Counts

To calculate elapsed time for an instruction, multiply the instruction clock count as listed in
the tables by the processor clock period (for example, 15 ns for a 66-MHz processor).
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The clock count tables assume that data and instruction access hit their respective caches. A
cache miss forces the processor to run an external bus cycle. The 64-bit burst bus of the
Pentium  processor is defined as r-b-w, where:

r = The number of clocks in the first cycle of a burst read or the number of clocks per data
cycle in a nonburst read.

b = The number of clocks for the second and subsequent cycles in a burst read.

w = The number of clocks for a write.

The fastest bus the Pentium processor can support is 2-1-2, assuming zero wait states. The
clock counts in the cache miss penalty column assume a 2-1-2 bus. For slower buses, add r –
 2 clocks to the cache miss penalty for the first quadword accessed. Other factors also affect
instruction clock counts.

To simplify the tables, the following assumptions are made:

1. The external bus is available for reads or writes at all times. Otherwise, add clocks to
reads until the bus is available. The processor stalls if the write buffers become full and
the external bus is busy. In that case, add clocks to writes until the bus becomes
available.

2. If the write buffers become full, subsequent writes are delayed until the write buffers
become empty. For the worst case, add w clocks.

3. Accesses are aligned. Add three clocks to each misaligned access.

4. Operands are in the data cache. Add 3 + (number of wait states) for each cache miss.

5. The target of a jump is in the code cache. If not, add r clocks for accessing the
destination instruction of a jump. If the destination instruction is not completely
contained in the first qword read, add a maximum of 3b clocks. If the destination
instruction is not completely contained in the first 32-byte burst, add a maximum of
another r + 3b clocks. The penalty for branch misprediction is three clocks.

6. Cache fills complete before subsequent accesses to the same line. If a read misses the
cache during a cache fill due to a previous read or prefetch, the read must wait for the
cache fill to complete. If a read or write accesses a cache line still being filled, it must
wait for the fill to complete.

7. Page translation hits in TLB. A TLB miss typically adds from 13 to 28 clocks to the
instruction depending on whether the Accessed or Dirty bit of the page entries needs to
be set in memory. This assumes that neither page entry is in the data cache and that a
page fault does not occur during address translation.

8. No exceptions are detected during instruction execution. Refer to the Interrupt Clock
Counts Table for extra clocks if an interrupt is detected.

9. Instructions that read multiple consecutive data items (for example, task switch, POPA,
etc.) and miss the cache are assumed to start the first access on a 32-byte boundary. If
not, an extra cache line fill may be necessary, which may add up to r + 3b clocks to the
cache miss penalty.
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10. No address generation interlocks (AGI). AGIs occur when a register being used as part of
an address calculation is the destination register of a previous instruction in either the
pipelines. AGIs cause a one clock delay.

The following abbreviations are used in the clock count columns:

TS The time for a task switch, which depends on the target TSS type as shown in the Task
Switch Clock Counts Table.

INT The time for an interrupt, which depends on processor mode and type of gate used, as
shown in the Interrupt Clock Counts Table.

Task Switch Clock Counts Table

Method

From To Value of TS

32-Bit, 16-Bit, or V86 TSS 32-Bit TSS 85

32-Bit, 16-Bit, or V86 TSS 16-Bit TSS 85

32-Bit, 16-Bit, or V86 TSS V86 TSS 71

Interrupt Clock Counts Table

Value of INT

Method Cache Hit Miss Penalty Notes

Real Mode 11 3

Protected Mode
     Interrupt/Trap gate, same level
     Interrupt/Trap gate, different level
     Task gate

25
42
17 + TS

6
12
3

9
9
9,10

Virtual 8086 Mode
     Interrupt/Trap, same level
     Interrupt/Trap gate, different level
     Task gate

13
54
17 + TS

3
12
3 10

Notes

The following abbreviations in the Notes column help to interpret the other columns:

16/32 Clocks apply to 16- and 32-bit modes respectively

L/NL Clocks apply to loop and no loop cases respectively

MN/MX Clocks shown define a range from minimum to maximum

P Clocks apply to protected mode

R Clocks apply to real-address mode

RV/P First clock applies to real and V86 mode; second applies to protected mode
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T/NT Clocks apply to taken and not taken cases respectively

U/L Clocks apply to unlocked and locked cases respectively

1. Assuming that the operand address and stack address fall in different cache
interleaves.

2. Always locked. Always forced to miss cache.

4. Clocks = {quotient(count/operand length)}*7 + 9
= 8 if count ≤ operand length (8/16/32).

5. Clocks = {quotient(count/operand length)}*7 + 9
= 9 if count ≤ operand length (8/16/32).

8. Penalty for cache miss: add 2 clocks for every stack value copied to the new
stack frame.

9. Add 8 clocks for each load of an unaccessed descriptor.

10. Refer to Task Switch Clock Counts Table for value of TS.

For notes 12 – 13: b = 0 – 3, nonzero byte number;
i = 0 – 1, nonzero nibble number;
n = 0 – 3, nonzero bit number in nibble.

12. Clocks = 8 + 4(b + 1) + 3(i + 1) + 3(n + 1)
= 6 if second operand = 0.

13. Clocks = 9 + 4(b + 1) + 3(i + 1) + 3(n + 1)
= 7 if second operand = 0.

For notes 14 – 15: n = bit position (0 – 31).

14. Clocks = 7 + 2(32 – n)
= 6 if second operand = 0.

15. Clocks = 8 + 2(32 – n)
= 7 if second operand = 0.

16. Assuming that the two string addresses fall in different cache interleaves.

21. Refer to the Interrupt Clock Counts Table for value of INT.

23. Add r + 3b for instruction cache miss. Add 3 for branch misprediction.

24. Clocks shown define a range from minimum to maximum.

25. Add r + 3b for instruction cache miss.
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Table F-2.  Integer Clock Count Summary
Instruction Format Clocks Notes Pairing

AAA – ASCII Adjust after 0011 0111
Addition

3 NP

AAD – ASCII Adjust AX before 1101 0101 : 0000 1010
Division

10 NP

AAM – ASCII Adjust AX after 1101 0100 : 0000 1010
Multiply

18 NP

AAS – ASCII Adjust AL after 0011 1111
Subtraction

3 NP

ADC – ADD with Carry PU

   reg1 to reg2 0001 000w : 11 reg1 reg2 1

   reg2 to reg1 0001 001w : 11 reg1 reg2 1

   memory to register 0001 001w : mod reg r/m 2

   register to memory 0001 000w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 010 reg : immediate data 1

   immediate to accumulator 0001 010w : immediate data 1

   immediate to memory 1000 00sw : mod 010 r/m : immediate data 3 U/L

ADD – Add UV

   reg1 to reg2 0000 000w : 11 reg1 reg2 1

   reg2 to reg1 0000 001w : 11 reg1 reg2 1

   memory to register 0000 001w : mod reg r/m 2

   register to memory 0000 000w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 000 reg : immediate data 1

   immediate to accumulator 0000 010w : immediate data 1

   immediate to memory 1000 00sw : mod 000 r/m : immediate data 3 U/L

AND – Logical AND UV

   reg1 to reg2 0010 000w : 11 reg1 reg2 1

   reg2 to reg1 0010 001w : 11 reg1 reg2 1

   memory to register 0010 001w : mod reg r/m 2

   register to memory 0010 000w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 100 reg : immediate data 1

   immediate to accumulator 0010 010w : immediate data 1

   immediate to memory 1000 00sw : mod 100 r/m : immediate data 3 U/L

ARPL – Adjust RPL Field of Selector NP

   from register 0110 0011 : 11 reg1 reg2 7

   from memory 0110 0011 : mod reg r/m 7
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Table F-3.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

BOUND – Check Array Against  Bounds NP

0110 0010 : mod reg r/m

   if within bounds 8

   if out of bounds INT + 32 21

BSF – Bit Scan Forward NP

   reg1, reg2 0000 1111 : 1011 1100 : 11 reg2 reg1

word 6–34 MN/MX, 12

doubleword 6–42 MN/MX, 12

   memory, reg 0000 1111 : 1011 1100 : mod reg r/m

word 6–35 MN/MX, 13

doubleword 6–43 MN/MX, 13

BSR – Bit Scan Reverse

   reg1, reg2 0000 1111 : 1011 1101 : 11 reg2 reg1

word 7–39 MN/MX,14

doubleword 7–71 MN/MX,14

   memory, reg 0000 1111 : 1011 1101 : mod reg r/m

word 7–40 MN/MX,15

doubleword 7–72 MN/MX,15

BSWAP – Byte Swap 0000 1111 : 1100 1 reg 1 NP

BT – Bit Test NP

   register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data 4

   memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data 4

   reg1, reg2 0000 1111 : 1010 0011 : 11 reg2 reg1 4

   memory, reg 0000 1111 : 1010 0011 : mod reg r/m 9

BTC – Bit Test and Complement NP

   register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data 7

   memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data 8 U/L

   reg1, reg2 0000 1111 : 1011 1011 : 11 reg2 reg1 7

   memory, reg 0000 1111 : 1011 1011 : mod reg r/m 13 U/L

BTR – Bit Test and Reset NP

   register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data 7

   memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data 8 U/L

   reg1, reg2 0000 1111 : 1011 0011 : 11 reg2 reg1 7

   memory, reg 0000 1111 : 1011 0011 : mod reg r/m 13 U/L

BTS – Bit Test and Set NP

   register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data 7

   memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data 8 U/L

   reg1, reg2 0000 1111 : 1010 1011 : 11 reg2 reg1 7

   memory, reg 0000 1111 : 1010 1011 : mod reg r/m 13 U/L

CALL – Call Procedure (in same segment)
   direct 1110 1000 : full displacement 1 23 PV

   register indirect 1111 1111 : 11 010 reg 2 23 NP

   memory indirect 1111 1111 : mod 010 r/m 2 23 NP
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Table F-4.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

CALL – Call Procedure (in other segment) NP

   direct 1001 1010 : unsigned full offset, selector 4 R,23

to same level
thru gate to same level
to inner level, no parameters
to inner level, x parameters (d)words
to TSS
thru task gate

4−13
22
44

45+2x
21+T

S
22+T

S

P,9,23,24
P,9,25
P,9,25
P,9,25

P,10,9,2
5

P,10,9,2
5

   indirect 1111 1111 : mod 011 r/m 5 R,23

to same level
thru gate to same level
to inner level, no parameters
to inner level, x parameters (d)words
to TSS
thru task gate

5−14
22
44

45+2x
21+T

S
22+T

S

P,9,23,24
P,9,25
P,9,25
P,9,25

P,10,9,2
5

P,10,9,2
5

CBW – Convert Byte to Word 1001 1000
CWDE – Convert Word to Double word

3 NP

CLC – Clear Carry Flag 1111 1000 2 NP

CLD – Clear Direction Flag 1111 1100 2 NP

CLI – Clear Interrupt Flag 1111 1010 7 NP

CLTS – Clear Task-Switched 0000 1111 : 0000 0110
Flag in CR0

10 NP

CMC – Complement Carry Flag 1111 0101 2 NP

CMP – Compare Two Operands UV

   reg1 with reg2 0011 100w : 11 reg1 reg2 1

   reg2 with reg1 0011 101w : 11 reg1 reg2 1

   memory with register 0011 100w : mod reg r/m 2

   register with memory 0011 101w : mod reg r/m 2

   immediate with register 1000 00sw : 11 111 reg : immediate data 1

   immediate with accumulator 0011 110w : immediate data 1

   immediate with memory 1000 00sw : mod 111 r/m 2

CMPS/CMPSB/CMPSW/CMPSD 1010 011w
– Compare String Operands

5 16 NP

CMPXCHG – Compare and Exchange NP

   reg1, reg2 0000 1111 : 1011 000w : 11 reg2 reg1 5

   memory, reg 0000 1111 : 1011 000w : mod reg r/m 6 U/L
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Table F-5.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

CMPXCHG8B – Compare and
Exchange 8 Bytes

NP

   memory, reg 0000 1111 : 1100 0111 : mod reg r/m 10 U/L

CPUID – CPU Indentificaiton 0000 1111 : 1010 0010 12

CWD – Convert Word to Dword 1001 1001
CDQ – Convert Dword to Qword

2 NP

DAA – Decimal Adjust AL after 0010 0111
Addition

3 NP

DAS – Decimal Adjust AL after 0010 1111
Subtraction

3 NP

DEC – Decrement by 1 UV

   reg 1111 111w : 11 001 reg 1

      or 0100 1 reg 1

   memory 1111 111w : mod 001 r/m 3 U/L

DIV – Unsigned Divide NP

   accumulator by register 1111 011w : 11 110 reg

      divisor — byte 17

word 25

doubleword 41

   accumulator by memory 1111 011w : mod 110 r/m

      divisor — byte 17

word 25

doubleword 41

ENTER – Make Stack Frame 1100 1000 : 16-bit displacement : 8-bit level (L)
for Procedure Parameters

NP

   L = 0 11

   L = 1 15

   L > 1 15 + 2L 8

HLT – Halt 1111 0100

IDIV – Signed Divide NP

   accumulator by register 1111 011w : 11 111 reg

      divisor — byte 22

word 30

doubleword 46

   accumulator by memory 1111 011w : mod 111 r/m

      divisor — byte 22

word 30

doubleword 46
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Table F-6.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

IMUL – Signed Multiply NP

   accumulator with register 1111 011w : 11 101 reg

      multiplier — byte 11

word 11

doubleword 10

   accumulator with memory 1111 011w : mod 101 reg

      multiplier — byte 11

word 11

doubleword 10

   reg1 with reg2 0000 1111 : 1010 1111 : 11 : reg1 reg2

      multiplier — byte 10

word 10

doubleword 10

   register with memory 0000 1111 : 1010 1111 : mod reg r/m

      multiplier — byte 10

word 10

doubleword 10

   reg1 with imm. to reg2 0110 10s1 : 11 reg1 reg2 : immediate data

      multiplier — byte 10

word 10

doubleword 10

   mem. with imm. to reg 0110 10s1 : mod reg r/m : immediate data

      multiplier — byte 10

word 10

doubleword 10

INC – Increment by 1 UV

   reg 1111 111w : 11 000 reg 1

      or 0100 0 reg 1

   memory 1111 111w : mod 000 r/m 3 U/L

INT n – Interrupt Type n 1100 1101 : type INT + 6 21,25 NP

INT – Single-Step Interrupt 3 1100 1100 INT + 5 21,25 NP

INTO – Interrupt 4 on Overflow 1100 1110 NP

   taken INT + 5 21,25

   not taken 4 21,25

INVD – Invalidate Cache 0000 1111 : 0000 1000 15 NP

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m 29 NP
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Table F-7.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

IRET/IRETD – Interrupt Return 1100 1111 NP

   real mode or virtual 8086 mode 7 R,23

   protected mode
to same level
to outer level
to nested task

10−19
27

10 +
TS

P,9,23,2
4

P,9,25
P,9,10,2

5

Jcc – Jump if Condition is Met PV

   8-bit displacement 0111 tttn : 8-bit displacement 1 23

   full displacement 0000 1111 : 1000 tttn : full displacement 1 23

JCXZ/JECXZ – Jump on 1110 0011 : 8-bit displacement
CX/ECX Zero

6/5 T/NT,23 NP

   address size prefix differentiates JCXZ from JECXZ

JMP – Unconditional Jump (to same segment)

   short 1110 1011 : 8-bit displacement 1 23 PV

   direct 1110 1001 : full displacement 1 23 PV

   register indirect 1111 1111 : 11 100 reg 2 23 NP

   memory indirect 1111 1111 : mod 100 r/m 2 23 NP

JMP – Unconditional Jump (to other segment) NP

   direct intersegment 1110 1010 : unsigned full offset, selector 3 R,23

to same level
thru call gate ro same level
thru TSS
thru task gate

3−12
18

19 +
TS

20 +
TS

P,9,23,24
P,9,25

P,10,9,2
5

P,10,9,2
5

   indirect intersegment 1111 1111 : mod 101 r/m 4 R,23

to same level
thru call gate ro same level
thru TSS
thru task gate

4−13
18

19 +
TS

20 +
TS

P,9,23,24
P,9,25

P,10,9,2
5

P,10,9,2
5

LAHF – Load Flags into AH 1001 1111
Register

2 NP

LAR – Load Access Rights Byte NP

   from register 0000 1111 : 0000 0010 : 11 reg1 reg2 8

   from memory 0000 1111 : 0000 0010 : mod reg r/m 8

LDS – Load Pointer to DS 1100 0101 : mod reg r/m 4−13 9,24 NP

LEA – Load Effective Address 1000 1101 : mod reg r/m 1 UV

LEAVE – High Level Procedure 1100 1001
Exit

3 NP
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Table F-8.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

LES – Load Pointer to ES 1100 0100 : mod reg r/m 4−13 9,24 NP

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : mod reg r/m 4−13 9,24 NP

LGDT – Load Global Descriptor 0000 1111 : 0000 0001 : mod 010 r/m
Table Register

6 NP

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : mod reg r/m 4−13 9,24 NP

LIDT – Load Interrupt 0000 1111 : 0000 0001 : mod 011 r/m
Descriptor Table Register

6 NP

LLDT – Load Local Descriptor Table Register NP

   LDTR from register 0000 1111 : 0000 0000 : 11 010 reg 9

   LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m 9

LMSW – Load Machine Status Word NP

   from register 0000 1111 : 0000 0001 : 11 110 reg 8

   from memory 0000 1111 : 0000 0001 : mod 110 r/m 8

LOCK – Assert LOCK# Signal 1111 0000
Prefix

1 NP

LODS/LODSB/LODSW/LODSD 1010 110w
– Load String Operand

2 NP

LOOP – Loop Count 1110 0010 : 8-bit displacement 5/6 L/NL,23 NP

LOOPZ/LOOPE – Loop Count 1110 0001 : 8-bit displacement
while Zero/Equal

7/8 L/NL,23 NP

LOOPNZ/LOOPNE – Loop 1110 0000 : 8-bit displacement
Count while not Zero/Equal

7/8 L/NL,23 NP

LSL – Load Segment Limit NP

   from register 0000 1111 : 0000 0011 : 11 reg1 reg2 8

   from memory 0000 1111 : 0000 0011 : mod reg r/m 8

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m 4−13/
8−17

RV/P,9,24 NP

LTR – Load Task Register NP

   from register 0000 1111 : 0000 0000 : 11 011 reg 10

   from memory 0000 1111 : 0000 0000 : mod 011 r/m 10

MOV – Move Data UV

   reg1 to reg2 1000 100w : 11 reg1 reg2 1

   reg2 to reg1 1000 101w : 11 reg1 reg2 1

   memory to reg 1000 101w : mod reg r/m 1

   reg to memory 1000 100w : mod reg r/m 1

   immediate to reg 1100 011w : 11 000 reg : immediate data 1

      or 1011 w reg : immediate data 1

   immediate to memory 1100 011w : mod 000 r/m : immediate data 1

   memory to accumulator 1010 000w : full displacement 1

   accumulator to memory 1010 001w : full displacement 1
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Table F-9.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

MOV – Move to/from Control Registers NP

   CR0 from register 0000 1111 : 0010 0010 : 11 000 reg 22

   CR2 from register 0000 1111 : 0010 0010 : 11 010reg 12

   CR3 from register 0000 1111 : 0010 0010 : 11 011 reg 21

   CR4 from register 0000 1111 : 0010 0010 : 11 100 reg 14

   register from CR0-4 0000 1111 : 0010 0000 : 11 eee reg 4

MOV – Move to/from Debug Registers NP

   DR0-3 from register 0000 1111 : 0010 0011 : 11 eee reg 11

   DR4-5 from register 0000 1111 : 0010 0011 : 11 eee reg 12

   DR6-7 from register 0000 1111 : 0010 0011 : 11 eee reg 11

   register from DR6-7 0000 1111 : 0010 0001 : 11 eee reg 11

   register from DR4-5 0000 1111 : 0010 0001 : 11 eee reg 12

   register from DR0-3 0000 1111 : 0010 0001 : 11 eee reg 2

MOV – Move to/from Segment Registers NP

   reg to segment reg 1000 1110 : 11 sreg3 reg 2−11 9,24

   reg to SS 1000 1110 : 11 sreg3 reg 2−11/
8−17

RV/P,9,24

   memory to segment reg 1000 1110 : mod sreg3 r/m 3 9,24

   memory to SS 1000 1110 : mod sreg3 r/m 3−12/
8−17

RV/P,9,24

   segment reg to reg 1000 1100 : 11 sreg3 reg 1

   segment reg to memory 1000 1100 : mod sreg3 r/m 1

MOVS/MOVSB/MOVSW/ 1010 010w
MOVSD – Move Data from String to String

4 16 NP

MOVSX – Move with Sign-Extend NP

   reg2 to reg1 0000 1111 : 1011 111w : 11 reg1 reg2 3

   memory to reg 0000 1111 : 1011 111w : mod reg r/m 3

MOVZX – Move with Zero-Extend

   reg2 to reg1 0000 1111 : 1011 011w : 11 reg1 reg2 3

   memory to reg 0000 1111 : 1011 011w : mod reg r/m 3

MUL – Unsigned Multiplication of AL or AX NP

   accumulator with register 1111 011w : 11 100 reg

      multiplier — byte 11

word 11

doubleword 10

   accumulator with memory 1111 011w : mod 100 reg

      multiplier — byte 11

word 11

doubleword 10
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Table F-10.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

NEG – Two's Complement Negation NP

   reg 1111 011w : 11 011 reg 1

   memory 1111 011w : mod 011 r/m 3 U/L

NOP – No Operation 1001 0000 1 UV

NOT – One's Complement Negation NP

   reg 1111 011w : 11 010 reg 1

   memory 1111 011w : mod 010 r/m 3 U/L

OR – Logical Inclusive OR UV

   reg1 to reg2 0000 100w : 11 reg1 reg2 1

   reg2 to reg1 0000 101w : 11 reg1 reg2 1

   memory to register 0000 101w : mod reg r/m 2

   register to memory 0000 100w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 001 reg : immediate data 1

   immediate to accumulator 0000 110w : immediate data 1

   immediate to memory 1000 00sw : mod 001 r/m : immediate data 3 U/L

POP – Pop a Word from the Stack

   reg 1000 1111 : 11 000 reg 1 UV

      or 0101 1 reg 1 UV

   memory 1000 1111 : mod 000 r/m 3 1 NP

POP – Pop a Segment Register from the Stack NP

   segment reg CS, DS, ES 000 sreg2 111 3−12 9,24

   segment reg SS 000 sreg2 111 3−12/
8−17

RV/P,9,24

   segment reg FS, GS 0000 1111: 10 sreg3 001 3−12 9,24

POPA/POPAD – Pop All 0110 0001
General Registers

5 NP

POPF/POPFD – Pop Stack into 1001 1101
FLAGS or EFLAGS Registe r

4/14 RV/P NP

PUSH – Push Operand onto the Stack

   reg 1111 1111 : 11 110 reg 1 UV

      or 0101 0 reg 1 UV

   memory 1111 1111 : mod 110 r/m 2 1 NP

   immediate 0110 10s0 : immediate data 1 UV

PUSH – Push Segment Register onto the Stack NP

   segment reg CS,DS,ES,SS 000 sreg2 110 1

   segment reg FS,GS 0000 1111: 10 sreg3 000 1

PUSHA/PUSHAD – Push All 0110 0000
General Registers

5 NP

PUSHF/PUSHFD – Push Flags 1001 1100
Register onto the Stack

3/9 RV/P NP
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Table F-11.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

RCL – Rotate thru Carry Left

   reg by 1 1101 000w : 11 010 reg 1 PU

   memory by 1 1101 000w : mod 010 r/m 3 PU

   reg by CL 1101 001w : 11 010 reg 7–24 MN/MX,4 NP

   memory by CL 1101 001w : mod 010 r/m 9–26 MN/MX,5 NP

   reg by immediate count 1100 000w : 11 010 reg : imm8 data 8–25 MN/MX,4 PU

   memory by immediate count 1100 000w : mod 010 r/m : imm8 data 10–27 MN/MX,5 PU

RCR – Rotate thru Carry Right

   reg by 1 1101 000w : 11 011 reg 1 PU

   memory by 1 1101 000w : mod 011 r/m 3 PU

   reg by CL 1101 001w : 11 011 reg 7–24 MN/MX,4 NP

   memory by CL 1101 001w : mod 011 r/m 9–26 MN/MX,5 NP

   reg by immediate count 1100 000w : 11 011 reg : imm8 data 8–25 MN/MX,4 PU

   memory by immediate count 1100 000w : mod 011 r/m : imm8 data 10–27 MN/MX,5 PU

RDMSR – Read from Model- 0000 1111 : 0011 0010
Specific Register

20–24 MN/MX NP

RDTSC – Read from Time 0000 1111 : 0011 0001
Stamp Counter

6, 11 1

REP LODS – Load String 1111 0011 : 1010 110w NP

   C = 0
   C > 0

7
7 + 3c 16

REP MOVS – Move String 1111 0011 : 1010 010w NP

   C = 0
   C = 1
   C > 1

6
13

13 + c
16
16

REP STOS – Store String 1111 0011 : 1010 101w NP

   C = 0
   C > 0

6
9 + c

REPE CMPS – Compare String 1111 0011 : 1010 011w
(Find Non-Match)

NP

   C = 0
   C > 0

7
8 + 4c 16

REPE SCAS – Scan String 1111 0011 : 1010 111w
(Find Non-AL/AX/EAX)

NP

   C = 0
   C > 0

7
8 + 4c 16



EE INSTRUCTION FORMAT AND TIMING

F-19

Table F-12.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

REPNE CMPS – Compare 1111 0010 : 1010 011w
String (Find Match)

NP

   C = 0
   C > 0

7
9 + 4c 16

REPNE SCAS – Scan String 1111 0010 : 1010 111w
(Find AL/AX/EAX)

NP

   C = 0
   C > 0

7
8 + 4c 16

RET – Return from Procedure (to same segment) NP

1100 0011 2

   adding immediate to SP 1100 0010 : 16-bit displacement 3

RET – Return from Procedure (to other segment) NP

   intersegment 1100 1011 4 R,23

to same level
to outer level

4−13
23

P,9,23,24
P,9,25

   adding immediate to SP 1100 1010 : 16-bit displacement 4 R,23

to same level
to outer level

4−13
23

P,9,23,24
P,9,25

ROL – Rotate (not thru Carry) Left

   reg by 1 1101 000w : 11 000 reg 1 PU

   memory by 1 1101 000w : mod 000 r/m 3 PU

   reg by CL 1101 001w : 11 000 reg 4 NP

   memory by CL 1101 001w : mod 000 r/m 4 NP

   reg by immediate count 1100 000w : 11 000 reg : imm8 data 1 PU

   memory by immediate count 1100 000w : mod 000 r/m : imm8 data 3 PU

ROR – Rotate (not thru Carry) Right

   reg by 1 1101 000w : 11 001 reg 1 PU

   memory by 1 1101 000w : mod 001 r/m 3 PU

   reg by CL 1101 001w : 11 001 reg 4 NP

   memory by CL 1101 001w : mod 001 r/m 4 NP

   reg by immediate count 1100 000w : 11 001 reg : imm8 data 1 PU

   memory by immediate count 1100 000w : mod 001 r/m : imm8 data 3 PU

RSM – Resume from System  0000 1111 : 1010 1010
Management Mode

NP

SAHF – Store AH into Flags 1001 1110 2 NP

SAL – Shift Arithmetic Left same instruction as SHL
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Table F-13.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

SAR – Shift Arithmetic Right

   reg by 1 1101 000w : 11 111 reg 1 PU

   memory by 1 1101 000w : mod 111 r/m 3 PU

   reg by CL 1101 001w : 11 111 reg 4 NP

   memory by CL 1101 001w : mod 111 r/m 4 NP

   reg by immediate count 1100 000w : 11 111 reg : imm8 data 1 PU

   memory by immediate count 1100 000w : mod 111 r/m : imm8 data 3 PU

SBB – Integer Subtraction with Borrow PU

   reg1 to reg2 0001 100w : 11 reg1 reg2 1

   reg2 to reg1 0001 101w : 11 reg1 reg2 1

   memory to register 0001 101w : mod reg r/m 2

   register to memory 0001 100w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 011 reg : immediate data 1

   immediate to accumulator 0001 110w : immediate data 1

   immediate to memory 1000 00sw : mod 011 r/m : immediate data 3 U/L

SCAS/SCASB/SCASW/SCASD 1101 111w
– Scan String

4 NP

SETcc – Byte Set on Condition NP

   reg 0000 1111 : 1001 tttn : 11 000 reg 1

   memory 0000 1111 : 1001 tttn : mod 000 r/m 2

SGDT – Store Global 0000 1111 : 0000 0001 : mod 000 r/m
Descriptor Table Register

4 NP

SHL – Shift Left

   reg by 1 1101 000w : 11 100 reg 1 PU

   memory by 1 1101 000w : mod 100 r/m 3 PU

   reg by CL 1101 001w : 11 100 reg 4 NP

   memory by CL 1101 001w : mod 100 r/m 4 NP

   reg by immediate count 1100 000w : 11 100 reg : imm8 data 1 PU

   memory by immediate count 1100 000w : mod 100 r/m : imm8 data 3 PU

SHLD – Double Precision Shift Left

   register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8 4 NP

   memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8 4 NP

   register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1 4 NP

   memory by CL 0000 1111 : 1010 0101 : mod reg r/m 5 NP

SHR – Shift Right

   reg by 1 1101 000w : 11 101 reg 1 PU

   memory by 1 1101 000w : mod 101 r/m 3 PU

   reg by CL 1101 001w : 11 101 reg 4 NP

   memory by CL 1101 001w : mod 101 r/m 4 NP

   reg by immediate count 1100 000w : 11 101 reg : imm8 data 1 PU

   memory by immediate count 1100 000w : mod 101 r/m : imm8 data 3 PU
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Table F-14.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

SHRD – Double Precision Shift Right

   register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8 4 NP

   memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8 4 NP

   register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1 4 NP

   memory by CL 0000 1111 : 1010 1101 : mod reg r/m 5 NP

SIDT – Store Interrupt 0000 1111 : 0000 0001 : mod 001 r/m
Descriptor Table Register

4 NP

SLDT – Store Local Descriptor Table Register

   to register 0000 1111 : 0000 0000 : 11 000 reg 2 NP

   to memory 0000 1111 : 0000 0000 : mod 000 r/m 2 NP

SMSW – Store Machine Status Word NP

   to register 0000 1111 : 0000 0001 : 11 100 reg 4

   to memory 0000 1111 : 0000 0001 : mod 100 r/m 4

STC – Set Carry Flag 1111 1001 2 NP

STD – Set Direction Flag 1111 1101 2 NP

STI – Set Interrupt Flag 1111 1011 7

STOS/STOSB/STOSW/STOSD 1010 101w
– Store String Data

3 NP

STR – Store Task Register NP

   to register 0000 1111 : 0000 0000 : 11 001 reg 2

   to memory 0000 1111 : 0000 0000 : mod 001 r/m 2

SUB – Integer Subtraction UV

   reg1 to reg2 0010 100w : 11 reg1 reg2 1

   reg2 to reg1 0010 101w : 11 reg1 reg2 1

   memory to register 0010 101w : mod reg r/m 2

   register to memory 0010 100w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 101 reg : immediate data 1

   immediate to accumulator 0010 110w : immediate data 1

   immediate to memory 1000 00sw : mod 101 r/m : immediate data 3 U/L

TEST – Logical Compare

   reg1 and reg2 1000 010w : 11 reg1 reg2 2 UV

   memory and register 1000 010w : mod reg r/m 1 UV

   immediate and register 1111 011w : 11 000 reg : immediate data 1 NP

   immediate and accumulator 1010 100w : immediate data 1 UV

   immediate and memory 1111 011w : mod 000 r/m : immediate data 2 NP

VERR – Verify a Segment for Reading

   register 0000 1111 : 0000 0000 : 11 100 reg 7 NP

   memory 0000 1111 : 0000 0000 : mod 100 r/m 7 NP

VERW – Verify a Segment for Writing

   register 0000 1111 : 0000 0000 : 11 101 reg 7 NP

   memory 0000 1111 : 0000 0000 : mod 101 r/m 7 NP
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Table F-15.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

WAIT – Wait 1001 1011 1/1 NP

WBINVD – Writeback and 0000 1111 : 0000 1001
Invalidate Data Cache

2000+ NP

WRMSR – Write to Model- 0000 1111 : 0011 0000
Specific Register

30–45 MN/MX NP

XADD – Exchange and Add NP

   reg1, reg2 0000 1111 : 1100 000w : 11 reg2 reg1 3

   memory, reg 0000 1111 : 1100 000w : mod reg r/m 4 U/L

XCHG – Exchange Register/Memory with Register NP

   reg1 with reg2 1000 011w : 11 reg1 reg2 3 2

   accumulator with reg 1001 0 reg 2 2

   memory with reg 1000 011w : mod reg r/m 3 2

XLAT/XLATB – Table Look-up 1101 0111
Translation

4 NP

XOR – Logical Exclusive OR UV

   reg1 to reg2 0011 000w : 11 reg1 reg2 1

   reg2 to reg1 0011 001w : 11 reg1 reg2 1

   memory to register 0011 001w : mod reg r/m 2

   register to memory 0011 000w : mod reg r/m 3 U/L

   immediate to register 1000 00sw : 11 110 reg : immediate data 1

   immediate to accumulator 0011 010w : immediate data 1

   immediate to memory 1000 00sw : mod 110 r/m : immediate data 3 U/L
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Table F-16.  Integer Clock Count Summary (Contd)
Instruction Format Clocks Notes Pairing

Prefix Bytes

   address size 0110 0111 1

   LOCK 1111 0000 1

   operand size 0110 0110 1

   CS segment override 0010 1110 1

   DS segment override 0011 1110 1

   ES segment override 0010 0110 1

   FS segment override 0110 0100 1

   GS segment override 0110 0101 1

   SS segment override 0011 0110 1

External Interrupt INT + 14 21

NMI – Non-Maskable Interrupt INT + 6 21

Page Fault INT + 40 21

Virtual 8086 Mode Exceptions

   CLI
   STI
   INT n
   PUSHF
   POPF
   IRET
   IN
      fixed port
      variable port
   OUT
      fixed port
      variable port
   INS
   OUTS
   REP INS
   REP OUTS

INT + 9
 INT + 9
 INT + 9
 INT + 9
 INT + 9
 INT + 9

 INT + 34
 INT + 34

 INT + 34
 INT + 34
 INT + 34
 INT + 34
 INT + 34
 INT + 34

    21
21

21
21

21
21

21
21
21
21
21
21

NOTES:

1. Clock counts apply to PL0 and PL1-3, respectively..
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F.2. I/O INSTRUCTION FORMAT AND TIMING

Table F-17.  I/O Instructions Clock Count Summary

Instruction Format
Real
Mode

Protected
Mode
CPL≤≤
IOPL

Protected
Mode
CPL>IO
PL

Virtual
8086
Mode Notes

IN – Input from:

   fixed port 1110 010w : port
number

7 4 21 19

   variable port 1110 110w 7 4 21 19

OUT – Output to:

   fixed port 1110 011w : port
number

12 9 26 24

   variable port 1110 111w 12 9 26 24

INS – Input from DX Port 0110 110w 9 6 24 22

OUTS – Output to DX Port 0110 111w 13 10 27 25 1

REP INS – Input String 1111 0011 : 0110
110w

11 + 3c 8 + 3c 25 + 3c 23 + 3c 2

REP OUTS – Output String 1111 0011 : 0110
111w

13 + 4c 10 + 4c 27 + 4c 25 + 4c 3

NOTES:

1. Two clock cache miss penalty in all cases.

2. c = count in CX or ECX

3. Cache miss penalty in all modes:  Add 2 clocks for every 16 bytes. Entire penalty on second operation.

F.3. FLOATING-POINT INSTRUCTION FORMAT AND TIMING
The following sections explain how to use the columns of Table F-Error! Bookmark not
defined..

F.3.1. Format
Instructions for the FPU assume one of the five forms shown in Table F-Error! Bookmark
not defined.. In all cases, instructions are at least two bytes long and begin with the bit
pattern 11011.



EE INSTRUCTION FORMAT AND TIMING

F-25

Table F-18.  General Floating-Point Instruction Format

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4      3       2   1   0 

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element

⋅
⋅
⋅

111 = Eighth stack element

The mod (mode field) and r/m  (register/memory specifier) have the same interpretation as
the corresponding fields of the integer instructions. The s-i-b (scale index base) and disp
(displacement) are optionally present in instructions that have mod and r/m  fields. Their
presence depends on the values of mod and r/m , as for integer instructions.

F.3.2. Clock Counts
Two clock counts separated by a slash (/) are the latency and throughput, respectively.
Throughput may be less than latency due to pipelining.

Two clock counts separated by a dash indicate a range of possible timings.
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F.3.3. Notes

1. If CW.PC indicates 24-bit precision, subtract 20 clocks. If CW.PC indicates 53-bit
precision, subtract 6 clocks.

2. If there is a numeric error pending from a previous instruction, add 60 clocks.

3. FXCH takes 0 clocks when paired. Second FXCH will pair in V-pipe if two FXCH
instructions are issued back-to-back.

4. FMUL followed by FMUL has throughput of 2.

F.3.4. Pairing

FX — Pairs with FXCH

NP — No pairing.
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Table F-19.  Floating-Point Clock Count Summary
Instruction Format Clocks Notes Pairing

F2XM1 – Compute 2 ST(0) – 1 11011 001 : 1111 0000 13–57 NP

FABS – Absolute Value 11011 001 : 1110 0001 1/1 FX

FADD – Add FX

   ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m 3/1

   ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m 3/1

   ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i) 3/1

FADDP – Add and Pop FX

   ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i) 3/1

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m 48–58 NP

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m 148–154 NP

FCHS – Change Sign 11011 001 : 1110 0000 1/1 FX

FCLEX – Clear Exceptions 11011 011 : 1110 0010 9/9 2 NP

FCOM – Compare Real FX

   32-bit memory 11011 000 : mod 010 r/m 4/1

   64-bit memory 11011 100 : mod 010 r/m 4/1

   ST(i) 11011 000 : 11 010 ST(i) 4/1

FCOMP – Compare Real and Pop FX

   32-bit memory 11011 000 : mod 011 r/m 4/1

   64-bit memory 11011 100 : mod 011 r/m 4/1

   ST(i) 11011 000 : 11 011 ST(i) 4/1

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001 4/1

FCOS – Cosine of ST(0) 11011 001 : 1111 1111 18–124 NP

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110 1/1 NP

FDIV – Divide FX

   ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m 39 1

   ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m 39 1

   ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i) 39 1

FDIVP – Divide and Pop FX

   ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i) 39 1

FDIVR – Reverse Divide FX

   ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m 39 1

   ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m 39 1

   ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i) 39 1

FDIVRP – Reverse Divide and Pop FX

   ST(0) ← ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i) 39 1

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i) 1/1 NP

FIADD – Add Integer NP

   ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m 7/4

   ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m 7/4
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Table F-20.  Floating-Point Clock Count Summary (Contd.)
Instruction Format Clocks Notes Pairing

FICOM – Compare Integer NP

   16-bit memory 11011 110 : mod 010 r/m 8/4

   32-bit memory 11011 010 : mod 010 r/m 8/4

FICOMP – Compare Integer and Pop NP

   16-bit memory 11011 110 : mod 011 r/m 8/4

   32-bit memory 11011 010 : mod 011 r/m 8/4

FIDIV NP

   ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 110 r/m 42 1

   ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 110 r/m 42 1

FIDIVR NP

   ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 111 r/m 42 1

   ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 111 r/m 42 1

FILD – Load Integer NP

   16-bit memory 11011 111 : mod 000 r/m 3/1

   32-bit memory 11011 011 : mod 000 r/m 3/1

   64-bit memory 11011 111 : mod 101 r/m 3/1

FIMUL NP

   ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 001 r/m 7/4

   ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 001 r/m 7/4

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111 1/1 NP

FINIT – Initialize Floating-Point Unit 11011 011 : 1110 0011 16/12 2 NP

FIST – Store Integer NP

   16-bit memory 11011 111 : mod 010 r/m 6/6

   32-bit memory 11011 011 : mod 010 r/m 6/6

FISTP – Store Integer and Pop NP

   16-bit memory 11011 111 : mod 011 r/m 6/6

   32-bit memory 11011 011 : mod 011 r/m 6/6

   64-bit memory 11011 111 : mod 111 r/m 6/6

FISUB NP

   ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 100 r/m 7/4

   ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 100 r/m 7/4

FISUBR NP

   ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 101 r/m 7/4

   ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 101 r/m 7/4

FLD – Load Real

   32-bit memory 11011 001 : mod 000 r/m 1/1 FX

   64-bit memory 11011 101 : mod 000 r/m 1/1 FX

   80-bit memory 11011 011 : mod 101 r/m 3/3 NP

   ST(i) 11011 001 : 11 000 ST(i) 1/1 FX
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Table F-21.  Floating-Point Clock Count Summary (Contd.)
Instruction Format Clocks Notes Pairing

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000 2/2 NP

FLDCW – Load Control Word 11011 001 : mod 101 r/m 7/7 NP

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m NP

real and v86 modes, 16-bit address
real and v86 modes, 32-bit address
protected mode, 16-bit address
protected mode, 32-bit address

37
37
32
33

FLDL2E – Load log 2(εε) into ST(0) 11011 001 : 1110 1010 5/3 NP

FLDL2T – Load log 2(10) into ST(0) 11011 001 : 1110 1001 5/3 NP

FLDLG2 – Load log 10(2) into ST(0) 11011 001 : 1110 1100 5/3 NP

FLDLN2 – Load log εε(2) into ST(0) 11011 001 : 1110 1101 5/3 NP

FLDPI – Load ππ into ST(0) 11011 001 : 1110 1011 5/3 NP

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110 2/2 NP

FMUL – Multiply FX

   ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m 3/1 4

   ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m 3/1 4

   ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i) 3/1 4

FMULP – Multiply FX

   ST(0) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i) 3/1

FNOP – No Operation 11011 001 : 1101 0000 1/1 NP

FPATAN – Partial Arctangent 11011 001 : 1111 0011 19–134 NP

FPREM – Partial Remainder 11011 001 : 1111 1000 16–64 NP

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101 20–70 NP

FPTAN – Partial Tangent 11011 001 : 1111 0010 17–173 NP

FRNDINT – Round to Integer 11011 001 : 1111 1100 9–20

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m NP

real and v86 modes, 16-bit address
real and v86 modes, 32-bit address
protected mode, 16-bit address
protected mode, 32-bit address

75/75
95/95
70/70
70/70

FSAVE – Store FPU State 1101 101 : mod 110 r/m NP

real and v86 modes, 16-bit address
real and v86 modes, 32-bit address
protected mode, 16-bit address
protected mode, 32-bit address

127/127
151/1

51
124/1

24
124/1

24

2
2
2
2

FSCALE – Scale 11011 001 : 1111 1101 20–31 NP

FSIN – Sine 11011 001 : 1111 1110 16–126 NP

FSINCOS – Sine and Cosine 11011 001 : 1111 1011 17–137 NP
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Table F-22.  Floating-Point Clock Count Summary (Contd.)
Instruction Format Clocks Notes Pairing

FSQRT – Square Root 11011 001 : 1111 1010 70/70 NP

FST – Store Real NP

   32-bit memory 11011 001 : mod 010 r/m 2/2

   64-bit memory 11011 101 : mod 010 r/m 2/2

   ST(i) 11011 101 : 11 010 ST(i) 1/1

FSTCW – Store Control Word 11011 001 : mod 111 r/m 2/2 2 NP

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m NP

real and v86 modes, 16-bit address
real and v86 modes, 32-bit address
protected mode, 16-bit address
protected mode, 32-bit address

50/50
48/50
49/50
50/50

2
2
2
2

FSTP – Store Real and Pop NP

   32-bit memory 11011 001 : mod 011 r/m 2/2

   64-bit memory 11011 101 : mod 011 r/m 2/2

   80-bit memory 11011 011 : mod 111 r/m 3/3

   ST(i) 11011 101 : 11 011 ST(i) 1/1

FSTSW – Store Status Word 11011 111 : 1110 0000
into AX

6/2 2 NP

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m 5/2 2 NP

FSUB – Subtract FX

   ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m 3/1

   ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m 3/1

   ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i) 3/1

FSUBP – Subtract and Pop FX

   ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i) 3/1

FSUBR – Reverse Subtract FX

   ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m 3/1

   ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m 3/1

   ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i) 3/1

FSUBRP – Reverse Subtract and Pop FX

   ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i) 3/1

FTST – Test 11011 001 : 1110 0100 4/1 FX

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i) 4/1 FX

FUCOMP – Unordered Compare 11011 101 : 1110 1 ST(i)
and Pop

4/1 FX

FUCOMPP – Unordered Compare  11011 010 : 1110 1001
and Pop Twice

4/1 FX

FXAM – Examine 11011 001 : 1110 0101 21/21 NP

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i) 1
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Table F-23.  Floating-Point Clock Count Summary (Contd.)
Instruction Format Clocks Notes Pairing

FXTRACT – Extract Exponent 11011 001 : 1111 0100
and Significand

13/13 NP

FYL2X – ST(1) ××  log 2(ST(0)) 11011 001 : 1111 0001 22–111 NP

FYL2XP1 – ST(1) ××  log 2(ST(0) + 1.0) 11011 001 : 1111 1001 22–103 NP

FWAIT – Wait until FPU Ready 1001 1011 1/1
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APPENDIX G
REPORT ON TRANSCENDENTAL FUNCTIONS

The Pentium microprocessor employs a new set of algorithms to implement its
transcendental instructions. This chapter includes:

• A brief introduction to the algorithms

• A summary of their accuracy, monotonicity, and speed characteristics

• A description of the verification effort to validate the accuracy and monotonicity of the
implemented algorithms

G.1. INTRODUCTION
There are two traditional classes of algorithm for implementing elementary transcendental
functions.

The first class transforms an input argument to one with very small magnitude. An
approximation to the function at that small argument is obtained by simple calculation,
typically a couple of adds with a multiplication or division. Finally, the desired result is
obtained by another transformation. This class of algorithm is referred to as CORDIC and has
the characteristic that the underlying operations are very simple, typically involving only
shifts and fixed-point additions. The bulk of the work in a CORDIC algorithm lies in the
initial and final transformations, and the performance of the algorithm is limited by the
sequential nature of the long series of shifts and adds. For descriptions of CORDIC
algorithms, see [6, 7, 10]. There are several examples of microprocessors (including the
Intel486 microprocessor) that implement these algorithms using on-chip hardware and
firmware.

The second class of algorithm employs a rather simple transformation on an input argument,
reducing it to one of moderate magnitude. To approximate the function value at the
transformed argument, a polynomial or a rational function is evaluated at that point. To
obtain roughly 64 bits of accuracy, a typical polynomial or rational function would require
roughly 10 floating-point multiplications and additions, and one additional division if a
rational function is used. Finally, a simple transformation is applied to create the value
desired. These algorithms do not have a name analogous to CORDIC; they can simply be
called polynomial-based algorithms. The bulk of the work here lies in the second step that
involves a polynomial or rational function evaluation. For descriptions of this class of
algorithm, see [2, 4].

In the past, hardware implementations of elementary functions mostly employed CORDIC
algorithms because of their relatively simple hardware requirements. Recent hardware
advancements resulting in the high speed of basic floating-point operations have made it
possible and advantageous to implement polynomial-based algorithms.
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The algorithms for the transcendental functions on the Pentium microprocessor can be
thought of as a middle ground between the two approaches. By using tables of function
values stored in ROM, one can significantly shorten the polynomial calculations that would
normally be required in a polynomial-based algorithm. This class of algorithm is usually
referred to as table-driven. Table-driven algorithms are by no means new, and recent uses for
them can be found in [1, 3, 5, 8]. Such algorithms have been implemented in software
libraries in the past, but never before on-chip. Although such algorithms require a moderate
amount of ROM space and a small increase in argument reduction complexity, they offer a
number of important advantages, especially if implemented on-chip. These are:

1. Accuracy. The combination of simple argument reduction and small reduced arguments
leads to highly accurate final results. Also, access to internal data paths that are wider
than the paths available to a software library further enhances the accuracy.

2. Monotonicity. The high accuracy also leads to monotonicity.

3. Proof of correctness. Rigorous error analyses become straightforward and also lead to
tight error bounds.

4. Performance. The overall implementation algorithm leads to higher performance due to
several reasons. The simple core calculations are marked by short polynomials. Access
to microprogramming at the low level afforded within the Pentium processor chip
provides richer parallelism and control flow than that available to software libraries. The
striking simplicity of the implementation adds no additional critical paths to the chip,
allowing the clock rate to be taken to the limit imposed by other features.

G.2. SUMMARY OF ACCURACY, MONOTONICITY AND SPEED

G.2.1. Accuracy
Accuracy is measured in terms of units in the last place (ulp). For a given argument x, let f(x)
and F(x) be the correct and computed function values respectively. The error in ulps is
defined to be





f(x) – F(x)

2k – 63

where k is an integer such that 1 ≤ 2–kf(x) < 2. Note that even if F(x) is the same as f(x)
correctly rounded to 64 significant bits, the worst-case error is 1/2 ulp when rounding in
nearest mode. An implementation F(x) is considered extremely satisfactory if the worst-case
error is under 1 ulp.

On the Pentium microprocessor, the worst case error on all transcendental functions is less
than 1 ulp when rounding in nearest mode, and less than 1.5 ulps when rounding in other
modes. This is summarized in Table G-1.
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Table G-1.  Summary of Accuracy

Function Round to Nearest Mode All Other Rounding Modes

All functions Worst case error is less than 1 ulp. Worst case error is less than 1.5 ulp.

G.2.2. Monotonicity
For a given argument x with x– and x+ as its lower and upper neighbors, the implemented
function F is monotonic with respect to its input argument if…

F(x–) ≤ F(x) ≤ F(x+),   if f is increasing at x,

or if…

F(x–) ≥ F(x) ≥ F(x+),   if f is decreasing at x.

The functions are guaranteed to be monotonic with respect to the input operands throughout
the domain supported by the instruction.

G.2.3. Speed
The speed is described by specifying the latency in terms of clock counts. The latency varies
from function to function, with typical performance from 54 to 115 clocks. Table G-2
summarizes the latency of each of the functions. Three clock count numbers are provided.
The first number is for special operands such as zero or infinity; the second and third
numbers are the lower and upper bounds for non-special operands in the domain. For
example, for FYL2X, when x = 0, the processor takes 22 clocks, and it takes 104 and 114
clocks when |x – 1| ≥ 1/8 and when |x – 1| < 1/8 respectively.

G.3. VERIFICATION SUMMARY
A rigorous mathematical error analysis was performed for each function. Furthermore, a
comprehensive verification program was undertaken to confirm the correctness of the error
analysis (and consequently the accuracy and monotonicity characteristics) of the
implemented algorithms.
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Table G-2.  Speed of Functions at Typical Arguments

Function Latency* (clocks) Function Latency* (clocks)

F2XM1 13, 54, 60 FSIN 12, 59, 126

FCOS 14, 59, 126 FSINCOS 13, 83, 138

FPATAN 19, 98, 137 FPTAN 13, 115, 174

FYL2X 22, 104, 114 FYL2XP1 22, 103, 106

*The first number is for special operands, such as zero or infinity; the second and third numbers are the lower
and upper bounds for nonspecial operands in the domain.

For each function, an average of 8500 specially chosen points were used to compare the
results from the Pentium microprocessor against a set of results that are accurate to about 112
bits, derived from the VAX* VMS* H-functions Math Library. In addition, about 300 million
points were randomly chosen for accuracy testing in a manner such that each binade of the
input domain was covered; i.e., test points were chosen to cover intervals corresponding to
each exponent value of the input domain.

For all cases tested, the actual error was found to lie below the bound obtained by the
theoretical error analysis. Figure G-1 through Figure G-22 are ulp plots that illustrate this
characterization information. For a given argument in the X-axis, a dot is printed to indicate
the error in ulps of the function at that argument. Of particular interest are the peaks and the
envelopes of these plots. The scatter plot characteristics observed track the error analyses
closely. Table G-3 summarizes the number of arguments tested.

Table G-3.  Number of Arguments Used in Accuracy Tests

Function No. of Arguments (Million) Function No. of Arguments (Million)

FYL2X 35 FYL2XP1 28

FSIN 28 FCOS 37

FSINCOS 54 FPTAN 37

FPATAN 50 F2XM1 30

All the functions were tested for monotonicity. A total of about 145 million points were used
for monotonicity characterization. No failures were found. Table G-4 summarizes the
number of arguments tested.
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Table G-4.  Number of Arguments Used in Monotonicity Tests

Function No. of Arguments (Million) Function No. of Arguments (Million)

FYL2X 30 FYL2XP1 18

FSIN 4 FCOS 8.5

FSINCOS 24.5 FPTAN 23.5

FPATAN 10 F2XM1 26



REPORT ON TRANSCENDENTAL FUNCTIONS EE

G-6

G.4. SCATTER PLOTS

Figure G-1.  Scatterplot for FSIN (3FBB-403E)

Figure G-2.  Scatterplot for FSIN (3FFC-3FFD)
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Figure G-3.  Scatterplot for FSIN (3FFE-3FFF)

 

Figure G-4.  Scatterplot for FSIN (4000-4002)
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Figure G-5.  Scatterplot for FCOS (3FBB-403E)

 

Figure G-6.  Scatterplot for FCOS (3FFC-3FFD)
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Figure G-7.  Scatterplot for FCOS (3FFE-3FFF)

 

Figure G-8.  Scatterplot for FCOS (4000-4002)
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Figure G-9.  Scatterplot for FSINCOS (SIN, 3FBB-403E)

 

Figure G-10.  Scatterplot for FSINCOS (COS, 3FBB-403E)
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Figure G-11.  Scatterplot for FPTAN (3FDD-403E)

 

Figure G-12.  Scatterplot for FPTAN (3FE4-3FFA)
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Figure G-13.  Scatterplot for FPTAN (3FFB-4008)

 

Figure G-14.  Scatterplot for FYL2X (0001-7FFD)



EE REPORT ON TRANSCENDENTAL FUNCTIONS

G-13

 

Figure G-15.  Scatterplot for FYL2X (3FFF-3FFF)

 

Figure G-16.  Scatterplot for FYL2XP1 (0001-3FFE)
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Figure G-17.  Scatterplot for FYL2XP1 (3FBE-3FC5)

 

Figure G-18.  Scatterplot for FYL2XP1 (3FEB-3FFE)
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Figure G-19.  Scatterplot for F2XM1 (0001-3FFE)

 

Figure G-20.  Scatterplot for F2XM1 (3FBA-3FFE)
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Figure G-21.  Scatterplot for F2XM1 (3FFD-3FFE)

 

Figure G-22.  Scatterplot for FPATAN (0001-7FFD)
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APPENDIX H
ADVANCED FEATURES

Some non-essential information regarding the Pentium processor are considered Intel
confidential and proprietary and have not been documented in this publication. This
information is provided in the Supplement to the Pentium® Processor Developer’s Manual
and is available with the appropriate non-disclosure agreements in place. Please contact Intel
Corporation for details.

The Supplement to the Pentium® Processor Developer’s Manual contains Intel confidential
information on architecture extensions to the Pentium processor which are non-essential for
standard applications. This includes low-level registers that provide access to such features as
page size extensions, virtual mode extensions, testing and performance monitoring.

This information is specifically targeted at writers of the following types of software:

• Operating system kernels

• Virtual memory managers

• BIOS software

If you are writing software that does not fall into one of these categories, this information is
non-essential and all required programming details are contained in the publicly available
Pentium® Processor Developer’s Manual, three-volume set.
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For additional information on Intel products in the U.S. and Canada call Intel’s Literature Center at
(800) 548-4725.

INTEL LITERATURE
P.O. Box 7641
Mt. Prospect, IL  60056-7641

To order literature outside of the U.S. and Canada contact your local international sales office.

CURRENT DATABOOKS

Product line databooks contain datasheets, application notes, article reprints, and other design information.
Databooks can be ordered in the U.S. and Canada by calling TAB/McGraw-Hill at 1-800-822-8158; outside of
the U.S. and Canada contact your local international sales office.

Title
Intel

Order Number ISBN

AUTOMOTIVE PRODUCTS 231792 N/A

EMBEDDED APPLICATIONS 270648 1-55512-242-6

EMBEDDED MICROCONTROLLERS 270646 1-55512-230-2

EMBEDDED MICROPROCESSORS 272396 1-55512-231-0

FLASH MEMORY (2 volume set) 210830 1-55512-232-9

Intel486™ MICROPROCESSORS and Related Products 241731 1-55512-1235-3

i960® PROCESSORS AND RELATED PRODUCTS 272084 1-55512-234-5

MILITARY AND SPECIAL PRODUCTS  (2 volume set) 210461 N/A

NETWORKING 297360 1-55512-236-1

OEM BOARDS, SYSTEMS & SOFTWARE 280407 1-55512-237-X

PACKAGING 240800 1-55512-238-8

PENTIUM™ PROCESSORS and Related Products 241732 1-55512-239-6

PERIPHERAL COMPONENTS 296467 1-55512-240-X

A complete set of this information is available on CD-ROM through Intel’s Data on Demand program, order number 240897.
For information about Intel’s Data on Demand ask for item number 240952.
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